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SUMMARY 

This r epor t  i s  a technica l  summary  for  t h e  full-scale tes t ing ,  product ion,  and cost 
analysis  d a t a  fo r  t h e  advanced  composi te  s tab i l izer  fo r  t h e  Boeing 737 a i r c ra f t .  I t  
covers ,  a long wi th  Refe rences  1, 2, and 3, all  work per formed on t h e  program f rom 
its incept ion in July 1977 through i t s  conclusion in December  1981. 

The  principal program objec t ive  was  to design, produce, and test an  advanced  
composi te  737 s tab i l izer  t h a t  would m e e t  t h e  s a m e  funct ional  c r i t e r i a  as t h e  
exis t ing m e t a l  s tabi l izer .  A full-scale lef t -hand ground test a r t i c l e  was  chosen 
t h a t  was  s t ruc tura l ly  comple t e  wi th  e leva tor ,  ba lance  panels,  leading edge ,  t ra i l ing 
edge ,  c losure  rib, and assoc ia ted  hardware.  The upper and  lower skins and 
s t r ingers ,  f r o n t  and  r e a r  spars ,  ribs, and trail ing-edge beam w e r e  f ab r i ca t ed  f rom 
graphite-epoxy mater ia ls .  The test s tabi l izer  was supported in a horizontal  
position by using a s t ruc tu ra l  s t e e l  test f ix ture .  The composi te  s tab i l izer  ini t ia l ly  
was subjec ted  to four  s t a t i c  load cases. I t  sustained design l imi t  (67% ul t imate)  
load fo r  t h e s e  cases. Afterwards,  cyc l ic  spec t rum loads equivalent  to 120 000 
f l ights  or  one-and-one-half l i fe t imes  were  applied to t h e  test ar t ic le .  Included as 
pa r t  of t h e  cyc l i c  loading were  80 000 spec t rum f l igh ts  with s imula ted  serv ice  
and/or  main tenance  damage.  No s t ruc tu ra l  damage  or f l aw  growth of inf l ic ted  
damage  w a s  found. I t  a l so  was subjected to a number of fai l -safe  tests, one  of 
which ind ica ted  t h a t  addi t ional  re inforcement  using a p la t e  in tegra l  with t h e  fail- 
safe lug  s t r ap ,  t h e  lower lug s t r ap ,  and t h e  spar  web was necessary.  

A t  t h e  successful  conclusion of all  ground tes t ing ,  t h e  composi te  s tab i l izer  was  
exposed to lightning s t r ike  tests. The  full-scale test program m e t  a l l  FAA 
ce r t i f i ca t ion  requirements .  

Ground vibrat ion and  f l ight  tests were  per formed using a production 737 a i r c r a f t  
with a graphite-epoxy s tabi l izer  installed.  In both cases, t h e  composi te  s tab i l izer  
func t ioned  comple te ly  within t h e  coun te rpa r t  aluminum-stabil izer-required enve- 
lope. The Fede ra l  Aviation Regulat ion 2 5  (FAR 25) was comple te ly  sat isf ied,  and 
FAA ce r t i f i ca t ion  was  achieved  during August 1982 (ref. 4). 

Another pr ime program objec t ive  was to gain s imula ted  production experience.  
This was  accomplished by producing five-and-one-half shipsets  of s tab i l izers  using 
advanced  composi te  mater ia l s .  Experience was  gained in es t imat ing ,  tool  develop- 
m e n t ,  and  fabr ica t ion  processes.  The graphi te  subcomponents  w e r e  produced by 
Boeing's Fabr ica t ion  Division at Auburn, Washington. Assembly was accomplished 
at t h e  Boeing fac i l i ty  in Wichita, Kansas,  using convent ional  tools. The production 
assembly tools  could not  be  used because t h e  graphi te  assembly had f e w e r  parts.  
Overa l l  production problems w e r e  minimal.  

The  f inal  ob jec t ive  of t h e  program was  to obtain rea l i s t ic  production cost d a t a  f o r  
t h e  five-and-one-half shipset  production run. Of t h e  t o t a l  production expendi tures ,  
labor  was  85%, and nonlabor was  15%. Product ion labor was 64% fo r  fabr ica t ion ,  
30% fo r  assembly,  and 6% fo r  manufac tur ing  research  and development .  Mater ia l  
usage f a c t o r s  for  t h e  program w e r e  2.8 l b  for  f ab r i c  and 1.8 Ib fo r  t a p e  for e a c h  
pound of f lyaway weight.  With au tomat ion ,  t hese  f a c t o r s  could b e  appreciably 
reduced.  Recurr ing  cos t s  fo r  200 shipsets  .of advanced  composi te  737 s tab i l izers  
a r e  e s t i m a t e d  to b e  $40.3 million. 



The program was  successful  and  well t imed.  The  resu l t s  will provide t h e  necessary  
conf idence  for t h e  company to c o m m i t  use of graphi te-composi te  s t r u c t u r e  in 
s imilar  appl icat ions on f u t u r e  a i r c ra f t .  
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1.0 INTRODUCTION 

The  esca la t ion  of a i r c r a f t  fue l  pr ices  has  mot iva t ed  assessment  of new technology 
concep t s  f o r  designing and  building commerc ia l  a i r c ra f t .  Advanced compos i t e  
mater ia l s ,  if used extensively in a i r f r a m e  components ,  o f f e r  high poten t ia l  fo r  
reducing s t r u c t u r a l  weight  and  thereby  d i r ec t  opera t ing  costs of commerc ia l  
t r anspor t  a i r c ra f t .  To ach ieve  t h e  goal of production c o m m i t m e n t s  to advanced  
compos i t e  s t ruc tu res ,  t h e r e  i s  a need  to convincingly d e m o n s t r a t e  t h a t  t h e s e  
s t r u c t u r e s  save  weight ,  possess long-term durabi l i ty ,  and  c a n  b e  f ab r i ca t ed  at costs 
compe t i t i ve  wi th  convent ional  m e t a l  s t ruc tures .  

To m e e t  th i s  need ,  NASA has  establ ished a program fo r  composi te  s t r u c t u r e s  under 
t h e  Ai rc ra f t  Energy Eff ic iency (ACEE) program. As pa r t  of th i s  program,  Boeing 
has  redesigned and  f ab r i ca t ed  t h e  horizontal  s tab i l izer  of t h e  737 t r anspor t  using 
compos i t e  mater ia l s ,  has  submi t t ed  d a t a  to FAA, and  has  obta ined  cer t i f ica t ion .  
F ive  sh ipse ts  of compos i t e  s tab i l izers  have  been manufac tu red  to establ ish a f i r m  
basis  fo r  e s t ima t ing  production costs and  to provide suf f ic ien t  uni ts  fo r  eva lua t ion  
in a i r l ine  serv ice .  This work has  been per formed under NASA C o n t r a c t  
NAS1- 15025. 

The  broad objec t ive  of t h e  ACEE Composi te  S t ruc tu res  program is  to a c c e l e r a t e  
t h e  use of compos i t e  s t ruc tu res  in new t r anspor t  a i r c r a f t  by developing technology 
and  processes  fo r  ea r ly  progressive introduct ion of composi te  s t r u c t u r e s  in to  
product ion commerc ia l  t ranspor t  a i r c ra f t .  Specif ic  ob jec t ives  of t h e  737 
Compos i t e  Hor izonta l  Stabi l izer  program were  to: 

0 Provide s t r u c t u r a l  weight  at least 20% less  than  t h e  m e t a l  s tab i l izer  

0 F a b r i c a t e  at least 40% by weight  of t h e  s tab i l izer  cons t i t uen t  p a r t s  from 
advanced  compos i t e  ma te r i a l s  

0 D e m o n s t r a t e  cost compet i t iveness  wi th  t h e  m e t a l  s tab i l izer  

0 Obta in  FAA ce r t i f i ca t ion  f o r  t h e  composi te  s tab i l izer  

0 Eva lua te  t h e  compos i t e  s tab i l izer  on a i r c r a f t  in a i r l ine  se rv ice  

To ach ieve  t h e s e  object ives ,  Boeing concen t r a t ed  efforts on conceiving, develop- 
ing, and  ana lyz ing  a l t e rna t ive  s tab i l izer  design concepts .  Af t e r  design se lec t ion ,  
t h e  following w e r e  performed:  ma te r i a l s  evaluat ion,  anc i l la ry  tests to  de te rmine  
m a t e r i a l  design al lowables ,  s t ruc tu ra l  e l e m e n t s  tests, and  ful l -scale  ground and  
f l igh t  tests to sa t i s fy  FAA ce r t i f i ca t ion  requi rements .  Specif ic  program ac t iv i t i e s  
to ach ieve  objec t ives  included: 

Program managemen t  and  plan development  
Establishing design c r i t e r i a  
Concep tua l  and  prel iminary design 
Manufac tur ing  process  deve lopment  
Mater ia l  eva lua t ion  and  se lec t ion  
Verification t e s t ing  
Deta i l  design 
FAA ce r t i f i ca t ion  

1 



Work accomplished in e a c h  of t h e s e  a r e a s  i s  summar ized  in th i s  document  and  
descr ibed in de ta i l  in R e f e r e n c e  1. 

NOTE: C e r t a i n  commerc ia l  products  a r e  ident i f ied  in th i s  document  in order  to 
specify adequate ly  t h e  cha rac t e r i s t i c s  of t h e  ma te r i a l  and components  
under invest igat ion.  In no case does  such ident i f ica t ion  imply recom-  
mendat ion o r  endorsement  of t h e  product  by NASA or Boeing, nor does  i t  
imply t h a t  t h e  ma te r i a l s  a r e  necessar i ly  t h e  only ones  ava i lab le  fo r  t h e  
pur pose. 
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ATLAS 

FAA 

FAR 

LC 

M D  

MR&D 

"D 

2.0 SYMBOLS AND ABBREVIATIONS 

compute r  program 

Fede ra l  Aviation Admini st r a t  ion 

Fede ra l  Aviation Regulat ion 

load case 

f l igh t  boundary, design dive speed ,  Mach number 

manufac tur ing  r e sea rch  and  development  

f l igh t  boundary, design dive speed ,  knots  equiva len t  a i r  speed  

(keas) 
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3.0 ANALYSIS AND TEST 

3.1 FULL-SCALE GROUND TEST 

The test a r t i c l e  was a left-hand, full-scale, Boeing model 737 graphite-epoxy 
horizontal  s tabi l izer  t h a t  was  s t ructural ly  comple te  with e leva tor ,  balance panels, 
leading edge,  trail ing edge,  c losure rib, and associated hardware.  The upper and 
lower skins and  s t r ingers ,  f ron t  and r ea r  spars,  ribs, and trailing-edge beams were  
f ab r i ca t ed  f rom graphite-epoxy mater ia l  according t o  production drawing 
requirements.  

The test s tabi l izer  was  supported in a horizontal  position by a s t ruc tura l  s t ee l  test 
f ixture .  The graphite-epoxy s tabi l izer  assembly ( tes t  a r t ic le )  was a t t a c h e d  t o  a 
me ta l  production c e n t e r  sect ion at t h e  front-  and rear-spar inboard te rmina l  lug 
locations.  A dummy right-hand s tabi l izer  box was a t t a c h e d  to t h e  right-hand s ide 
of t h e  cen te r  sect ion and was  used for  symmetr ica l  loading. The cen te r  sect ion 
was supported by a s t ruc tura l  test f ix ture  at i t s  aft support  hinges and f ront  
dummy jackscrew f i t t ing.  The test se tup  i s  shown in Figure 1. 

Figure 1. Test Setup-Full-Scale Ground Test 

Stabilizer a i r  loads were  applied to t h e  lower and upper sur face  through pads 
bonded to t h e  s u r f a c e  panels (fig. 1). The s tabi l izer  inspar sec t ion ,  trailing-edge, 
and elevator  sur face  a reas  were  divided in to  sec tor  a r e a s  with a load pad or  f i t t ing  
f o r  e a c h  sector .  Pad loads were  applied through a ser ies  of evener  sys tems and 
hydraulic ac tua tors .  The  load pad locat ions and pad load distributions were  

5 



opt imized  to m a t c h  spanwise shea r ,  moment ,  and  tors ion fo r  e a c h  load case te s t ed .  
Required leading-edge and  ba lance  panel loads m a t c h e d  shea r  and  tors ion abou t  t h e  
f ron t  spar  and e l eva to r  hinge l ine respect ively.  Sixteen hydraul ic  jacks  w e r e  used 
to apply t h e  tension and  compression pad loads, leading-edge loads, and  ba lance  
panel  loads. A load c e l l  was  instal led in se r i e s  wi th  e a c h  hydraul ic  jack  to measu re  
appl ied load. R o s e t t e  s t r a in  gages  (195) and  ax ia l  s t r a in  gages  (62) w e r e  instal led 
to measu re  s t r a ins  at c r i t i ca l  a r e a s  and  to ver i fy  in t e rna l  load distributions. 
S t ruc tura l  def lec t ions  w e r e  measured  at 18 loca t ions  a long  t h e  f r o n t  and  r e a r  spars  
by e l ec t ron ic  def lec t ion  ind ica tors  (EDI). 

The  composi te  s tab i l izer  was  subjec ted  to f ive  s t a t i c  load cases (LC): 

0 Load case 5: positive maneuver  at 648  km/hr  (350 kn) at 7163m (23 500 f t )  
(maximum tors ion,  d a m a g e  to l e rance  t e s t s )  

Load case 3710: positive maneuver  at 814 km/hr  (440 kn) at 3018m (9900 f t )  
(maximum tors ion,  u l t i m a t e  load t e s t s )  

0 

0 Load case 4430: positive gust  at 518 km/hr  (280 kn) at sea leve l  (maximum 
posi t ive bending) 

0 Load case 4761: nega t ive  gus t  at 814 km/hr  (440 kn) at 3962m (13 000 f t )  
(maximum negat ive  bending and  s u r f a c e  pressure,  u l t ima te  load t e s t )  

0 Load case 4010: f laps  down maneuver  at 352 km/hr  (190 kn) at sea leve l  
(maximum nega t ive  bending) 

The  s tab i l izer  was  successful ly  t e s t e d  to  67% of design u l t i m a t e  load fo r  load cases 
3710, 4010, 4761, and  4430 wi th  no  d a m a g e  to t h e  specimen.  S t ra in ,  def lec t ion ,  
and  load readings w e r e  recorded.  Examinat ion of measured  s t r a ins  and  def lec t ions  
showed a g r e e m e n t  wi th  t h e  f in i t e  e l e m e n t  ATLAS model  values. Af t e r  t h e  l imi t  
load test, t h e  s tab i l izer  was  subjec ted  to spec t rum loads equiva len t  to 120 000 
f l igh ts  represent ing  one-and-one-half l i f e t imes  of a i r c r a f t  service.  Spec t rum loads 
equiva len t  to  40 000 f l igh ts  were  appl ied to  a n  undamaged s tabi l izer .  Damage  was  
then  inf l ic ted  to s imula t e  se rv ice  and/or  ma in tenance  d a m a g e  to t h e  s tab i l izer  in 
t h e  a r e a s  shown in Figure 2. A de ta i led  descr ipt ion of t h e  damage  is in  
R e f e r e n c e  1 .  With t h e  damage  present ,  t h e  s tab i l izer  was  subjec ted  to spec t rum 
loads equivalent  to 80  000 f l ights .  S t ra in  and def lec t ion  surveys w e r e  conduc ted  
before  appl icat ion of cyc l ic  loads. Similar surveys w e r e  conducted  aga in  for  e a c h  
block of 20 000 f l igh ts  of cyc l i c  loads applied. The respec t ive  measured  s t r a i n  and  
def lec t ion  values  w e r e  in c lose  a g r e e m e n t  at e a c h  survey. 

Visual inspect ions w e r e  conducted  of a l l  access ib le  s t r u c t u r e  at scheduled in te rva ls  
during tes t ing.  Ul t rasonic  inspect ions w e r e  made  of c r i t i ca l  a r e a s  at less  f r equen t  
in te rva ls ,  and  X-ray inspect ions w e r e  per formed be fo re  and  a f t e r  appl icat ion of 
cyc l i c  loads wi th  t h e  inf l ic ted  damage  present .  No s t ruc tu ra l  damage  o r  f l aw  
growth  of a r e a s  wi th  inf l ic ted  damage  were  found during any  inspection. Upon 
comple t ion  of t h e  r epea ted  load tests, residual s t r e n g t h  with t h e  induced d a m a g e  
(fig. 2) was  tes ted .  The test a r t i c l e  withstood appl icat ion of l imi t  load for  load 
cases 4010, 4430, and  5 with  t h e  induced damage.  
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The s tab i l izer  was  loaded to 100% design u l t i m a t e  load for  load cases 3710 and  
4430 with no  damage  o r  fa i lures  occurr ing.  A t  94.4% of design u l t ima te  load  fo r  
load case 4761, test loading was  ha l ted  when graphi te  f iber  breakage  occurred  to 
t h e  rear-spar upper t e rmina l  lug. Graph i t e  f ibe r  breakage  at th i s  load level  was  
pred ic ted  by component  tests. The design includes lug r e in fo rcemen t  to sus ta in  
u l t ima te  loads wi th  t h e  graphi te  damaged.  No repa i r  was  made  to t h e  rear-spar  
lug, and load case 4761 was  appl ied t o  100% of design u l t ima te  load wi thout  fu r the r  
damage.  Finally, u l t i m a t e  load case 4010 was  appl ied to  100% of design u l t ima te  
load, and  no  addi t ional  damage  occurred .  Strain,  def lec t ion ,  and  load readings 
were  recorded  for  a l l  u l t i m a t e  load cases. Examinat ion of measured  s t r a ins  and  
def lec t ions  showed a g r e e m e n t  wi th  t h e  f in i t e  e l e m e n t  ATLAS model  values. 

Fail-safe tests, s imula t ing  fa i led  spar- to-center-sect ion a t t a c h m e n t  points, w e r e  
per formed by removing one  of t h e  spar  a t t a c h m e n t  pins o r  bol ts  and  applying t h e  
c r i t i ca l  design l imi t  load as a fai l -safe  load. The  s tab i l izer  was  successful ly  t e s t e d  
to 100% of design l imi t  load for  load case 4430 wi th  t h e  front-spar  lower bol t  
removed;  fo r  load case 4430 wi th  t h e  rear-spar  lower pin removed,  and  f o r  load  
case 4010 wi th  t h e  front-spar  upper bolt removed.  During appl icat ion of load case 
4010 wi th  t h e  rear-spar  upper pin removed,  a shear  fa i lure  of t h e  rear-spar  web  
be tween s tab i l izer  s t a t ions  68.14 and  96.0 occurred  at 61% of design u l t ima te  load 
(91% of design l imi t  load). The  rear-spar  fa i lure  was  in i t ia ted  by a tension fa i lure  
of graphite-epoxy f ibers  in a d i r ec t  l ine be tween t h e  upper fa i l -safe  lug and t h e  
lower lug. The  f a i lu re  is shown in F igure  3. This a r e a  was  f ixed by t h e  addi t ion of 
a s t e e l  r e in fo rcemen t  p l a t e  in tegra l  wi th  t h e  fai l -safe  lug s t r ap ,  t h e  lower lug 
s t r a p ,  a n d  t h e  spar  w e b  ( the  integri ty  was  proved by analysis). 

A t  t h e  conclusion of a l l  ground tes t ing ,  t h e  s tab i l izer  was  subjec ted  to l ightning 
s t r ike  tests. Resul t s  a r e  shown in Figures  4 and  5. 

The full-scale test program m e t  a l l  ce r t i f i ca t ion  goals, and  t h e  requi red  d a t a  w e r e  
submi t t ed  to  t h e  FAA. 

3.2 GROUND VIBRATION TEST 

Ground vibrat ion t e s t i n g  was  per formed on a production 737 a i r c r a f t  w i th  a 
graphite-epoxy horizontal  s tab i l izer  installed. The  purpose of t h e  test was  to  
measu re  t h e  na tu ra l  f requencies  and  modes  of t h e  graphi te-epoxy s tab i l izer /e leva-  
t o r / t ab .  These  f requencies  and  modes  w e r e  compared  wi th  those  used in t h e  
f l u t t e r  analysis. 

The  test a i rp lane  was  positioned on a leve l  s u r f a c e  in an  opera t ing-empty  weight  
configurat ion.  The  a i rp lane  was  supported on t h e  main and  nose gea r s  wi th  reduced  
t i r e  pressure. A por tab le  vibrat ion shaker  was  used to e x c i t e  t h e  s tab i l izer  at 
severa l  loca t ions  and  directions. Tes t s  w e r e  conducted  wi th  hydraul ic  power on 
and  off. The test s e t u p  i s  shown in F igure  6. 

Acce le romete r s ,  l oca t ed  on both right- and  lef t -hand s tab i l izers ,  e leva tors ,  t abs ,  
and  con t ro l  columns,  w e r e  used to measu re  con t ro l  sys t em na tu ra l  f requencies ,  
mode  shapes,  and  damping charac te r i s t ics .  In addi t ion,  a c c e l e r o m e t e r  d a t a  w e r e  
recorded  on t h e  f in / rudder ,  wingtip, and s tab i l izer  suppor t  s t ruc tu re .  The 
measured  na tura l  f requencies  of t h e  graphite-epoxy s tab i l izer  w e r e  in c lose  
a g r e e m e n t  wi th  those  of t h e  aluminum s tab i l izer ,  demonst ra t ing  s imilar  dynamic  
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Figure 3. Rear-Spar Failure- Load Case 40 10 With Upper Pin Removed 
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Figure 4. Lightning Strike Test 

charac te r i s t ics .  
t u re s  i s  shown on Table  1. 

A mode  comparison of t h e  aluminum and graphite-epoxy s t ruc-  

3.3 FLIGHT TESTS 

Flight tests w e r e  conducted to  demons t r a t e  f lu t t e r  c l ea rance  and  s tabi l i ty  and 
control  performance.  The  f l ight  f l u t t e r  test used a production model 737-200 with 
a graphite-epoxy horizontal  s tabi l izer  installed.  

The airplane was  f lown at incremental ly  increasing speeds  up  to t h e  a i rp lane  dive 
speed at t h r e e  al t i tudes.  The envelope of conditions flown i s  shown in Figure 7. 
Excitation of t h e  s tabi l izer  was  performed by control  su r f ace  impulses and a n  
oscil lating aerodynamic  vane  mounted on t h e  left-hand s tabi l izer  tip. The vane  
installation is shown in Figure 8. At  e a c h  speed,  subcri t ical  damping and  f requency  
calculat ions w e r e  m a d e  f rom measurements  taken  on t h e  empennage. Cont ro l  
sys tem power on and off, autopi lot ,  and  yaw damper  operat ion w e r e  checked.  
Modal damping fo r  a l l  modes was  high throughout t h e  tests. 
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Figure 5. Lightning Strike Test 
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Figure 6. Ground Vibration Test Setup 

Resul ts  of this  tes t ing  with t h e  graphite-epoxy s tabi l izer  have  demonst ra ted  
c learance  t o  t h e  VD/MD fl ight boundary and an  equivalence t o  t h e  aluminum 
stabi l izer  f rom a f lu t t e r  standpoint.  

Stabil i ty and control  f l ight  tests consisted of two  phases. Phase I f l ight  tests were  
conducted on a production aluminum stabi l izer  t o  establish baseline data .  For 
phase 11, t h e  aluminum stabi l izer  was replaced by t h e  graphite-epoxy s tabi l izer ,  and  
phase I f l ight tests w e r e  repeated.  

Flight test maneuvers  t h a t  placed t h e  highest demands on t h e  longitudinal control  
system were  selected.  These maneuvers,  which were  flown with both t h e  aluminum 
and graphite-epoxy s tabi l izers  fo r  back-to-back comparison, included windup turns  
with hydraulic power on and of f ,  stabil izer-elevator t rades ,  mistr im dive recover-  
ies,  and s imulated landings in manual reversion. In addition t o  t h e  back-to-back 
tes t ing,  se lec ted  cer t i f ica t ion  maneuvers  also were  flown t o  demons t r a t e  fu r the r  
t h a t  t h e  graphite-epoxy s tabi l izer  produces no change in 737 handling cha rac t e r -  
istics. These cer t i f ica t ion  maneuvers  included f laps  up and f laps  40 s ta l l  
charac te r i s t ics  and longitudinal static s tabi l i ty  in cruise  at 9144m (30 000 f t )  and 
7010m (23 000 ft) .  The  f l ight  test airplane was  flown by a n  FAA pilot as pa r t  of 
t h e  s tabi l i ty  and control  and autopi lot  cer t i f ica t ion  f l ight  tes t ing.  Back-to-back 
fl ight test conditions demonst ra te  t h a t  t h e r e  a r e  no significant differences in 
observed f l ight  charac te r i s t ics  when t h e  aluminum stabi l izer  is replaced by t h e  
graphite-epoxy stabil izer.  Flight test resul ts  show t h a t  t h e  graphite-epoxy 
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Table 1. Aluminum Versus Graphite- Epox y Stabilizer Mode Comparison 

Body lateral bendinghorsion 
'stabilizer spanwise bending 

Stabilizer spanwise bending 

I Hydraulic power on I Hydraulic power off 

4.23 A 4.23 4.26 A 4.24 

5.66 A 5.70 5.69 A 5.57 

Mode description 

Elevator rotation 

Stabilizer bending/ 
elevator rotation 

Stabilizer spanwise bending 

Composite Aluminum Composite Aluminum 
frequency, frequency, frequency, frequency, I HZ I Hz 1 Hz 1 Hz 

5.94 A 5.99 5.97 A 5.97 

6.73 S 6.72 6.62 

6.98 S 7.01 7.12 

Elevator torsion 

Stabilizer chord/pitch 

18.42 A 18.50 A 

19.23 S 18.18 Not Not 
measured measured 

Stabilizer chordwise bending I 7.28 A I 7.62 I Not I Not 
measured measured 

~~ 

Elevator torsion 

Stabilizer 2nd 
bendinghorsion 

19.76 S 20.32 19.81 S 20.28 

24.53 A 24.78 24.80 A 

Note: A is antisymmetric; S i s  symmetric. 
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Mach number 
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Figure 7. Speed and Altitude Test Points 
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View A 

Figure 8. Flutter Vane Installation 
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s tab i l izer  is equiva len t  to t h e  aluminum s tab i l izer  and,  t he re fo re ,  will sa t i s fy  a l l  
handling qua l i t i es  r equ i r emen t s  of Fede ra l  Aviat ion Regulat ion 2 5  (FAR 25) fo r  t h e  
model  737. 

3.4 FAA CERTIFICATION 

FAA ce r t i f i ca t ion  was  achieved  by showing compl iance  wi th  t h e  r equ i r emen t s  of 
F A R  2 5  a n d  Compos i t e  Guidel ines  AC 20- 107. 

Compl iance  was  demons t r a t ed  by s t ruc tu ra l  analyses  and  support ing test evidence.  
The  test program t h a t  produced t h e  support ing d a t a  included a ful l -scale  ground 
test, a f l igh t  test program, and  a n  anci l lary test program, a l l  discussed in previous 
sec t ions  of th i s  document  a n d  in Refe rences  2 and  3. S t ruc tu ra l  ana lyses  included 
a f in i t e  e l e m e n t  model  analysis  (ATLAS), a n  u l t i m a t e  s t r e n g t h  analysis ,  and  a 
damage  to l e rance  a n d  fai l -safe  analysis. These  ana lyses  and  support ing test d a t a  
w e r e  submi t t ed  to  a n d  a c c e p t e d  by t h e  FAA. Cer t i f i ca t ion  of t h e  737 graphi te-  
epoxy horizontal  s tab i l izer  was  issued in t h e  th i rd  qua r t e r  of 1982. 

3.5 WEIGHTS 

Weights w e r e  ca l cu la t ed  based on production drawing configurat ions.  The  new 
weight  values  w e r e  used to r ep lace  t h e  eva lua t ions  der ived during t h e  prel iminary 
analysis  s tage .  Comple t ion  of production ca lcu la t ions  resu l ted  in a weight  i nc rease  
of 9.7 kg (21.1 Ib) over  t h e  preliminary values. 

The  predic ted  t o t a l  weight  of t h e  graphite-epoxy inspar s t r u c t u r e  fol lowing th i s  
revision w a s  183.3 kg (404.1 lb) compared  wi th  t h e  aluminum s t r u c t u r e  weight  of 
238.3 kg (525.4 Ib), a reduct ion  of 23%. 

Reevalua t ion  of production drawings and  design changes  incorpora ted  through t h e  
program resu l t ed  in a f ina l  pred ic ted  weight  of 187.1 kg (412.6 Ib) and  a weight  
reduct ion  of 21.5% as shown in Table  2. 

Because of t h e  assembly  sequence  for  t h e  horizontal  s tab i l izer ,  i t  was  no t  possible 
to weigh t h e  inspar s t r u c t u r e  alone. Therefore ,  graphite-epoxy components  
weighed under a n  a c t u a l  weight  program w e r e  t abu la t ed  to t h e  appropr i a t e  shipset  
and  compared  wi th  t h e  ca l cu la t ed  values. This tabula t ion  ( t ab le  3) shows a n  
a v e r a g e  weight  i nc rease  of 1.4% ove r  t h e  predic ted  values. 
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Table 2. Metal and Graphite- Epoxy Horizontal Stabilizers- 
lnspar Structure Weight Comparison 

Totals! kg 
(Ib) 

Difference, 
% 

Baseline 
aluminum 
stabilizer 
structure, 
kg (Ib)/airplane 

78.0 78.7 
(1 72.0) (1 73.2) 

- +0. 7 

Advanced 
com posi t e  
stabi Ii zer 
structure, 
kg (Ib)/airplane 

Rib details, kgi 9.3 
(Ib) (20.5) 

Weight 
difference, 
kg (Ib)/airplane 

9.6 
(21.1) 

Weight 
difference, 
% 

+0.4 

I tem 

+2.3 +2.0 +0.8 +1.6 

~~ ~ 

21.2 (46.8) 

51.6 (113.7) 

-10.1 (-22.2) 

-19.5 (-43.1) 

-32.2 

-27.5 

+7.8 
+11.2 

-44.0 

- 
- 

-100.0 

-100.0 

-21.5 

- 

Front spar 

Rear spar 

Skins 
0 Upper 
0 Lower 

Ribs 

Corrosion protection 

Lightning protection 

Access doors 

Gap cover support 

Total stabilizer inspar 
structure per airplane 

Stabilizer TE/elevator 
interface thermal 
ex pansion provision 

31.3 (69.0) 

71.1 (156.8) 

36.2 (79.8) 
36.2 (79.8) 

60.9 (134.2) 
- - 

- - 

0.7 (1.6) 

1.9 (4.2) 

39.0 (86.0) 
40.2 (88.7) 

34.1 (75.2) 

1.0 (2.2) 

0.0 (0.0) 
0.0 (0.0) 

0.0 (0.0) p 

+2.8 (+6.2) 
+4.0 (+8.9) 

-26.8 (-59.0) 

+1.0 (+2.2) 

- - 

-0.7 (-1.6) 

-1.9 (-4.2) 

187.1 (41 2.6) 238.3 (525.4) -51.2 (-112.8) 

- 15.5 - 
+15.5 

1.0 Ib included in skin panel weight. Gap cover support structure integral design 
of inboard closure rib installation. 

Imponen t Weights Table 3. Predicted and 1 

Predicted 
Component values Ni 

LH - 
Front spar, kg 9.8 9.7 

(Ib) (21.5) (21.3) 

ctual Composite Stabilizer lnspar Structure C 

Actual weights per shipset - 
0 

- 
3 

(23.7) (22.1) (22.0) 

22.6 22.6 
(49.9) (50.0) (49.9) 

21.9 1 22.6 I 22.4 I 22.6 I 22.9 1 22.5 
(48.2) (49.9) (49.4) (49.9) (50.4) (49.5) 

Skin panel- 
upper, kg (Ib) (39.3) (39.2) & lower, Skin panel- kg (Ib) (41.4) (42.1) 

17.7 1 I 17.6 I 
(38.9) (39.0) (40.2) 

19.0 19.0 
(41.8) (41.8) (42.5) 

9.6 1 9.9 I 9.6 1 9.5 1 9.7 1 9.9 
(21.2) (21.9) (21.1) (21.0) (21.4) (21.8) 

78.3 79.9 79.6 78.6 79.3 78.9 
(172.7) (175.9) (175.4) (173.4) (174.8) (173.7) 

(20.8) (21.6) (21.6) 9-4 I 9*8 I 9.8 I 
79.4 I 79.2 I 79.9 1 

(1 75.2) (1 74.6) (1 76.2) 
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4.0 PRODUCTION 

Product ion expe r i ence  was  a pr ime objec t ive  of t h e  advanced  compos i t e  s tab i l izer  
program. Five-and-one-half shipsets ,  e a c h  consis t ing of a lef t -hand s e g m e n t  and 
opposi te  right-hand segmen t ,  w e r e  manufac tu red  with advanced  compos i t e  ma te -  
rials. Exper ience  was  gained in: 

0 Est imat ing  (cost  and  schedule)  
0 

0 
Tool deve lopment  (detai l  and assembly)  
Fabr ica t ion  processes  (detai l  and assembly)  

The  s tab i l izer  assembly  i s  a hybrid assembly of graphi te  and  aluminum components .  
The  g raph i t e  port ion consis ted of 280 p a r t  numbers  produced by Boeing's Fabrica-  
t ion Division in Auburn, Washington. The  graphi te  fabr ica t ion  was  accompl ished  
accord ing  to  a Boeing process  spec i f ica t ion  t h a t  uses  t h e  me thod  fo r  no-bleed 
mater ia l .  Of t h e  280 p a r t  numbers ,  15 were  major  graphi te  assembl ies  t h a t  
included: 

0 

0 Fron t  and  r e a r  spar  
0 Trailing-edge beam 
0 
0 

Upper  and  lower skin panel  

Seven inspar  r ibs  and  a lightning s t r ike  support  r ib  
Ou tboa rd  and  inboard c losure  r ib  

The  268 m e t a l  components  and  t h e  assembly work w e r e  accompl ished  at  t h e  Boeing 
f ac i l i t y  in Wichita, Kansas, because  of the i r  commonal i ty  wi th  t h e  model  737 
production. Work ac t iv i ty  was  divided in to  nine major  assembly  positions: 

0 Fron t  and  r e a r  spar  
0 Rear-spar  and  trailing-edge join 
0 Stabi l izer  major  assembly 
0 Stabi l izer  mill and bore  
0 Stabi l izer  f loor  pickup 
0 Seal  
0 Pain t  and  shipping prepara t ion  

Each s e g m e n t  weighed approximate ly  175.5 kg (386 lb) and requi red  approximate ly  
700 assembly  labor  hours. The  a v e r a g e  f low t i m e  per shipset  was  77 days  f r o m  t h e  
s t a r t  of t h e  f i r s t  position unt i l  i t  was  r eady  for  shipment .  

4.1 DETAIL TOOLS 

Deta i l  tools  w e r e  f ab r i ca t ed  f rom aluminum, s t ee l ,  and f iberglass  using conven-  
t iona l  tool fabr ica t ion  design a n d  fabr ica t ion  pract ices .  Male tool ing was  t h e  mos t  
common because  of reduced  cost both in fabr ica t ion  and  p a r t  layup. F e m a l e  tools 
had minimal  use. Where possible, t h e  tool ing was  developed to  produce oppos i te  
pa r t s  on t h e  s a m e  mandrel .  Shrink f a c t o r s  had to be  added  to  t h e  tool ing m a t e r i a l  
to accoun t  for  t h e r m a l  expansion during t h e  182OC (350'F) c u r e  cycle .  
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4.2 ASSEMBLY TOOLS 

Assembly tooling was  convent ional .  The assembly  f i x t u r e  for  building t h e  e n t i r e  
s tabi l izer  assembly was  a new tool. The  production model  737 too l  co,uld not  be 
used because  t h e  g raph i t e  assembly  had f ewer  p a r t s  and  o the r  variances., Only t h e  
production rear-spar / t ra i l ing-edge join too l  was  used in common wi th  thle g raph i t e  
program. The  capabi l i ty  to vacuum t h e  dust  during drilling and  t r imming  
opera t ions  was  a unique f e a t u r e  added  to  t h e  tools. 

4.3 OVERALL PRODUCTION 

Overal l  production problems w e r e  minimal. Some of t h e  preva len t  problems were:  

Warpage. This was  a considerable  conce rn  in t h e  fabr ica t ion  of t h e  skin 
panels and spars .  With minimal  pressure during t h e  assembly phase,  however ,  
t h e  warpage  was  re l ieved  and  caused  no  assembly  problem. 

Delaminat ion.  This was  a problem in t w o  incidents .  One  caused  a change  to 
t h e  process  procedure,  and  t h e  o the r  was  a workmanship e r ro r  t h a t  caused  
contaminat ion  of t h e  layup tool when a wrong liquid was  used. 

Resin-s tarved areas .  These a r e a s  on t h e  s u r f a c e  of s o m e  p a r t s  caused  a 
redesign. 

In te r fe rence .  
edge  sec t ion  and  t h e  g raph i t e  had to be re l ieved  by redesign. 

Some in t e r f e rence  problems be tween t h e  old m e t a l  trailing- 

The "Bigfoot" blind f a s t ene r  used on t h e  c losure  skin panel  had to be  changed  
to reduce  t h e  t i m e  requi red  to microshave  t h e  pin. On t h e  l a t t e r  uni ts  wi th  
unidirect ional  tape-f inished skins, special  e f f o r t  was  t aken  to r educe  o r  
e l imina te  hole  breakout  on t h e  ex ter ior  s u r f a c e  at t h e  drill e x i t  point. 
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5.0 COST ANALYSIS 

I t  is p ro jec ted  t h a t  advanced  composi te  ma te r i a l  w a s t e  will b e  reduced  wi th  t h e  
implementa t ion  of advanced  manufac tur ing  technology and m o r e  uniform qual i ty  
mater ia l .  Based on th i s  project ion,  t h e  product ion exper ience  gained during th i s  
program,  and assumptions of o the r  cost-reducing f a c t o r s  de ta i led  in Sec t ion  5.3, 
t h e  cost of advanced composi te  s tab i l izers  will become  comparable  to t h e  cost of 
s imilar  m e t a l  components .  

When t h e  increasing value of weight  reduct ion is considered toge the r  with t h e  
adopt ion of innovat ive manufac tur ing  methods  and engineer ing designs, t h e  
economic  jus t i f ica t ion  for  advanced  composi te  a i r c r a f t  s t r u c t u r e  is ensured.  

This  s ec t ion  p resen t s  t h e  product ion cost d a t a  fo r  t h e  five-and-one-half-shipset 
product ion run. 

5.1 PRODUCTION COSTS 

5.1.1 Production Environment 

Tooling and component  manufac tur ing  pe rcen tages  shown in F igure  9 a r e  r e l a t ive  
to overal l  costs in dollars; engineer ing costs a r e  not  included. T h e  t o t a l  product ion 
program costs shown in F igure  10 r e f l e c t  t h e  fabr ica t ion  and manufac tur ing  
processes  used in a semiproduct ion envi ronment  fo r  t h e  five-and-one-half-shipset 
program. 

Work was  per formed in product ion shops by employees  whose expe r i ence  and skill 
l eve l  represented  a c ross  sec t ion  of t h e  shop work force .  Component  f ab r i ca t ion  
was  per formed wi th  hand c u t t i n g  and layup of broadgoods, ply-by-ply inspect ion,  
and hand t r imming.  Tooling was  designed fo r  ex tended  product ion,  bu t  t h e  tool  
rework  and improvement  e f f o r t  was  r e s t r i c t ed  to t h e  five-and-one-half-shipset 
c o n t r a c t  . 
These  ac t iv i t i e s  represented  t h e  product ion processes  t h a t  would, when prac t ica l ,  
be  used to produce  a l a rge  number of s tabi l izers .  I t  is likely, however ,  t h a t  by 
adopt ing improved manufac tur ing  processes ,  t h e  per-unit cost of s tab i l izers  pro- 
duced in a regular  product ion envi ronment  would b e  s ignif icant ly  lower. Projec-  
t ions of product ion cost t r ends  a r e  discussed in Sec t ion  5.3. 

5.1.2 Total Costs 

Of t h e  total product ion expendi tures  for  t h e  five-and-one-half shipsets ,  labor  was  
85% and nonlabor was  15%. T h e  major  cost e l e m e n t s  of t h e  total product ion labor  
costs a r e  shown as pe rcen tages  in F igure  10. T h e  component  product ion labor  
hours shown in F igure  10 are: fabr ica t ion ,  64%, assembly,  30%, and manufac tur ing  
r e sea rch  and development  (MR&D), 6%. Tota l  product ion labor  hours a r e  presented  
in F igu re  11 showing t h e  breakout  be tween  recur r ing  (67%) and nonrecurr ing (33%) 
costs. Many nongraphi te  p a r t s  used in t h e  composi te  s tab i l izer  a r e  common  to bo th  
t h e  m e t a l  and t h e  composi te  s tabi l izer .  Some  of t h e s e  had to b e  modif ied f r o m  t h e  
configurat ion provided by t h e  pa r t  vendor or  m e t a l  s tab i l izer  subcon t rac to r  to 
m a k e  t h e m  usable  in t h e  composi te  s tab i l izer  assembly.  Recurr ing  fabr ica t ion  and  
assembly e f f o r t s  a r e  broken o u t  by task  and presented  in F igures  12 and  13. 
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Figure 9. Total Recurring and Nonrecurring Production Costs by Major Element-5% Shipsets 

Manufacturing research and development 

Figure 10. Total Recurring and Nonrecurring Component Production Labor Hours-5% Shl;osets 
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Planning 
2 % 7  

Figure 1 1. Total Recurring and Nonrecurring Production Labor Hours 
(Excludes Tooling and Engineering) 

Figure 12. Total Recurring and Nonrecurring Fabrication Hours-5% Shl;osets 
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Labor I 1 34 045 hr 

Figure 13. Total Recurring and Nonrecurring Assembly Labor Hours-5% Shipsets 

5.2 COMPOSITE MATERIAL USAGE FACTORS 

Usage f a c t o r s  experienced fo r  graphite-epoxy ma te r i a l s  w e r e  0.78 kg (1.8 Ib) of 
t a p e  and 1.22 kg (2.8 Ib) of f a b r i c  fo r  each  pound of graphite-epoxy f lyaway weight  
in t h e  finished s tabi l izer .  This included ind i rec t  usage fo r  receiving tests, k i t t i ng  
t r im  loss, process  test panels,  process  and miscel laneous re jec t ions ,  and layup t r im  
loss. I t  is e s t ima ted  t h a t  t hese  f a c t o r s  could b e  reduced t o  1.5 and 2.0 Ib, 
respec t ive ly ,  over  a 200-shipset program with m o r e  uniform qual i ty  mater ia l s ,  
revised handling methods,  and improved manufac tur ing  processes.  With au tomated  
ma te r i a l  cu t t i ng /pa r t  nest ing and new layup and processing technology,  t hese  
f a c t o r s  would be  fu r the r  reduced. 

5.3 COST COMPARISONS 

Based on cos t s  incurred in producing t h e  five-and-one-half shipsets  of t h e  compos- 
i t e  s tab i l izer ,  recurr ing cos t s  fo r  200 shipsets  a r e  e s t ima ted  at  $40.3 million, using 
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Figure 14. Relative Composite Stabilizer Cost Comparison-Initial 200 Shipsets 

t h e  NASA baseline.  
million in ma te r i a l .  

This f igure  is derived f rom $32.9 million in labor and $7.4 

The  effect of improved technology on t h e  t r end  of compe t i t i ve  cos t  ave rages  for  
t h e  init ial  200-shipset quant i t ies  of t h e  model  737 compos i t e  s tabi l izer  is dep ic t ed  
in F igu re  14. This  f igure  shows t h a t  t h e  p re sen t  costs could b e  reduced  by 25% 
with improved a u t o m a t e d  methods.  Fu r the r  opt imizat ion of t h e  design would b e  
expec ted  to produce additional cost benefits .  

Ground rules for  t h e  cost project ion of 200 shipsets of t h e  composi te  s tab i l izers  
shown in F igu re  14 a r e  based on: 

0 Cos t  projection is t h e  scoping level. 

0 Costs a r e  recurr ing only for  200 shipsets.  

0 Costs r e f l e c t  1981 commerc ia l  pricing r a t e s  and do not include prof i t  or  
contingency. 

0 

0 

P a r t  coun t  and  weights a r e  assumed t o  b e  t h e  s a m e  as t h e  NASA stabi l izer .  

Auburn and Wichi ta  labor hour e s t i m a t e s  have  been  adjusted to r e f l e c t  1983 
state of t h e  a r t .  

0 MR&D has def ined 1983 state of t h e  a r t  to include a u t o m a t e d  t a p e  
laminators ,  a u t o m a t e d  ply c u t t e r s ,  vacuum compac t ing  tables ,  
improved fas teners ,  and lamina ted  shims. 

0 Designs will b e  revised as required to allow au tomated  manufac tu r ing  
m et hods. 

0 Graph i t e  m a t e r i a l  c o s t s  a r e  based on supplier quotations.  

0 Graphite-epoxy usage fac tors :  t a p e  1.5 lb,  f a b r i c  2.0 lb. 

0 Automat ion  will radically change  t h e  r a t io  of t a p e  versus f a b r i c  in t h e  design. 
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6.0 CONCLUSIONS 

NASA es tab l i shed  a program fo r  pr imary  composi te  s t r u c t u r e s  under  t h e  A i r c r a f t  
Energy Eff ic iency  (ACEE) program. As  p a r t  of th i s  program,  Boeing h a s  redesigned 
and f ab r i ca t ed  t h e  horizontal  s tabi l izer  of t h e  737 t r anspor t  using compos i t e  
mater ia l s .  F ive  shipsets  w e r e  f ab r i ca t ed ,  and FAA ce r t i f i ca t ion  has  been  obtained.  
Air l ine in t roduct ion  will follow. 

Key program resu l t s  are:  

0 

0 

Weight reduct ion  g r e a t e r  t han  t h e  20% goal has  been  achieved.  

P a r t s  and  assembl ies  w e r e  readi ly  produced on product ion-type tooling. 

0 Qual i ty  a s su rance  me thods  were  demonst ra ted .  

0 Repa i r  me thods  w e r e  developed and demonst ra ted .  

0 St reng th  and s t i f f  ness ana ly t ica l  me thods  w e r e  subs t an t i a t ed  by compar ison  
wi th  test resul ts .  

0 Cost d a t a  w e r e  accumula t ed  in a semiproduct ion envi ronment .  

0 FAA ce r t i f i ca t ion  has  been  obtained.  

T h e  program has  provided t h e  necessary  conf idence  for  t h e  company to c o m m i t  use 
of composi te  s t r u c t u r e  in s imilar  appl icat ions on new genera t ion  a i r c r a f t  and has  
la id  t h e  groundwork for  design of la rger ,  more  heavily loaded compos i t e  pr imary  
s t ruc tu re .  
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