

INTRODUCTION

As space vehicies become larger and mission times become longer docble-gimbaled control moment gyros (GMGs) will be used more and more for attitude controi, angular momentum storage and energy storage. Therefore, a need exists for a simple, but universally applicable CNG steering law which takes the control torque comand and generates gimbal rate coumands in such a way that, in spite of the highly nonlinear CMG behavior, the resulting torque on the vehicle is ideally equal to the commanded one. Furthermore, this steering law should allow the use of any number of CMGs, which allows the tailoring to the angular momentum requirement while at the same time making the failure accomodation a built-in feature. It should also allow the mixing of CNGs of different momertum magnitudes to the extent that some or all GMGS could be used for energy storage. It also should allow adding energy storage flywheels to the mix.

A steering law is presented here, which has all these features, assuming the CMG outer gimbal freedom is ulimited (however, the range of the outer gimbal angle readout should be: $-\pi \geq \beta_{i}>+\pi$; the inner gimbal angle should be hardware limited to $\pm \pi / 2$). The reason is the idea of moumting all the outer gimbal axes of the CuGs parallel to each other. This allows the decomposition of the steering law problem into a linear one for the inner gimbal angle rates and a planar one for the outer gimbal angle rates. The inner gimbal angle rates are calculated first, since they are not affected by the outer gimbal angle rates. For the calculation of the outer rates, the inner rates are then known quantities. An outer gimbal angle distribution fumction (to avoid singularities internal to the total angular momentum envelope) generates distribution rates next, and finally the pseudoinverse aethod is used to insure that the desired total torque is delivered.

This paper is a revision of Reference 1.

The proposed mounting, with all outer gimbal axes parallel, is shown in Figure 1 (for convenience only, the outer gimbal axes are also shown colinear). This mounting arrangement has many advantages. The mounting interfaces can be identical, i.e., the mounting brackers and hardware, cable harnesses, etc. There is no need to individually identify the CMGs, and the on-board computer can assign an arbitrary label to any SMG, which could be changed from one computation cycle to the next. This simplifies che steering law and the redurdancy management. The parallel mounting in conjunction with a steering law that accepts any number of CMGs makes failure accommodation a built-in feature. However, if increasing angular momentum requirements during the design of a space vehicle demand it (and the momints of inertia always tend to increase), additional CMGs can be added with minimum fmpact on the hardware and almost none on the software. The parallel mometing also makes the visualization of the system operation exceedingly simple (especially when compared with the momentum envelopes and saturation surfaces of skewed mounted single-gimbaled GMGs).

Figure 1.-Proposed mounting.
total angular momentum and torque command

Given a CMG coordinate system W, Figure 1 shows the inner and outer gimbal angles α_{i} and β_{i} of the ith CMG. With this definition, the angular momentum of a CMGs is (i ranges from 1 to n, H_{i} is the momentum magnitude):

$$
\underline{H}_{G}=\left[\begin{array}{l}
H_{G 1} \tag{1}\\
H_{G 2} \\
H_{G 3}
\end{array}\right]=\left[\begin{array}{l}
\sum_{i} H_{i} s \alpha_{i} \\
\sum_{i} H_{i} c \alpha_{i} c \beta_{i} \\
\sum_{i} H_{i} c \alpha_{i} s \beta_{i}
\end{array}\right]
$$

The CMG angular momentum change is

$$
\underline{\underline{u}}_{G}=\left[\begin{array}{l}
\sum_{i} H_{i} c \alpha_{i} \dot{\alpha}_{i} \tag{2}\\
\sum_{i}\left(-H_{i} s \alpha_{i} c \beta_{i} \dot{\alpha}_{i}-H_{i} c \alpha_{i} s \beta_{i} \dot{\beta}_{i}\right) \\
\sum_{i}\left(-H_{i} s \alpha_{i} s \beta_{i} \dot{\alpha}_{i}+H_{i} c \alpha_{i} c \beta_{i} \dot{\beta}_{i}\right)
\end{array}\right]+\left[\begin{array}{l}
\sum_{i} \dot{H}_{i} s \alpha_{i} \\
\sum_{i} \dot{H}_{i} c \alpha_{i} c \beta_{i} \\
\sum_{i} \dot{H}_{i} c \alpha_{i} s \beta_{i}
\end{array}\right]
$$

We can assume that the in terms are known (from power demand or the difference between present and past value of E) and it is accommed for in the rorque command:

$$
\underline{T}=\dot{B}_{G}-\underline{\dot{B}}=\left[\begin{array}{l}
\sum_{i} H_{i} c \alpha_{i} \dot{a}_{i} \tag{3}\\
\sum_{i}\left(-H_{i} s \alpha_{i} c \beta_{i} \dot{\alpha}_{i}-H_{i} c \alpha_{i} s \beta_{i} \dot{B}_{i}\right) \\
\sum_{i}\left(-H_{i} s \alpha_{i} s \beta_{i} \dot{\alpha}_{i}+H_{i} c \alpha_{i} c \beta_{i} \dot{\beta}_{i}\right)
\end{array}\right]
$$

The task is now to find a set of gimbal angle rate comands $\dot{\underline{a}}$ and $\underline{\dot{\beta}}$ which when inserted into equation (3) will satisfy the torque command, while at the same time utilizing the excess degrees of freedom to distribute the gimbal angles such that the nomentum singularities are avoided.

DESIRABLE INNER GIMBAL ANGLE DISTRIBUIION

The n double-gimbaled CMGs have $2 n$ degrees of freedom. Three are needed to satisfy the torque command; the exceas of $2 a-3$ degrees of freedom is utilized to achieve a desirable gimbal angle distribution. Before one can decide on a desirable distribution, the characteristics of a double-gimbaled caG have to be considered.

The inner gimbal angle rate needed to produce a givein torque perpendicular to the inner gimbal axis is independent of the inner and the outer gimbal angles. However, the outer gimbal angle rate needed to produce a given torque perpendicular to the outer gimbal axis is inversely proportional to the cosine of the inner gimbsl angle. Therefore, it is desirable to keep the cosine of the inner gimbal angle large, i.e., it is desirable to minimize the largest inner gimbal angle. This then reduces to outer gimbal angle rate requirements. The largest inner gimbal angle is minimized when all inner gimbal angles are equal to the inner gimbal reference angle, cf. equation (1),

$$
\begin{equation*}
\alpha_{R}=\sin ^{-1}\left\{\left(\sum_{i} B_{i} s a_{i}\right) /\left(\sum_{i} B_{i}\right)\right\} \tag{4}
\end{equation*}
$$

Inner gimbal angle redistribution should be made without resulting in a corque along the W_{1} axis. This implies [cf. equation (3)]

$$
T_{D 1}=\sum_{i} H_{i} c \alpha_{i} \dot{a}_{D i}=0
$$

For simplicity we select the distribution rate as $\dot{\alpha}_{\mathrm{Di}}=\mathrm{R}_{\mathrm{a}}$ ($\alpha_{0}-\alpha_{1}$). The W_{1} torque is now

$$
T_{D 1}=\sum_{i} H_{i} c \alpha_{i} R_{a}\left(\alpha_{0}-\alpha_{i}\right)
$$

Setting this torque to zero results in

$$
\begin{equation*}
\alpha_{0}=\left(\sum_{i} H_{i} c \alpha_{i} \alpha_{i}\right) /\left(\sum_{i} H_{i} c \alpha_{i}\right) \tag{5}
\end{equation*}
$$

When all $\alpha_{1}=\alpha_{0}, \alpha_{0}$ has converged to ita ideal value of equation (4). However, a torque does result in the $\Pi_{2}-H_{3}$ plane and it will be treated in conjumction with tive outer gimbal angle distribution.

DESIRABTE OUTER GIMBAL ANGLE DLSTRIBUTION

The situation is not as clear-cut with respect to the desizable outer gimbal angle distribution. However, for double-gimbaled CMGs a singular condition inside the cotal angular momentum envelope can only occur when some of the momentum vectors (at least one) are antiparallel and the rest parallel to their resultant total angular momentum vector. Maintaining adequate and more or less equal spacing between the vectors will therefore eliminate the possibility of a singularity. Many distribution functions are possible and the goal is to find one which minimizes the software requirements. The selected distribution function requires no transcendental functions or divisions and allows CMG failures or resurrections any time. The distribution function uses repulsion between all possible CMG pairs, i.e., proportional to the product of the angular momentur magnitudes and proportional to the supplement of the outer gimbal angle differences. Therefore, the repulsion ranges from a naximum (for equal outer gimbal angles) to zero (for antiparallel momentum vector components). Since the repulsion is generated by pairs (and all possible pairs are treated equally), no sorting is necessary. However, due to the stronger repulsion of the immediate neighbors, the outer gimbal angles act as if sorting had been done. A failed CMG is simply ionored (its angular momentum magnitude is set to zero) since it does not generate a repulsion. Any number of CNGs can be failed or resurrected it the beginning of any computation cycle. The rates due to this distribution function are (wich $-\pi \leqslant \mathfrak{g}_{i}<+\pi$)

$$
\begin{equation*}
\dot{B}_{D_{i}}=-K_{b} \sum_{j}\left\{H_{i} H_{j}\left[\beta_{i}-\beta_{j}-\pi \operatorname{sgn}\left(B_{i}-\beta_{j}\right)\right]\left(1-\delta_{i j}\right)\right\} \tag{6}
\end{equation*}
$$

Without any momentum constraint the CMG outer gimbals would come to rest whell they are separated by an angle of $2 \pi / n$, assuming identical angular momentum magnitules. (This would not make any sense for two CMGs since they would be antiparailel. However, two CMGs have only one excess degree of freedom and it is taken $\because y$ by $r \ldots$ inner distribution, and no distribution is possible for the outer gimbals.)

INNER GIMBAL RATE COMMANDS

The change of the W_{1} angular momentum component is not a furction of the outer gimbal rates [equation (3)].

$$
\dot{\underline{H}}_{G 1}=T_{G 1}=\sum_{i} H_{i} c \alpha_{i} \dot{\alpha}_{i}
$$

Since all inner gimbal angles should be equal (enforced by the inner jimbai distribution), an inner gimbal rate command for all CMGs of

$$
\begin{equation*}
\dot{x}_{c}=T_{C l} / \sum_{i} H_{i} c \alpha_{i} \tag{7}
\end{equation*}
$$

will result in $T_{G 1}=T_{C 1}$, if it is assumed that the actuai and che comanced ginbai rates are equai. For the tocal inner gimbal angle race comand we have then !cf. equariou (5) :.

$$
\begin{equation*}
\varepsilon_{i}=R_{i}\left(\alpha_{0}-c_{i}\right) \div T_{C 1} / \sum_{i} E_{i} c \alpha_{i} \tag{8}
\end{equation*}
$$

where it should be remembered that the distribution rates are non-torque-produciag with respect to the W_{1} uxis. The effect of the total inner gimbal angie rates on the W_{2} and W_{3} momentum components is treated later. Gimbal rate limitiag wiii $\} e$ discussed after the outer gimbal rate commands have been treated.

OUTER GIMBAL RATE COMMANDS

The outer distribution rates of equation (6) as well as the total inner gimbal angle rate commands of equation (8) generate a corque in the $W_{2}-W_{3}$ plane. This torque is

$$
\left.\left[\begin{array}{l}
r_{2}^{\prime} \\
r_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{ccccc}
-\sum_{i} H_{i} & \left(c \alpha_{i}\right. & s \beta_{i} & \dot{\beta}_{D_{i}}+s \alpha_{i} & c \beta_{i} \\
\dot{\alpha}_{i}
\end{array}\right)\right]
$$

and the $W_{2}-W_{3}$ torques must be modified as follows:

$$
\left[\begin{array}{l}
T_{\mathrm{CM} 2} \\
\mathrm{~T}_{\mathrm{CM} 3}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{T}_{\mathrm{C} 2}-\mathrm{T}_{2}^{\prime} \\
\mathrm{T}_{\mathrm{C} 3}-\mathrm{T}_{3}^{\prime}
\end{array}\right]
$$

To generate the modified torque, we now apply the pseduo-inverse method to get a unique set of outer gimbal rate comands

$$
\left[\begin{array}{c}
\dot{\beta}_{C 1} \\
\dot{B}_{C 2} \\
\cdot \\
\cdot \\
\dot{B}_{C n}
\end{array}\right]=[B]^{T}\left\{[B][B]^{T^{-1}}\left[\begin{array}{l}
\\
T_{C M 2} \\
T_{C M B}
\end{array}\right]\right.
$$

where

$$
[B]=\left[\begin{array}{llll}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n}
\end{array}\right] \quad\left(b_{11}=-H_{i} c \alpha_{i} s \beta_{i}\right)
$$

The total outer gimbal rate commands are then

$$
\dot{B}_{i}=\dot{B}_{D i}+\dot{B}_{C i}
$$

PROPORTIONAL GIMBAL RATE LIMITING

The gimbal torques will have a definite torque limit, Time In order nor to exceed this limit, we need to know the torque demand on the torquers due to the gimbal rate commands. Setting the outer gimbal angle to zero we get for the torque of the ith CMG [equation (3)],

$$
\left[\begin{array}{c}
T_{1 i} \\
T_{2 i} \\
T_{3 i}
\end{array}\right]=H_{i}\left[\begin{array}{cc}
c \alpha_{i} & \dot{\alpha}_{i} \\
-s \alpha_{i} & \dot{a}_{i} \\
c \alpha_{i} & \dot{\beta}_{i}
\end{array}\right]
$$

The torque $T_{1 i}$ is the torque load on the outer gimbal torquer and $T_{3 i}$ is the torque load on the inner gimbal torquer. Assuming the same torque limits for both inner and outer gimbal torques, we get for the gimbal rate limits

$$
\dot{\alpha}_{T L I M}=\dot{\beta}_{T I I M}=K_{i} / c a_{i}
$$

with $K_{i}=T_{L I M} / H_{i}$ a GMG design constant, more or less the same for all doublegimbaled COGs. There are also other rate limits ($\dot{\alpha}_{\text {LM }}, \dot{B}_{\text {LIN }}$) due to hardware limits like gimbal rate tachometer limits, voltage limits, etc.

To reduce the magnitude of the actual torque only, but keep the same direction as the commanded torque, a proportional scaling of all gimbal rates by dividing by DIV is done, where:

$$
\operatorname{DIV}=\max \left\{1, \frac{\left|\dot{\alpha}_{1}\right|}{\dot{\alpha}_{L}}, \frac{\left|\dot{\alpha}_{2}\right|}{\dot{\alpha}_{L}}, \ldots, \frac{\left|\dot{\alpha}_{n}\right|}{\dot{\sigma}_{L}}, \frac{\left|\dot{\beta}_{1}\right|}{\dot{\beta}_{L}}, \frac{\left|\dot{\beta}_{2}\right|}{\dot{\beta}_{L}}, \ldots, \frac{\left|\dot{\beta}_{n}\right|}{\xi_{L}}\right\}
$$

with

$$
\begin{aligned}
& \dot{\alpha}_{L}=\operatorname{MDN}\left(\dot{\alpha}_{\text {TrIM }} \dot{\alpha}_{\text {LIMe }}\right)
\end{aligned}
$$

PERFORMANCE DISCUSSION

As implied by the discussion of the desirable gimbal angle distribution, there is no need for a strict adherence to the ideal distribution. For the inner distribution gain R_{a} this means that its value can be chosen over a wide range up to $1 / \Delta t$ where Δt is the computer cycle time, especially since the torque producing portion of the 2 naer gimbal rate comand tends to keep the inner gimbal angles on their distribution. Tc select the outer gimbal distribution gain we have to remember that the maximum magnirude of the outer distribution rate can be as large as [cf. equation (6)],

$$
\dot{B}_{D M A X}=K_{b} \pi H_{i} \sum_{j} H_{j}\left(1-\delta_{i j}\right)
$$

FO: a desired maximum outer distribution rate of $0.02 \mathrm{rad} / \mathrm{s}$ and with 5 CMGs of an angular momentum magnitude of 3000 Nms we get for example,

$$
K_{b}=1.8 E-10
$$

No spectal effort has to be made to "umbook" the CMG momentum vactors when, after bumching up due to saturation, the torque command is such that the momentum magnitude is reduced. In the real worli, the gimbal angle readouts are noisy enough to introduce unooking. Therefore, if a simulation is too ideal and problems are encountered, some noise should be added to the gimbal angles. The same considerations apply for starting up from an internal singularity (the distribution fumetions prevent any later internal singularities from occurring).

While any number of double-gimbaled CMGs can be accomndated (two CMGs are the minimum), the cycle rime might become a problem for very large numbers of CMGs. Since any angular momentum magnitude is allowed, there is then the possibility to group several CMGs, add their angular momentum, and consider the group as one CMG as far as the steering law is concerned. The group is then comanded to its combined outer and inner gimbal angle. Setting the angular momentum magnitude of any CMG to zero is a convenient way of signaling that the GYG has failed.

The general logic flow, including the input and output parameters for the steering law is shown in Figure 2. The implementation for the high level language APL is shown in Figure 3 and a detailed flow in Figure 4.

Figure 2.-Steering law logic flows.
E.

Figure 2.-Concluded.

Figure 4.-Detailed logic flow.

DEFINITION OF SYMBOLS

Symbol	Definition
[B]	$2 \times \mathrm{n}$ torque matrix (for outer rates); Nms
b_{ij}	components of [B]; $\mathbf{i}=1,2 ; j=1,2, \ldots, n ;$ Nms
c	cos (before Greek symbol)
DIV	divisor for rate limiting
Hi_{i}	angular momentum magnitude of the $i-t h$ CMG; $i=1,2$, ... , n ; Nms
${ }_{-G}$	total angular momentum of the CMG system; Nms
$\mathrm{H}_{\mathrm{Gi}}, \mathrm{H}_{\mathrm{G} 2}, \mathrm{H}_{\mathrm{G} 3}$	components of \underline{H}_{G}; Nms
$\underline{\underline{H}}_{P}$	angular momentum change for power generation; Nm
i	index
j	index
K_{2}	inner distribution gain; $1 / \mathrm{s}$
K_{b}	outer distribution gain; 1/s
k_{i}	$\mathrm{T}_{\text {LIMi }} / \mathrm{H}_{\mathrm{i}}$; CMG torque constant; $1 / \mathrm{s}$
n	number of double-gimbaled CMGs
s	\sin (before Greek symbol)
${ }^{\mathbf{T}} \mathbf{C}$	control torque command; Nm
$\mathrm{T}_{\text {C1 }}, \mathrm{T}_{\mathrm{C} 2}, \mathrm{~T}_{\mathrm{C} 3}$	components of $\underline{T}_{C} ; \mathrm{Nm}$
$\mathrm{T}_{\text {CM } 2,} \mathrm{~T}_{\text {CM } 3}$	modified torque commands; Nm
I_{G}	total CMG torque on the vehicle: Nm
$\mathrm{T}_{\mathrm{G} 1}, \mathrm{~T}_{\mathrm{G} 2}, \mathrm{~T}_{\mathrm{G} 3}$	components of $\mathrm{T}_{\mathrm{G}} ; \mathrm{Nm}$
$\mathrm{T}_{\text {LIM }}$	maximum CMG gimbal torquer torque; Nm
$\mathrm{T}_{1 \mathrm{i}}, \mathrm{T}_{2 i}, \mathrm{~T}_{3 i}$	torque components in the W-coordinate system (with $\left.\beta_{i}=0\right) ; i=1,2,3 \ldots n ; N m$

