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ABSTRACT

The Goddard Space Flight Center [GSFC) and the University of Maryland (UM)

Mechanical Engineering Department have a common interest in flywheels and have

cooperated since the mid_1970's in designing and testing flywheel components.

GSFC/UM is currently involved in studying application of a graphite/epox_y,

magnetically suspended, pierced disk flywheel for the combined function of

spacecraft attitude control and energy storage {ACES).

Past achievements of the GSFC/UM magnetical]y suspended flywheel program

include design and analysis computer codes for the flywheel rotor, a magneti-

cally suspended flywheel model, and graphite/epoxy rotor rings that have been

successfully prestressed via interference assembly. A11 hardware has success-

fully demonstrated operation of the necessary subsystems which form a complete

ACES design.

Areas of future GSFC/UM work include additional rotor design research,

system definition and contrbl strategies, prototype developement, and

design/construction of a UM/C_SFC spin test facility.

The results of applying design and analysis computer codes to a ,_agneti-

rally suspended interference assembled rotor show specific energy densities of

42 Wh/Ib (g2.4 Wh/kg) are obtained for a 1.6 kWh system.
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INTRODUCTION

The Goddard Space Flight Center has been active in the development of high

efficiency motor/generator and magnetlc suspension systems since the early

1960's. One outcome of this work resulted in a magnetically suspended momen-

tum wheel for spacecraft application [1,2,3]*.

Based upon this earl_y work at GSFC it appeared useful to consider a system

which can provide for the joint functions of attitude control and energy

storage. Since the mid-1970's GSFC and the University of Maryland have been

active in a joint program on the various aspects of a magnetically suspended

flywheel system. Recently GSFC/UM has addressed the problems of the joint

solution of attitude control and energy storage. The program is termed ACES

(_ttitude Control and Energy Storage) and it involves hardware definition and

problem identification/solution of all aspects of a magnetically suspended

flywheel system.

The purpose of this paper is to provide a brief review of the GSFC/UM ACES

effort, to present some of the hardware currently undergoing testing, and to

identify the areas of future work.

t

Brackets denote references at enA of paper.
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SYSTEMS BACKGROUND

Zn designing a magnetically suspended flywheel system, GSFC/UM has

concluded [4,5,6] that a pierced disk of uniform thickness provides a

desirable rotor geometry from both a performance and manufacturing point of

view.

Shown in Figure 1 is a cross-sectional view of the original GSFC/UM magne-

tically suspended flywheel design. The original design consists of Z rings

with the outermost ring being made of a filamentary wound composite material

and the inner ring being made of continuous iron bonded to the filamentary

wound ring. The stator of this design fits in the "hole" of the Z ring rotor

and it carries the magnetic suspensio_ and motor/generator electronics. The

original GSFC/UM design was configured around a homopolar permanent magnet

motor/generator with variable field flux for maintaining constant voltage out-

put as rotational speed varies [4]. The magnetic suspension system is an

integral part of the motor/generator design and it utilizes permanent magnets

to establish a steady state magnetic flux, which is then modulated via sensor

feedback [4].

Shown in Figure Z is a photograph of the current test system which _FC/UM

is using to establish rotational losses and efficiencies for the

motor/generator and magnetic suspension concepts embodied tn the original

GSFC/UIt design. Testing fs currently under way on this first generation ACES

design and preliminary results are encouraging and supoort the performance

projections previously presented tn the literature [4,6].
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ROTOR DESIGN CONSIDERATIONS

RCA [7] and J.A. Kirk, under contract to GSFC, have done additional work on

the original GSFC/UM design. It was concluded that a multiring, interference

assembled rotor, such as shown in Figure 3, would provide for substantial

improvements over the original GSFC/UM design. The modified GSFC/UM design,

shown in Figure 3, differs from the original GSFC/UM design in the following

areas :

I. The rotor is composed of a number of individual filamentary wound

rings, rather than being one continuous ring.

2. The inside diameter (ID) to outside diameter (OD) rotor ratio (ID/OD)

is smaller than the original GSFC/UM design.

3. The innermost ring is made of iron and is segmented into discrete pie-

Shaped "chunks".

Each of the above changes was made in the original GSFC/UM design in

order to improve the overall performance of the system. The reasoning behind

the changes has been documented by Kirk and Huntington [8,9,10,11] and a

brief expl anati on fol 1ows:

1. The rotor is made of a number of co,_oslte material rings which are

interference assembled. The reason behind this change is to

favorably prestress the rotor so higher rotational speeds and energy

densities can be obtained before a limiting performance constraint is

encountered.

2. The ID/00 ratio has been lowered. The reason behind this change is

that the original GSFC design was of a "thin hoop" type and suffered

excessive "gap" growth between the rotor and the stator as it spun.
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Since gap growth will degrade electrical performance, it must be

controlled, and the best way to achieve this control is by decreasing

the ID/OO ratio.

3. The innermost ring must be made of iron and is now segmented instead

of being continuous, This change has been made because the iron ring

would always reach its limiting strength long before the filamentary

wound composite ring(s) reached their strength limit. To overcome

this limitation a "segmented '_inner ring is now proposed for use on

the magnetically suspended flywheel system. The important point to

note is that the inner iron ring will have all the necessary magnetic

properties but will consist of a number of pie-shaped segments which

are bonded to the inside diameter of the first filamentary wound

ring. The iron ring thus has no stiffness in a "hoop" or tangential

direction and presents an "inner loading" on the filamentary wound

composite ring to which it is attached.

The three changes described above have no impact on the motor�generator or

magnetic suspension system. The effect that these changes have on the pro-

ject_d system performance is dramatic and has been documented via a recent

GSFC contractor report [12].

ROTOR ANALYSIS TOOLS

GSFC/UM realize that the final rotor design dimensions must evolve in

parallel with the magnetic suspension and motor generator designs (as they

impact on the dimensions and weight of iron inner ring). Obviously then, the

most useful rotor design a&d analysis tools are those which most closely model

the real physical system and are convenient to apply as the iron inner ring
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design evolves. GSFC/UM has developed two (2) design and analysis tools for

this purpose. Both tools are computer codes which perform detailed stress

analysis and final dimension selection (including component tolerances) for

all the components of the ring rotor. The analysis code is called FLYANS

F(._wheel ANalySis) and the sizing code is called FLYSIZE F_whee] SIZE).

The interested reader will find a description of these codes in References 8

and 12.

Shown in Figure 4 is a schematic diagram of the multiring rotor which is

modeled by the FLYANS and FLYSIZE codes. Each of the rotor rings is the same

axial thickness and the stresses in each ring consist of a hoop or tangential

stress CoB) and a radial stress (Or). If power is being put in or taken out

of the system there is an additional shear stress (Tre) in each ring. It is

assumed that the flywheel rings are in a state of plane stress, meaning that

there is no variation of the oe and o r stresses in the axial direction.

The materia]s which comprise the multiring rotor are modeled as homoge-

neous, linearly elastic, orthotropic materials [13], with material

properties specified in the radial and l_angential direction. The current

GSFC/UM design is based on Celion 6000/epoxy for the filamentary wound com-

posite rings [12]. It should also be pointed out that any new or hypothetical

materials can easily be added to the computer code data base with minimal

effort.

The total stress distribution in one ring of the multiring flywheel is the

superposition of the ftve stress distributions due to the following:

1. Rotation of the ring at constant angular velocity.

2. Interaction with adjoining rings due to rotational expansion.
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3. Interference assembly of the rings.

4. Residual stresses due to curing.

5. Angular acceleration of the entire assembly.

The stress distribution for the entire flywheel is the summation of the above

5 stresses for each flywheel ring.

Of the 5 stress distributions given above, no. 3, interference assembly,

is under the direct control of the designer. The FLYANS code provides an

algorithm for the selection of interference pressures in order to optimize the

stored energy per unit weight of the rotor.

It will be instructive at this point to consider the hypothetical example

of how interference stresses interact with rotational stresses in a simple 2

ring "pierced disk" rotor.

Shown in Figure 5 is the stress distribution which occurs when 2 rings of

the same material are interference assembled. When the interference stress

distribution is added to the rotational stress, distribution the net result is

as shown in Figure 6. In Figure 6 the stresses have been made nondimensional

by the factor

where

plm2b z (units are psi)

Pl = mass density for the first ring of the assembly (value is

weight density in Ib/in 3 dlvlded by g = 386 in/sec 2)

= = rotational speed (rad/sec)

b = outer radius Of the f]ywheel (inches)

The solid line shown in each of the plots in Figure 6 represents the stress
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distribution which occurs when the 2 rings are spun _thout any interference

assembly present. The dotted lines show the stress distribution when the Z

rings are interference assembled and then spun. Consider the lower plot in

Figure 6. If the working tangential stress of the material, oB, is constant,

then the ltmtting value of oe/Pl_Zb 2 is - 0.97 _rith no interference present,

and 0.94 with interference present. For a fixed value of b and a e it is clear

the interference assembled f13r_hee1 has a larger w, and therefore a larger

kinetic energy per unit weight over the non-interference assembled flywheel.

GSFC/UH has done preliminary testing of interference assembly of composite

rings and has found that a conical taper of approximately 1 degree between

the inside diameter and outside diameter of adjacent rings 41) permit press

assembly of the rings. Shown in Figure 7 are two graphite epoxy _ngs that

were assembled and pressed together at the Hercules A11eghany Ballistics

Laboratory (Cumberland, 14)) in 1978. The two rings are 8 inches in (3D, 7

inches in ZD and are each 1/2 inch in radial thickness. The two rings have

approximately 0.3_ interference and the ring interface was lubricated with

epoxy before pressing together. The collection of wires shown in Figure 7

is for strain gage instrumentation placed on the rings. The ring asse_ably

shown in Figure 7 was donated to the University of Maryland and is currently

undergoing further testing as part of the GSFC/UM ACES program.

The results of applying the FLYANS and FLYSIZE computer codes to a 1.6 kwh

GSFC/UM design [12] have shown that it is possible to destgn a 6 ring rotor with

an iron inner ring. The rotor has an inside diameter of 8 inches and an outside

diameter of 29 inches. Using Celion 6000/epoxy for al1 the ftlamenta_, wound

composite material rings, the projected specific energy, density is 41.9 Wh/lb
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(97.2 Wh/kg) and the inner radius displacement (i.e., air gap growth) Will not

exceed .040 inch Cfrom 0 to burst speed).

CURRENT WORK

GSFC and LI4 are currently engaged in a detailed study which Will signifi-

cantly advance understanding of the magnetically suspended fl_n_heel for ACES.

The following three major tasks are currently being worked on:

1. Rim research requirements

2. Systems research requirements

3. UM/_SFC prototype development and sptn test facility.

Task 1: Rim Research Requirements

The purpose of this task is to conduct a detailed anal_rttcal analysis of

the mechanical properties and stresses of a composite nBtertal rim.

Specifically the analysis will include:

• Analytical determination of the stress distribution in the rim. This _II

include the loading of the iron at the inner radius. The simulation of

the stress distribution will be initially represented by closed form _solu-

tions, although standard finite el__e_t codes may be applied if the

authors feel their use is warranted.

• Determination of the effect of mechanical stresses on the magnetic proper-

ties of the iron with specific consideration of hysteresis.

• Identification of optimum materials and manufacturing/assembly methods for

present and future rims with an alto towards Ixlmlzing performance.

• The ,'_e of multirings that are interference assembled for prestressing.

• Identification of detection mechanism for rotor failure and system
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shutdown prior to destructive failure.

The overall goal is to clearly define the present state of technology and

future problems that must be solved rot a viable design.

t

Task 2: System Research Requirements

The purpose of this task is to conduct a study in order to establish the

feasibility of the complete ACES system. Three major sub-tasks have been

identified. These are:

• System definition

k
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• Control strategies

• System testing

System definition includes the characterization of the subsystems needed for

the entire system. This includes specifying, at ]east genera]ly, the require-

ments of commutation, microprocessing, containment and interactions, and iden-

tifying the problems of failure and shutdown. The identification of control

strategies for the system is quite unique. Certainly the inertia] coupling

and control of the momentum require careful analysis. The interaction of the

magnetic field and other perturbations on stability and attitude control are

also important areas requiring careful characterization.

The system testing component of this task is specifically concerned with

testing the GSFC/UM mode]. This model will be modified for maximum perfor-

mance by redesigning the rotor Initially. The primary thrust of this exercise

is to identify Important parameters that must be studied for future component

and system desi gn.

Tas__._k3: UM/GSFC Prototype Development and Spin Test Facility

An important adjunct to the current research tasks is to foster continued
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long-term involvement between the University of Maryland and GSFC. At the end

of FY 84 it is envisioned that GSFC/NASA Headquarters Will continue UM funding

for development of the AC[S system. In particular, the next phase of the work

will involve development of a 500 watt hour ACES system along wtth design and

construction of test facilities suitable for evaluating the 500 watt hour

system. The proposed UM test facilities will provide for experimental moni-

toring of the performance of the rim, motor/generator, and magnetic suspension

systems. The 500 watt hour system Will be designed for ease in the replace-

ment of all components. It is expected that the 500 watt hour system Will

serve the purpose of both a showpiece working model and a facility ,to try out

enhancements which can improve system performance. Not only will Uq be a

NASA/GSFC resource but, in addition to that, NASA contractors producing deli-

verable magnetically suspended flywheel systems will find UM to be a valuable

analysis, test, and evaluation facility.

CONCLUSIONS

The concept of using a magnetically suspended flywheel for the combined

function of spacecraft attitude control and energy storage _(___) is extremely

viable. Several pieces of hardware have been built and are undergoing testing

to evaluate the various subsystems used in ACES. Based upon reasonable and

well founded projections, an ACES magnetically suspended flywheel system could

easily store 1.6 kWh with a rotor specific energy density of 42 Wh/lb (92.2

Wh/kg).

The areas of study which will be required to integrate the ACES subsystems

into a complete working system have been identified and are currently under

detailed study. The results of the current study will project a workable
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S-year plan between tlH and NASA/GSFCto turn the already documented successes

of the magneticaliy susp2nded flywheel system into a complete ACE____SSsystem.
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Figure 2

The GSFC/UM test system
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Figure 7

Graphite/epoxy press fit rings
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