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I NTRODUCT ION 

Advanced information displays have altered the way pilots interact with 
the a i rp 1 ane and the way they exerc i se contro 1 . Use of these d i sp 1 ays 
inpacts the cognitive skills used to effect vehicle control in subtle 
ways. A method of modeling continuous human flight path control has been 
developed that has proved useful in understanding the effect of these dis­
plays on performance and in providing a more precise quantitative descrip­
tion of the pilot vehicle interaction. The method utilizes new technology 
in multivariate statistical time series for identifying and estimating 
multi-input/output transfer function models. It is completely data driven 
and does not depend on any prior knowledge of the system under considera­
tion, but only on a definition of the loop being investigated in terms of 
the variables involved. Autoregressive moving average models are evalu­
ated in the time domain using state space estimation techniques developed 
by H. Akaike (1). Once the models are identified, the observed process 
vector is regarded as the output of a linear system with a rational trans­
fer function matrix subject to white noise input and considered in the 
frequency domain. 

Models have been obtained for a variety of flight situations based on 
pilot-aircraft performance data obtained from a series of full mission 
flight simulations and tests in actual flight. One of the primary issues 
of concern during these tests was a comparison of overall pilot perfor­
mance using a new flight deck MAP navigation display versus performance 
using the standard VOR direction indicator over several subjects. The 
methods used provided evidence to the effect that a pilot I s continuous 
control was measureably different as a function of the navigation informa­
tion display. They also proved useful in providing performance based 
quantitative measures for exploring pilot variablity and for comparing 
control strategies of individual pilots as they respond naturally to the 
varying demands of the flight path. 

Although this study is far from complete, the paper includes: 

(i) a general description of the methodology used in obtaining the 
transfer function models and verification of model fidelity, 

(ii) frequency domain plots of the modeled transfer functions, 
(iii) numerical results obtained from an analysis of poles and zeroes 

obtained from z plane to s-plane conversions of the transfer 
functions, and -

( i v) the resu 1 ts of a study on the sequent i ali ntroduct i on of other 
variables, both exogenous and endogenous into the loop. 
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EXPERIMENT 

The analysis is based on a series of flight simulation experiments con­
ducted over a period of months in 1981 in a 767 flight simulator in con­
cert with a series of flight tests on an actual 767 airplane •. 

The simulations were conducted in the 767 Systems and Workload Display cab 
at the Renton Flight Simulation Facility of The Boeing Company. Although 
several flight scenarios were simulated, this analysis is based on a rep­
lica of a standard flight profile of a line operation night flight from 
Seattle to Moses Lake. All of the flight test measurements were obtained 
from flights over the same route in full daylight. 

The objective of the tests was to obtain a workload database that in-· 
eludes data on eye movement and fixation times, execution times· for dis­
crete, manual, verbal and auditory tasks and time traces of continuous 
control movement and aircraft attitude and flight condition measures. For 
the simulations the continuous data series were recorded on magnetic tape 
at a sampling rate of 6.41 per second (one every .156 seconds) and, for 
flight test, the sampling rate was 5.0 per second (one every 0.2 seconds). 

Data was recorded for five pilot - copilot combinations for each of the 
simulations and for three crews in flight test. The study was designed to 
determine if two of the presentation formats of navigation information 
affect pilot control. Specifically, each crew flew two flights~ one using 
the more conventional VOR display mode on the Electronic Horizontal Situa­
tion Indicator (EHSI) for navigation guidance throughout the. fl ight and 
the other with the MAP mode di sp 1 ayed. Fi gure 1. compares the two di sp 1 ay 
modes. Not all cases in the design resulted in a successful record, hence 
this analysis is based on a subset of comparable cases. In particular, 
there was only a single pilot-copilot combination that was common to both 
instrumentation conditions across both simulation and flight. 

ANALYSIS TECHNIQUES 

The analysis performed in this study is based on the general class of lin­
ear functions of sampled data systems represented by autoregressive moving 
average (ARMA) models of the form: 

z(t) - A1z(t-l) - ••• -Apz(t-P) = e(t) + C1e(t-l) + ••• + Cq e(t-q) 

where z(t) is the vector of the observed process, p and q are 
numbers representing the model structure, A and C are constant matri­
ces and e(t) is a vector of zero mean white noise Gaussian processes. 
The use of this ARMA model in the modeling of a single time series is 
extensively discussed by Box and Jenkins (2).When the series z(t) and 
e(t) are univariate processes, practical methods for estimating the 
matrices A and C and the structure identification parameters p and q 
are relatively recent. The extension of the application of ARMA models to 

43 



the analysis of multivariate time series where z(t) is a set of possibly 
dependent variables is considerably more difficult particularly with 
regard to structure identification. In the last four to five years sever­
al computer codes have been written to perform this task, one of which is 
based on a method proposed by Akaike. See references (3 and 4) for more 
detail in addition to reference (1). 

In a statistical estimation procedure an estimate is best if it fits opti­
mally to a set of observed data relative to some criterion. Akaike ex­
tends this concept to include estimates of the statistical model identifi­
cation parameters as well, namely, the parameters p and q. Therefore 
the performance of the model as well as the estimates of the free parame­
ters of the model are influenced by the choice of criterion of model fit. 
The one proposed by Akaike minimizes an information criterion called Ale 
where: 

Ale = -2(10g likelihood) + 2(number of independent parameters) 

and MAlCE = min(AlC) 

where the minimum is taken over all models of the candidate class. The 
model that attains the value of MAleE gives the final estimate. 

Starting from the ARMA multivariate model in an equivalent canonical 
Markovian state space stochastic representation, Akaike has shown that the 
MAleE solution solves the problem of identifiability under very general 
conditions .on the stochastic process. 

The code used in this study is based on Akaike's methods of state space 
parameter identification as implemented in the ~tatistical ~nalysis ~stem 
(SAS) general purpose time series analysis package procedure STATESPACE, 
reference (5). The state space model on which the code is based can be 
developed from equation (1) . according to the following steps. By solving 
this equation iteratively for z in terms of e, the infinite series 

z(t) = e(t) + D1e(t-1) + D2e(t-2) + ••. , Do = 1 

is obtained. Denoting the conditional expectation (projection) of z(t+i) 
on all the past history of z up to time t by z(t+ilt), then: 

z(t+ilt) = Di e(t) + Di+1e(t-l) + •.. 

and 
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z(t+ilt+1) = z(t+ilt) + Di _1e(t+1) 

Furthermore from Equation (1): 

z(t+rlt) = A1z(t+r-Ilt) + 

where r = max (p,q+l) 

These equations can then be summarized in the'following form: 

z(t+1) 0 1 0 • • • 0 z(t) 

z(t+2It+l) = 0 0 1 0 z(t+llt) 

. . . . . . . . . . . . . 
z(t+rlt+l) A Ap_1 

A
p
_
2 • Al z(t+r-llt p 

or v(t+l) = Fv(t) + Ge(t+l) 

+ 

1 

D1 e(t+l) 

D r-I 

Since the state vector vet) is comprised of conditional expectations of 
z(·) and its first components are z(t), it allows for the representation 

z (t) = H v (t) where H = [I 0] • 

In summary therefore: 

v(t+l) = Fv(t) + Ge(t+l) 
z(t) = Hv(t) 

(2) 

which is the Markovian state space representation of the ARMA model (1). 

Starting with the ARMA model in the form of (2), the objective of 
Akaike's method is to compute the maximum likelihood estimates of the free 
parameters of a given model and then select that model which gives a mini­
mum value of AIC. Although the objective is simple to describe, most im­
plementations are time consuming and potentially unstable. All depend on 
the choice of an appropriate initial value for success. The SAS implemen­
tation uses a method recommended by Akaike. The method proceeds by first 
fitting an AR model to the observed series by solving a sequence of Yule 
Walker equations. A final order, M, is then selected that minimizes the 
AIC information criterion. This order is then used as the number of lags 
into the past in a canonical correlation analysis that searches for linear 
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dependence among the 1 i near predi ctors of· the future z (t) , z (t+ 1), ••• 
based on a finite number of past observations z(t), z(t-1), ••• , z(t-m). 
The algorithm proceeds sequent i ally, success ively addi ng new components, 
z (t+i ), unt i 1 the canon ica 1 corre 1 at ions are no longer sign i f i cant. The 
importance of the correlation associated with the additon of a new compo­
nent is judged according to another information criterion. This analysis 
also provides an initial estimate of the remaining free model parameters 
as well as an initial estimate of the innovation variance-covariance ma­
trix. These values are input to a nonl inear optimization procedure that 
calculates final estimates of the model parameters based on an approximate 
maximum likelihood procedure. 

If the process converges, the procedure supplies an estimate of the model 
in statespace form (2), and a covariance matrix for the innovation process 
e(t). Forecasts and residual plots are also obtainable. The ARMA form of 
the model is then retrievable by reversing the steps outlined above. 
Software has been developed for this procedure and is available in SASe 

Once the model is identified, z(t) can be regarded as the output of a 
1 inear system with a rational transfer function K(w) subjected to a 
white noise input. See e.g. Priestly (6). The transfer function matrix 
has the form 

where 

and 

K(w) = A(w)-lC(w) 

A(w) = I + A e- iw + 1 
+ A e- iwp 

p 

+ C e- iwq 
q 

for the matrices Ai and Ci defined in (1). 

(3) 

(4) 

(5) 

If L is the variance covariance matrix of the innovation process e(t), 
then the spectral matrix F of the process Z is given by 

(6) 

where K* = conjugate transpose of K. 

For the two dimensional closed loop system representation of Figure 2 (a) 
with open loop representations (b) and (c), let z = (x, y). Then, 
analytically, the two, open loop, input-output representations become: 
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and 

where 

x(t) = Ej(u)y(t-U) + V(t) 
o 

00 

y(t) = Eh(u)x(t-u) + N(t) 
o 

00 

J{w) = Ej{u)exp{-iwu) 

is the transfer function at A and 

H(w) = Eh(u)exp(-iwu) 

is the transfer function at B. If, for this case, the matrites A and C 
of equations (4) and (5) have elements a· .(w) and c· .(w), respectively, 

lJ lJ 
then the transfer functions J and H are estimated from: 

J = (allc22-a21c12)-1(a22c12-a12c22) 

H = (a22cll-a12c21)-1(allC21-a21cll) 

(7) 

(8) 

and the noise filters S(w) and R(w) correspondin~ to the outputs N(t) 
and V(t),respectively, from 

S = (a22cll-a12c21)-1(cllc22-c12c21) 

R = (allc23-a21c12)-~(cl1c22-c12c21). 

Note that J, H, Sand R are rational functions. In general, ARMA. models 
lead to rational functions in the frequency domain. See e.g. Priestly 
(6). 
For two dimensional loops, procedures have been writt~n for plotting the 
transfer functions J, H, Sand R both amp 1 itude and pnase, modeled 
spectra for X, Y, V and N and the corresponding coherency spectra. 
Three and four dimensional models have also been considered although not 
all of the above software has been developed for all cases. 

Although the use of the SAS code appears to be nearly automatic, there are 
several decision points in the process that make model fitting at this 
time take on some of the characteri st tcs of a subjective process. The 
primary decision has to do with loop definitions: what variables should 
be included and what the consequences are of leaving variables out, what 
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interdependent structure exists and whether there are sub loops with spe­
cial structures; whether the subloops should be modeled as a suboptimiza­
tion conducted prior to the final modeling exercise, what variables are 
exogenous and how they should be modeled; should the variables be de­
trended and how nonstationarity should be treated. 

Other dec is ions are a consequence of the eva 1 uat i on process after models 
are produced. The MAICE procedure is consistent with the principle of 
parsimony. That is, increasing the number of parameters in a model has an 
adverse effect on the mi n i mum un 1 es s the increase isba 1 anced wi th an 
equivalent increase in the likelihood. Thus this procedure has a definite 
tendency to converge on models with sma 11 values of the i dent ifi cat i on 
parameter, that is small values of p and q. It is therefore advanta­
geous at times to force other model orders into consideration after the 
initial values of the innovation matrix or the residuals indicate an ill 
fitting model in some respect. Usually the immediate neighborhood of the 
fitted parameter was searched for improvement. 

The STATESPACE procedure can be used in a mode that prespecifies a partic­
ular model for a given time series or particular values for the identifi­
cation parameters. In this way the user of the program can exercise a 
significant degree of control and guidance over the nature of the subse­
quent convergence. 

APPLICATION AND VALIDATION 

The characteristics of a human operator cannot be put into a single class. 
Over time the human controller of an aircraft displays a wide variety of 
control behavior: linear, nonlinear, time varying, and adaptive, with 
varying degrees of randomness in the control. The controller can act as a 
servo in response to various information sources in the flight deck or can 
respond by acting upon information or internal motivation from outside the 
control loop. Therefore, since no single model of human control can be 
completely comprehensive, the hypothesis of the model building of this 
study is that valid models can exist for restricted classes over relative­
ly short time periods. 

Model development has proceeded on the cl imb portions of the simulations 
and flight test from a few seconds after rotation to cruise altitude. For 
each test condition plots of altitude, airspeed and heading were examined· 
and comparable time periods of approximately one and one-half minutes were 
selected across the five pilots at various points along the flight path. 
These periods formed the basic data set for this part of the study. 

Since th is study is based ent ire lyon a black box look at both the pi lot 
and the vehicle, four graphs from an earlier study are included in Figure 
3 that provided insight into the nature of pi lot-instrument interaction, 
pilot to pilot variations and within pilot variation in strategy as the 
goals of the fl ight plan are executed. Figures 3 (a) and (b) superimpose 
the estimated raw spectral densities of aircraft pitch, the displayed air­
craft pi tch command on the fl i ght di rector, and the correspondi ng pil ot 
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column performance. Figures 4(c) and (d) are similar graphs for roll and 
wheel. The graphs are for two pi lots and at a high level of wind turbu­
lence. In all cases the displayed information has a band width that is 
broader than the corresponding aircraft response and is encouraging a re­
sponse in the pilots that is broader in band width. Pilot A has matched 
hi s response fairly carefully to the indicator but pilot B has a much 
noisier response that seems to have been propagated by the· noise in the 
indicator. In all cases the pilots seem to be working harder than neces­
sary caused to a degree by the displayed information. The flight director 
information was not available to the pilot in any of the subsequent exper­
iments. 

Figure 4 provides graphs of wheel and column standard deviation for three 
pilots computed over one and one-half minute intervals at various posi­
tions during climb. The data was gathered during an experiment ln a 
flight simulator conducted prior to the one described in the previous sec­
t ion. The subj ects were instructed to c limb to 31,000 feet in three 
stages: first, climb to 5,000 feet while making a heading change of 140 
degrees, second, climb to 10,000 feet while making a heading change of 
100, and third, climb to 31,000 feet turning 20 degrees just before level 
off. The series have been aligned vertically by the time of rotation. 
These graphs illustrate clearly the degree of similarity in pilot perfor­
mance when executing similar tasks and that a pilot's performance varies 
widely as the task changes. Indeed, for these pilots, there is more vari­
ation in a pilot's performance due to changes along the flight path strat­
egy than there is between pilots at any given time or comparable flight 
condition. 

Since this paper is primarily related to display related pilot responses 
the data sets that are discussed are those comparing: 

pilot to pilot variation in control behavior, 
pilot variation and navigation display mode (MAP versus VOR), 
pilot variation during climb along the flight path, 
navigation display mode. usage during climb, and· 
pilot control performance during simulation and actual flight. 

Subsets of the basic data set have been selected for making these compari­
sons and models fitted based on the SAS/STATESPACE procedure. In most 
cases the modeling process was based upon the control loop structure 
illustrated in Figure 2 with H as the human transfer function and J 
that of the aircraft. Since navigation display mode was thought to influ­
ence lateral control more than vertical, the initial study was conducted 
on a loop defined by x(t) = aircraft roll response and y(t) = pilot wheel 
control response with N(t) as the pilot residual and V(t) as the air­
craft residual. A later study, performed on a loop defined by column con­
trol and airplane pitch response, was extended systematically to include 
other variables. For the current study, however, it did not seem neces­
sary to do so, although for a complete understanding of pilot response it 
is essential. 
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Wind turbulence is the disturbing force in the loop and would have been 
used in defining the loop had it been recorded in flight. Since it was 
not avai 1 ab le for the f1 ight tests, the vari ab le was not used in the re­
sults presented here and its effect was presumed to affect the pilot only 
in terms of the roll variable. The lack of this variable distorted the 
aircraft residual and reduced precision in the loop but did not seriously 
effect pilot gain. 

Box and Jenkins (2) discuss differencing as a method of removing trend and 
achieving stationarity in a sampled series. On occasion it seemed neces­
sary to do this in one or more of the observed series. As the simulator 
model of the aircraft developed over time, however, it became less and 
less necessary, and the current models are based on the original observed 
data series. 

Several tests, both quantitative and subjective, were applied to a model 
before it was considered acceptable. As a first step, the modeled innova­
tion variance-covariance matrix was examined. For acceptance the entries 
had to be sma 11 re 1 at i ve to the observed seri es. Convergence i tse If 
demonstrated that there was sufficient information in the defined loop, 
and that the model used by the pi lot in that time frame was sufficiently 
stable to produce a model. This was not always the case. Lack of conver­
gence sometimes occurred and was usually of two types. During dynamic 
periods with large control inputs on the part of the pilot, convergence 
was often achieved by sl iding the time unit sl ightly. This indicated a 
very dynamic change in model with time such that a badly chosen time frame 
might span two or more separate models. During the least dynamic part of 
the cl imb, about midcl imb, convergence was also sometimes difficult to 
achieve. During this period, the pilot seemed to have achieved the de­
sired stability in the flight dynamic variables and was acting more in the 
capacity of an instrument monitor rather than a linear processor. This 
was also the case after level off at cruising altitude. 

STATISTICAL GOODNESS OF FIT 

Statistical goodness of fit tests were performed on the model residuals. 
The Bartlett's Kolmogorov-Smirnov white noise test was performed on both 
residuals and only those series passing both tests at the 5 percent level 
were accepted. SAS made it also possible to plot model residuals against 
the observed series for visual inspection of the effects of model fitting. 
In general, the residuals were very small and had the characteristics of 
white noise. The largest deviations from the observed series occurred 
primarily when the first differences of the series were large such as, 
after a period of relative stability in control movement. In figure 5 are 
residual plots for roll and wheel, respectively, for a typical case of 
model development. 

The subjective elements of model validation has to do primarily with prior 
expectations regarding the nature of the models themselves. One of the 
first things that was checked was the stabi 1 ity of the aircraft model 
across pilot and, to a degree, across flight conditions. Though not known 
in advance, the resultant equations did display the required model con-
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stancy. The pilot models on the other hand; did not; a result which was 
also expected. The pilot models did, however, exhibit expected trends with 
flight path. 

Integrating the modeled output spectral densities computed from equation 
(3), produced values for the variances of the modeled series which were 
then compared to the original sample variances computed from the raw data 
series. Table 1 compares these estimates in terms' of standard deviation 
for the models discussed in this paper. Models for simulation are much 
closer, as expected, than those for flight with respect to this measure. 
In flight the roll percentage differences average 5.9 percent compared to 
.7 percent in simulation and for wheel the percentages are 2.4 and .7, 
respectively. 

Figures 6 and 7 superimpose the model based spectral densities on the 
estimated densities calculated from the raw data series. In general, the 
mode 1 ed spectral dens i ty is much smoother and has a broader band wi dth 
than the raw data spectrum and without noticeable peaks and valleys 
reflecting the overall parsimony of the fitted equations. In every case 
but one, the fitted spectra track the raw spectra very closely in overall 
features. For the one case, the low frequency aircraft response is badly 
modeled and should have perhaps been fi ltered by a difference fi lter to 
improve the modeling. 

When convergence was not achieved on the innovations or the residual vari­
ances were too high for a model to be acceptab 1 e, altern at i ves were ex­
plored. The data series were often shifted by ten to twenty data points 
at either end in an attempt at locating a fixed model rather than one in 
transition. A high pass difference filter was also used, though somewhat 
sparingly, as a device to improve model fit. Other segments were set 
aside to be investigated in conjuncti~n with larger loop definitions. 

These results verify the fidelity of statistical time series techniques 
applied to the problem of modeling pilot control performance. Good quan­
titative models of the pilot exercising his control task can be produced 
that have both statistical and physical validity. The next question then, 
is to determine what they say about the pilot and how they can be used to 
provide insight into the control process. 

RESULTS 

There are th i rty-n i ne modeled f 1 i ght segments ina 11, a subset of wh i ch 
are represented in Table 2. The segments consist of twenty-six from the 
simulation results and thirteen from the results in the aircraft. Of 
the simulated flight segments, ten are from a flight segment common to 
each of five pilots flying once with the VOR navigation display and again 
with the MAP navigation display. The other sixteen simulated flight seg­
ments consist of nine VOR and seven MAP segments flown by a single pilot~ 
The thirteen aircraft fl ight segments consist of five VOR and eight MAP 
segments all flown by this same pilot. The models are closed loop roll­
wheel models, corresponding to Figure 1 for the original roll signal 
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Most of the control literature on the human transfer function is in terms 
of a continuous control function, and for this reason the z domain 
transfer function was transformed into the s domain. Since the z­
domain transfer function is a rational function, it can be written as a 
partial sum: 

where m 
z = eiwT • 

is the number of po 1 es, 
Using the correspondence: 

T is the samp 1 i ng i nterva 1 and 

M T 1 M Bi H(z) = I: A./(l-e-si z- ) --1.~ I: = V(s) 
i=1 1 i=1 s+Si 

the general form of the pilot transfer function is still a rational func­
tion: 

V(s) = Ke-Tsn(s+z.)/ n(s+p.) 
1 1 

where K is pure gain and the zi's and Pi's are the zeroes and poles 
of V, respectively. The use of this correspondence in human operator 
control modeling also appears in Shinners (9) and Osafo-Charles (10). 

The zi's and Pi's are not always real numbers but frequently occur as 
complex pairs causing second order factors in the numerator and denomina­
tor. The complex poles are more likely to be the two smallest in simula­
tion and the two largest in flight. Complex zeroes are not nearly as 
frequent. Writing the complex term in the denominator as 

where ~ = damping ratio 

and w = normalization frequency 

The damping ratio was computed for the models developed for the one pilot 
flying both in the simulator and in actual flight. In the simulator, of 
the eleven models with second order poles, ~ ranged from .41 to .98 with 
approximately two thirds of the ratios above .71. For fl ight the situa­
tion was somewhat reversed; of the nine models with second order poles, 
one was above .71, one at .71, and the rest were below. 
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samp 1 ed at the di sp 1 ay mode and the ori gi na 1 wheel·· signa 1. Neither signal 
has been filtered. 

Graphs of the modeled pilot roll to wheel transfer functions are given in 
Figures 8 and 9. The graphs cover small flight segments for a single 
pilot, flying in actual flight, covering a total time span from rotation 
to cruise altitude. Two flights are represented with different display 
modes. The graphs are plotted in the z domain using formula (8). The 
functions are typical of those published by other authors. See e.g., 
Tanaka (7) and Shirley (8). 

The similarity in control exercised by the pilot over comparable time pe­
riods between the two flights is worth noting. This is obviously related 
to the similarity in flight goals during comparable periods of different 
flights. The dissimilarity of models along the time axis is a measure of 
the variety of strategy required of the pilot in achieving these goals. 

Some thought has been given to the concept of pilot remnant relative to 
the pilot models developed for these series. Since the concept was origi­
nally defined in an open loop context, there is some confusion as to its 
meaning when the loop is closed. Several authors have defined remnant in 
terms such as IIthat part of the output not related to the forcing func­
tion ll or as IIthat part of the output not correlated with the input. 1I In 
closed loop time series modeling the only term of the ARMA time function 
satisfying this concept is the pilot innovation. 

This can be made more explicit, by writing the ARMA model for the pilot in 
the form: 

e(B)y(t) = ~(B)x(t) + a(t) + ~(B)Ba(t) + o(B}Ba(t} (9) 

where B is the backward shift operator defined by 

Bx(t) = x(t-l) 

and e,~, ~ and 0 are polynomials in B. Since a(t} is white noise it 
is independent of its own past. a(t} and . a(t) are contemporaneously 
dependent only. Therefore a( t} is independent of the ~ and 0 terms 
of equation (9). x(t} depends only on the past history of a(t} and not 
on its present or future, hence a(t} is also independent of the ~ term. 

Often the last three terms of equation 9' are combined into a single rem­
nant term N( t). Not on ly is thi s term correlated both wi th the input 
series x and both innovation series, it also has more information in it 
than the concept of remnant usually implies. In particular, in its final 
form, the transfer function associated with the pilot's innovation series 
a( t} seems to represent the pi lot I s compensation based on hi s memory of 
past IIremnants. 1I Although, this term has not yet been studied in ~etail, 
it cou 1 d provi de some interest i ng i nformat i on on the pi lot IS cogn i t i ve 
process. 
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Table 3 summarizes the differences in the poles and zeroes of the pilot's 
describing function when using the two navigation information display 
modes for a single flight segment across five of the six pilots who par­
ticipated in the simulation test. The segment was 90 seconds in duration 
and a careful attempt was made to match flight conditions across all five 
pilots even though not all pilots encountered the same conditions at the 
same time in flight. Pilot control was tapped approximately seven and 
one-half minutes into flight when the altitude was 14~700-16~700, ft~ 

heading 68.50-690~ and airspeed approximately 300 knots. But~ even though 
this criterion was somewhat fuzzy in definition~ three of the five pilots 
demonstrated very similar control behavior. 

If the complex zeroes and poles are replaced by their corresponding abso­
lute values~ this data suggests certain tentative hypotheses: 

a) The second zero is usually very large and can be ignored as it has 
little effect on the frequencies of interest. 

b) ,The time constant associated with the largest pole is measuring an 
aspect of the pil ot 's response delay. The time is nearly constant 
over all of the conditions and averages .126 seconds with a standard 
deviation of .025. 

c) The control lead time constants associated with the first zero are 
longer using the MAP display than for VOR. 

d) The control lag time constants as measured by the first 
pole are generally shorter when using the MAP display although this 
effect is not as pronounced as the lead time effect. 

e) Pilot equalization as measured by the ratio of the first zero to the 
first pole is generally less than one for pilots using the MAP dis­
play and greater than one for the VOR display. 

Thus~ in effect~ by introducing the MAP display the pilots are demon­
strating higher lead times with less lag than their performance using the 
VOR di sp 1 ay. The general pos it i ve acceptance of the MAP di sp 1 ay obtai ned 
from pilots in debriefings implies that this result has been achieved 
without an adverse effect on pilot workload. 

In order to determine if these results were particular to the flight con­
ditions and control strategy in effect at the time selected for analysis~ 
pilot control strategies at several different time segments during the 
climb phase were investigated. The investigation was conducted on data 
from both simulation and actual flight for the one pilot flying both 
models. Figure 10 summarizes the definition of the selected segments in 
terms of the flight condition measures: heading~ airspeed and altitude. 
Pilot control strategies for these segments were analyzed in terms of the 
poles and zeroes of the transfer function in the canonical form for both 
MAP and VOR navigation display modes. 

54 



Figure 11 contains graphs of the first zero and first pole, as a function 
of time into flight from rotation, for the simulation experiment's MAP and 
VOR mode results. Each plotted. point represents a time interval of ap­
proximately 90 seconds. Since the VOR zeroes dominate the MAP zeroes, the 
MAP lead time constants are longer than VORwhich substa.ntiates the prev.i­
ous results. The MAP poles are larger in· general than the VOR poles 
though not as consistently. This too substantiates the.previou's results. 

There is a substantial change in lead and lag time ~onstants as a function 
of time into fl ight. As the cl imb progresses. the pi lot has less to do; 
fl ight path variation in performance decre.ases~ . lead and lag time con­
stants decrease and the aircraft flight control. s~abilizes. As cruise 
altitude is reached, the strategy changes: performance variation in­
creases and the lead and lag time constants increas~. The pilot is adapt­
ing performance behavior to fit the control task; 

Figure 12 portrays a similar scenario for the experiment involving actual 
fl ight. MAP zeroes are generally less than' VOR zeroes making MAP lead 
time constants 1 arger. MAP po 1 es are generally greater than VOR po 1 es 
making VOR lag time constants greater than MAP •.. The trend with time into 
flight is also evident with the lead time constants generally larger when 
the flight control goals are more dynamic. ' 

By comparing the scales of Figures 11 and 12 it can be determined that the 
simulation zeroes are for the most part larger than those for actual 
flight. A similar determination is also possible for the poles. Thus, in 
general, the lead and lag time constants are both smaller,for simulation 
than flight which implies that the flight simulator requires less lead 
input from the pilot for control compared to actual flight and lags less. 

Figure 13 is a graph of the pilot equalization ratio tnor~er to determin~ 
if the control is dominated primarily by lags or by leads over the lower 
end of the frequency band. All four test conditions are superimposed. In 
general, this graph shows that, except for the MAP condition in simula­
tion, pilots generally lag niore with VOR than with the MAP naVigation dis­
play and more in f1 i ght than ins imu 1 at i on. In both the s imul ator and in 
actual flight the MAP display results shows a significant decrease in the 
equalization ratio. 

In these models, as in those represented in Table 3, there is a relatively 
high frequency pole representing pilot response time. During simulation 
the average was .15 seconds or slightly larger.than the average for Table 
3, due to a wider variety of flight conditions. For flight the average is 
.25 seconds. The degree to which these results are confounded with the 
sampling rate is not known. 

MULTI-INPUT, MULTI-OUTPUT PILOT CONTROL MODELS 

A cursory investigation was conducted to explore the effect of removing 
the lateral component of the wind turbulence vector, vg' from the roll 
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wheel simulation models of the previous section. The investigation was 
performed on a single time interval from a simulated flight of 70 seconds, 
start i ng approximately 5 mi nutes into fl i ght. As wi nd is an exogenous 
variable, a univariate ARMA model was fit to the time series of the later­
al wind component prior to formulating the problem as a multivariate 
statespace model. This ARMA model was then introduced into the statespace 
model and remained unchanged during the remainder of the model fitting 
process. The final model indicates, as expected, that roll has a strong 
dependence on v g but that the wheel dependence on v 9 is very weak. 
Figure 14(a) is the power spectrum of the model residuals between the one 
step ahead forecast and the observed data for wheel. There was no visible 
difference before and after Vg was introduced. The same comparison is 

made for roll in Figures 14(b) and (c). The change in the roll spectrum, 
however, clearly demonstrates that much of the lack of model fit for the 
lateral variable is directly attributable to this component of wind. The 
pilot's response to wind is almost completely through the roll variable 
whereas the aircraft's response is direct. Figure 14 (d) is a time 
history of the roll residual after Vg was introducted superimposed on 

the observed roll series. Comparing this plot to the residual in figure 5 
for the same case before v g was introduced, clearly demonstrates that 

the fit improvement is both in amp 1 itude and over the low frequency part 
of the spectrum. 

A second study of the effect of adding more variables in the loop was 
performed on a loop that initially involved just the pitch and column var­
iables where pitch was differenced for trend removal • The variables air­
speed and the vertical component of wind turbulence Wg were then added 

sequentially to the model. As before, a univariate ARMA model was fit to 
the wind component and then added to the statespace model as an exogenous 
variable. 

Figure 15 gives the results of sequentially adding variables to the 
defined loop as they "affect the pilot transfer of the differenced pitch 
signal. The lowest curve is the pilot transfer of the differenced pitch 
signal with no other variables in the model. The middle curve is the same 
transfer function but with airspeed added to the model. The increased 
pilot gain is frequency selective over the lower frequencies. The upper 
curve represents the addition of Wg to the model. Again, the added 

variable is frequency selective affecting only the higher frequencies. 
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CONCLUSION 

This approach seems to have general application as a human factor design 
aid in display development with regard to such characteristics as the se­
lection of format and information content, the placement and integration 
of displays, the selection of color/contrast and brightness levels, etc. 
It is based on minimal model assumptions of linearity and "optimality" of 
performance. The results not only have provided quantitative measures 
that have di scrimi nated between di sp 1 ay modes, but seem also to have ob­
jectively quantified some of the cognitive features of pilot workload. 
Indeed, its real value as an analysis tool seems to be its sensitivity to 
the n~tural control choic~ of the pilot at the time it is made, as opposed 
to having to rely on information gained from intrusive measuring devices 
to understand this process, or having to evaluate mission performance as a 
whole in terms of arbitrary success criteria or subjective debriefings. 

The method does not appear to be limited to continuous performance models. 
An investigation has already been' initiated in applying statistical time 
series methods to model the pilot as a supervisor or monitor of states 
combining visual clues with control movements. 

Because the method depends on infOrmation obtained from' expensive simu1a­
t ion, it does not replace other methods current 1y in use, to predi ct and 
design information systems. Instead it can be used to complement this ac­
t i v ity, e. g. , as a research too 1 to conf i rm the app 1, i cab 11 ity of these 
methods or to develop them further with a better understanding of their 
strengths and weaknesses. The methods of this paper can also be used 
after the fact, th at is, after in it i a 1 des i gn dec i si ons have been imp 1 e­
mented, to fine tune the displays and control system parameters that 
involve pilot input. Finally, the methods can provide a· better under­
standing of the job of piloting aircraft: in quantifying variation within 
pilots, in quantifying the interplay of the information variables and the 
corresponding control, and in quantifying the variation in 'control and the 
use of information as a function of the r~sultant maneuver~ 
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ROll I WHEEL 

TIME (SEC.) Observed Modeled '; OIf!"ERENCE I Observed I Modeled :l DIFF 

~!AP 

360-450 4.371 4.391 0.4 3.887 3.887. 0.0 
450-540 6.049 6.339 4.8 2.752 2.746 0.2 
540-630 1.561 1.561 0.0. 1.538 1.538 0.0 

~ 
630-720 1.298 1.299 0.08 1.106 1.106 0.0 
730-790 0.992 0.9n 0.0 0 .. 849 0 .. 849 0.0 

f- 800-890 1.383 1.383 0.0 1.728 1. 728 0.0 < g 980-1070 1. 742 1.743 0.0 1.661 1.G61 0.0 

VI 

VOR 

110-200 13.871 14.527 4.7 4.729 4.707 0.5 
200-290 11.060 11.127 0.6 4 .. 269 3.850 9.8 
300-370 1.699 1.699 0,0 2.302 2.302 0.0 
380-470 2.924 2.924 0.0 2.699 2.699 0.0 
470-560 2.579 2.579 0.0 1.9:'8 1.938 0.0 
560-650 2.281 2.282 0.04 . 2.074 2.074 0.0 
650-740 3.466 3.465 v.03 2.451 2.m :0.0 
740-830 1.193 1.193 0.0 0.961 0.961 0.0 
830-920 3.566 3.566 0.0 2.991 2.990 . 0.03 

MAP 

90-180 8.656 9.446 9.1 4.936 4.922 0.3 
180-250 11.491 10.806 8.4 3.396 3.079 9.3 
270-360 9.557 9.838 2.9 2.719 2.566 5.6 
340-400 2.277 2.340 2.8 1.521 1.517 0.3 
450-540 0.857 0.913 6.5 0.870 0.896 3.0 
540-630 0.739 0.738 0.1 0.656 0.655 0.2 

!: 630-720 2.151 2.196 2.1 1.144 1.i68 2.1 
~ 

720-810 1.677 1.731 3.2 1.075 1.079 0.4 

~ 
VOR 

90-180 9.043 10.905 20.6 4.256 4.288 0.8 
180-270 8.829 9.218 4.4 2.309 2.287 1.0 
270-360 9.857 10.027 1.7 2.154 2.138 0.7 
360-450 0.927 0.958 3.3 1.008 1.012 0.4 
630-720 0.544 0.608 11.8 0.373 0.400 7.2 -.. 

TABLE 1 Modeled and Observed Standard Deviation 
Comparison: Simulation (Top) and Flight (Bottom) 
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COEfFICIENT 

rIl1f: II f I Z 13 III liZ IIJ 1'1 1'2 s. 5Z ~ 

MAP , 

161'1-45iJ .1.Z51 0.2~2 -1.420 1.390 0.328 1.024 
4S.J-!40 -1.249 0.232 -LI00 1.087 0.335 1.246 
5010-630 -1.218 0.3ZS -0.360 0.272 0.11l 0.:Q9 

z 630-120 ,-1.5017 0.639 -o.Z02 0.lS8 -0.389 0.:37 E ... 730-190 -1.212 0.496 0.5i6 -0.632 -0.066 -0.:05 
-< 800-~90 -1.427- 0.542 -o.!I76 .jJ.~24 -I}.:J7S n !i!7 

~ ;1]0 

on 110-.00 - •• 440 0.4i4 -0.347 0 • .3 42 0 • .292 0.':':2 
ZOO-Z90 -1.347 0.404 0.00 .jJ.J12 0.326 -o.J4.1 
300-370 -1.139 0.313 -o.J34 -1.1::8 0.'::84 0.'::2! 
380-470 -1.4601 0.878 -0.359 0.00 -0.505 0.5501 O.W? 0.195 -o.C6~ a.ssa 
4iO-~5iJ -1.078 0.179 0.217 -3.263 0.':63 -0.187 
560-~:\l -1.4.12 0.316 0.186 0.00 0.J39 -0.069 -o.J29 -0 • .3,4 -o.lS7 0.052 
650-740 -1.369 O. iS2 -0.101 0.075 0.1l4 0.Z5l 
740-a30 -1.074 O. J45 0.273 -0.336 O.llS -0.253 
830-J20 -1.161 0.254 -0.049 0.003 o.~'ia 0.02! 

".~~ 

~-i.8a -1.Z71l 0.447 0.5iO -J.606 1l.06' -o.~U 
180-25iJ -1.265 0.285 0.00 ..,).:J05 0.413 -0.106 
270-36iJ -2.049 1.522 -0.461 0.00 O.:JO -O.OOZ -0. tal 0.045 o.az:} ..,).;JlO 
340-400 -1.146 0.277 0.00 -J.043 0.272 0.Zo:!5 
4S0-:~O -1.239 0.498 1.681 -1.769 0.2::0 -2.::lO7 

!:: 5010-630 -1.25g 0.537 1.195 - L.Z63 0.'::00 -1.~ 

~ 630-i20 -1.1~B 0.:303 1.330 -1.335 0.441 -1.:9: ... 7""_~'" .11~97 0.076 .,.:77 "'.:1'::; O.J~~ ..:O..:~ ... 
,,)0 

90-.80 -1.5':(1 0.185 Z.~79 -Z.4B1 -o.J1l2 .. Z.'::i 
180-,70 -2.214 1.782 -0.54(1 0.00 0.00 -'l.003 -0.:99 0.032 -O.:lg.1 O.~71 
270-;5\l -l.903 1.263 -0.337 0.00 O.,JO -0.J03 -OJ.';:5 ..,).lj8 O.JZZ -o.JC9 
360-4'30 -l.Z'l3 0.324 .. O.jal -1.:15 0.~60 -0.':::1 
630-,ZO _-0.787 0.222 '.4'16 ..t.497 0.441 _4.::: 

~!ode 1 : 

TABLE 2 ARMA Coefficients Wheel (y) Output vs. Roll (x) Input, 
Wheel Innovation (~), Roll Innovation (a) 
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~~t8T 

1 - 1 

3 - 5 

4 - 7 

5 - 9 

6 - 1 

.. , 

MAP VOR 

ZERO 1.59 3.21 25" 79 

TIME CONSTANT 0.63 1.18 0.311 1.01 
POLE/MODULUS 0.38 6.17 1.89::2.55i/3.17 9.89 

TIME CONSTANT 2.63 0.162 0.315 0.101 

ZERO 0.25 1.48 0.90 20.20 
" 

TIME CONSTANT 4.00 
p.16 0.63 

POLE/MODULUS 
, 

1. 13::1. 11i/1. 58 6.61::4.64i/8.08 1.43 7. 35::o.86i/7.39 

TIME CONSTANT 0.633 0.124 0.699 0.135 

ZERO 1.61 66.72 2.62 6.39 

TIME CONSTANT 0.621 p.37 0.3B2 3.54 
POLE/MODULUS 2.42::3.571/4.31 11.55 0.74 3.30 9.52 

TIME CONSTANT 0.232 0.087 1.35 0.105 

ZERO 1.72 21.61 -3.02::5.40i/6.19 

TIME CONSTANT 0.581 0.52 0.162 6.95 
POLE/MODULUS 2.79::1. 79il3.31 7.55 0.89 17 • 59::0. 74i/7 .62 

TIME CONSTANT 0.302 0.132 1.12 0.131 

ZERO 0.84 0) 4.0~ c:o 

TIME CONSTANT 1.19 0.33 
0.249 

1.:0 
POLE /~IODULUS 1.87::1. 68i/2. 51 8.53 0.96::2.501/2.68 ~.16 

TIME CONSTANT 0.39B 0.117 0.373 0.162 

TABLE 3 Wheel Model Poles and Zeroes of five pilots approximately 
7~ minutes into flight, 300 KN airspeed, 68.50 - 69.50 heading, and 
14,700 - 16,700 feet altitude. Roll-wheel loop. 
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FIGURE 3 Spectral Densities: Roll-related (Top), and Pitch-related (Bottom), 
for Two Pilots, A (Right), and B (Left) 
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