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System identification is concerned with the determination of a model 
whose behavior approximates that of a given physical system as closely as 
possible, under approximately restricted experimental conditions. In 
practice, linear system identification is often separated into two parts: 
(a) ~etermination of the order of the optimum linear model, and (b) estimation 
of the parameter values of the resulting linear model. Clearly, in a linear 
system, the model structure is determined by the choice of order. However, 
when the system is not linear and the nonlinearities are either omitted or 
incorrectly represented in the model, erroneous estimates of parameters may 
be obtained. This problem, i.e., the effect of erroneous assumptions of model 
structures on parameter values has received inadequate attention in the past. 
A number of books (e.g., [1]) describe variety of algorithms for system 
identification. The effect of erroneous assumptions of model structure 
genera 11 y shows up in the covariance matri x of the estimated parameters. 
However, this is at best an indirect indication, since an increase in the 
variability of the estimated parameters may also be due to a neglect of time 
variations and other factors. Incorrect structure assumptions may also mani­
fest themselves in the goodness of fit criteria by which the qual ity of the 
model is judged. Thus, an incorrect structural assumption may produce a worse 
agreement between model outputs and system outputs. It is important to note 
that this is not always the case since it may be possible for the identifica­
tion algorithm to select incorrect parameter values in order to compensate 
for erroneous assumptions of structure. This paper is concerned with an 
approach to system identification which explicitly takes structure errors 
into account and hence provides a systematic way for answering questions 
concerning the magnitude of estimated parameter errors resulting from structural 
errors. 

2. FORMULATION OF THE PARAMETER IDENTIFICATION PROBLEM 

Assume that there exists a physical process (the system) with inputs 
u(t) and outputs y (p), which are measurable. We characterize the process 

p 
by the assumed mathematical model 

Xm ( e , t) = f ( xm ( e , t ) ,u ( t) ,x 0 ' e , t ) ( 1) 
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and 
(2) 

where the dimensions of the vectors x, y, u and e are n, m, rand q respec­
tively. xm represents the state of the model while Ym are the model outputs. 

The function f{') represents our assumption about the structure of the process, 
while the function g(.) represents the measurement operations. Equations (1) 
and (2) are in fact a class of models which is parameterized by the vector 6. 
Hence, the process of parameter identification leads to a selection of a 
member of this set of models, on the basis of observations of inputs and 
outputs of both process and model. 

In the real world our assumption of model structure is never in complete 
agreement with that of the process itself [2]. Let us assume that we can 
represent the structural difference between model and process by means of 
an additive term. Furthermore, process measurements are always more or less 
corrupted by noise so that an "idea1 mode1," which accurately and completely 
represents the process, will be given by 

• * * * * xp(e ,t) = f(xp(e ,t),u(t),xO,e ,t} + es(e ,t) (3) 

and 
(4) 

The term es(e*,t) specifies the modeling or structural' error which represents 
our lack of complete knowledge. It can be considered deterministic or 
stochastic. Measurement noise, vet), is included in equation (4) for 
completeness but will be assumed to be zero for trhe moment. The symbol e* 
represents the true parameter values of the system. Clearly, the ideal 
model of equations (3) and (4) can never be known exactly in practice, but 
it forms a reference against which actual models, like equations (1) and (2), 
can be judged. In this case the ideal model corresponds to the IIbase model ll 

defined by Zeigler [3]. The relation between the system true model and the 
class of models under consideration is illustrated in Figure 1 . 

... 0 

I",==~ CLASS CI MODELS - lJIJ', 

Fi gure 1 
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3. THEORETICAL IDENTIFICATION 

We now define the theoretical identification problem as follows, 
following Zadeh [4]: 

Given (a) a physical process under test, (b) a class of inputs u(t), 
(c) a class of models ~(e). 

From input/output observations of tP determine a member of ?n which 
is equivalent to fJ. in the sense that its responses to all u(t)EUare 
identical to those of (9, i.e., 

y (t) :: y (t) V u(t)E'U, t E [O,T] 
p m 

It is evident that the solution of this identification problem is only 
possible if both measurement noise and structural error are identically 
equal to zero. If only one parameter value e exists for which such a 
solution is possible. the model is set to be globally identifiable [5]. 

Much controversy exists in the literature concerning the theoretical 
identification problem. It seems to us that such problems, while 
interesting, have very limited usefulness in the real world. 

4. PRACTICAL IDENTIFICATION 

(5) 

In practice, of course, the modeling error is never identically zero, 
and hence the m6del outputs can only approximate the process outputs. Let 
us define a scalar criterion function, J(1n(e},Q) which is a measure of the 
match between yp and Ym' We can then define the real world identification 
problem as follows: 

Definition 1. Given 

(a) a physical process under test, dJ 
(b) a class of inputs !L = {u} 
(c) a class of models ~(e) characterized by equations (1) and 

(2) 
(d) a criterion function Jp("Z(e),p) 
(e) an allowable modeling error E . 

p . 
The real world identification problem consists of the determination, on the 
basis of input and output observations of 6'. and ~(e), of a model parameter 
vector e for which 

J (~( e), P) < E 
p - p 

where € is the allowable process identification error. If such a parameter p 
vector can be found, we shall term the process R-W identifiable. 
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Note that this definition does not require exact agreement between 
model and process outputs. In fact~ now define the notion of near equivalence 
by specifying a magnitude on the norm of the difference between model and 
process outputs. If we select a value for this norm, say C. then we can 
state that: 

Given that 

{6} 

the model and process are nearly equivalent. Note that criterion function 
appearing in Definition 1 may be the same as equation (6), or it may be an 
alternate criterion which measures the quality of approximation of the 
behavior of the process and the model. In any case, it is evident that 
if equation (6) is used for the criterion function in Definition 1, then we 
can state that models which are nearly equivalent to a given process are 
also R-W identifiable. 

5. RELATIONS BETWEEN MODELS 

In practice, we frequently approximate the model of equations (3) and 
(4) by a simpler and more tractable set of equations. For example, we may 
choose to approximate (3) by the linear model: 

i(e,t) = A(6)z(t) + B(e)u(t) + el(e,t) s 
Ym(t) = c(e)z(t) + D(e)u(t) 

(7) 

(8) 

where it is assumed that measurement errors are negligible. The new structural 
error e;(e,t) in eq. (6) now includes the effects of model simplification. 
Similarly, a linear high-order model may be approximated by a lower-order 
linear model. Let us assume that such a simpler class of models can be found, 
without reducing the order of the parameter vector e~ (the argument which 
follows can be extended to the .case where the simpler model has fewer 
parameters than the complex model). 

Consider a complex model ~l of the process which is being approximated 
by a simpler model ~2. Under these conditions, even in the absence of 

measurement noise, the models ~1 and ~2 will not be equivalent, since the 
outputs Ym of ~l will not be identical to the outputs y of ~2 for all 

1 m2 
time in the interval of observation. 

To make these ideas more preCise, consider model ?tl with parameter 
vector e and model 1.n2 with a different structure but the same parameter 

vector. 
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We now now define the relation between these two models independent of 
the quality of their approximation to the physical process. 

Definition 2. Model-Model Near Equivalence (MMNE) 
Two models ~l and '"2 with different structures and with outputs Ym 

1 
and y respectively are termed model-model nearly equivalent if there exists m2 
a criterion Jm(~1(e),m2(e» and appropriate bounds Em and om such that 

\ Jm (7n, ( e) , 7112 ( e) < E­- m 

IIYm (e,t) - Ym (e,t)11 2. om 
1 2 

and ( 9) 

(10) 

A further discussion of the near-equivalence concept and its implications is 
given in [6]. 

6. SOME SIMPLE EXAMPLES 

Consider first an electrical circuit as illustrated in Fig. 2a. This is 
a diagram of the process. It contains a condenser with capacitance 81 , a coil 
with inductance 82 and a small resistor R in series. Over a given range of 
frequencies we assume that the current in the circuit is described by the 
equation (the "true" model): 

(11 ) 

1(0) = 10 ' II(O} = 16 
If we neglect the small resistance of the circuit (which may represent the 
resistance of the coil), we obtain a model equation 

8
2
i"(t} + (1/8l )i(t) = 0 (12) 

i(O) = 10 . il(O) = 10 
If one is interested in the solution only on a short time interval, the 
solutions of (11) and (12) may be very close. We can select a modeling 
Ep such that 

II(t) - i(t)\ < E - P 

error 

(13 ) 

It is evident that (13) will be satisfied only over an interval (to,t f ). If, 
however, the final time t f is allowed to increase, the two solutions will 
differ since I(t) + 0 as t + 00 while i(t) performs periodic oscillations with 
constant amplitude. The neglect of R represents the structural error and can 
lead to qualitatively different behavior as t f + 00. The solution of (12) and 

(13) as well as the left hand side of (13) are plotted in Figure 3. 

As a second example consider a linear process with time delay described 
by the process equation 
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· * * * xp = a xp + b u(t) + c Xp(t-T) (14 ) 

We assume that both c* and T are small and model the system as 

(15 ) 

where both (14) and (15) have zero initial conditions. In order to examine 
the effect of the structural error we compare the transfer functions of model 
and process. Since the time delay is small, we approximate the laplace trans­
form of the delay by 

e-TS ;;; 

which 1 eads to 

x (s) 
Gp(S) = -cfsi 

l-T 
S 

= 
* * b / (1 +TC ) 

_ (a* + c*) 
S 1 + tC* 

while the model transfer function becomes 

X (s) b 
Gm(s) m = = U{s) s - a 

( 16) 

(17 ) 

( 18) 

Comparison of (17) and (18) reveals that identification of the model leads to 
incorrect values of the parameters a and b due to the structural error. Even if 
the identification is exact, the resulting values will differ from the "true" 
values a* and b* by terms which depend on the structural error parameters T 
and c*. 

The above examples are very simple, but they illustrate the nature of 
the problem. 

7. THEORETICAL RESULTS 

An extensive theoretical analysis of the structural error problem has 
been performed for both the deterministic and stochastic case [7]. The major 
results in [7] can be summarized as follows: 

A. Solution Error Bounds 

If the time dependence of the structural error es{t) is given, it is 
possible to express the solution error as a function of es{t), i.e., 

\6y(t)\ = \Yp{t) - ym{t)! = g{es{t» 

under appropriate conditions. 

B. Near Equivalence 

Necessary and sufficient conditions under which process and model are 
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near-equivalent have been found, i.e., for a given E, 

c. For given values of maximum structural error es max and solution error 
\oY\max' bounds on the solution time have been obtained. 

D. RW-Identifiability 

Conditions under which the given class of models is real-world 
identifiable in the sense of Def. 2 have-also been obtained. 

The discussion of these results is beyond the scope of this paper. 
However, they will be published in the near future [8,9]. 

8. CONCLUSION 

This short paper has presented a point of view on modeling and identifi­
cation which includes (rather than evading) the structural difference between 
models and systems. We have indicated that, from this point of view, it is 
possible to define "near-equivalence" between process and model and to obtain 
meaningful theoretical results on solution error and system identification. 
It remains to apply these results to large realistic problems such as those 
involving models of complex man-machine systems. 
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