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PREFACE

1 F^.

This volume comprises the Proceedings of the Symposium on

Mathematical Pattern Recognition and Image Analysis (MPRIA) held June 6-8,

1984, at the NASA/Johnson Space Center, Houston, Texas.

The Symposium was initiated with a brief Program Overview presented

by Drs. M. Kristine Butera, NASA Headquarters, and R. P. Heydorn, NASA/JSC.

The sixteen papers of the Proceedings reflect the results of various

research efforts initiated during FY 1983 as part of NASA's Remote

Sensing Research Program. Six of the papers prsent results from the four

research efforts carried out by the following NASA principal investigators:

R. P. Heydorn - NASA/Johnson Space Center

A. G. Houston - NASA/Johnson Space Center

David D. Dow - National Space Technology Laboratories

Meemong Lee - Jet Propulsion Laboratory

The remaining papers present second-year results from ten of the eleven

research efforts initiated July 16, 1982, under Contract NAS 9-16664 and

carried out by the following principal investigators:

H. P. Decell, Jr./B. C. Peters, Jr. - University of Houston

Carl Morris - University of Texas at Austin

L. Schumaker/L. F. Guseman, Jr. - Texas A&M University

K. S. Shanmugan - UniversIty of Kansas

E. Parzen/W. B. Smith - Texas A&M University

A. H. Strahler - Hunter College

E. M. Mikhail - Purdue University

Grahame Smith - SRI International

!;	 A^
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k^

iii
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iv

L. Kanal - LNK Corporation

L. S. Davis/A. Rosenfeld - university of Maryland

In an attempt to group presentations of a similar nature, the

Symposium was divided into three MATH/STAY sessions and two PATTERN

RECOGNITION sessions.

The papers appear in the Proceedings in the order in which they

were presented at the Symposium. An agenda and a list of attendees who

registered for the Symposium are included in the Appendix.

L. F. Guseman, Jr.
Principal Investigator and
MPRIA Program Coordinator
Contract NAS 9-16664
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ESTIMATING LOCATION PARAMETERS IN A MIXTURE
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ABSTRACT

;. u

tiIry

f

This paper considers the problem of estimating the parameters in a finite
iM	 U

mixture of the form h (x) _	 x. f( x - r, j ) where ^ j , j = 1, 2 9	M
J=1

are location parameters. The approach is based on an integral equation

formulation of the form ht (x) = fa f( x-y) gt (y)dy where h t is a smoothed	 rE.

u
version of h and gt is a prio r function that tends to be concentrated on the

translation values. A solution for g t that uses the method of regularization	 ^f

and one based on a posterior operator approach is considered. Numerical

simulations are presented to bring out some of the estimation and numerical 	 a,

problems of these approaches. 	 I;

f^
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IINTRODUCTION

We begin with a formulation of the mixture problem as essentially given

by Teicher [1). Let F = If :cc IRNI be a family of probability density

functions and let G be a distribution function on N where IN is the set of

real vectors of dimension N. For the given G we define the mixture density h

as

(1) h = f f^ dG(c)

f

Since all the members of F are used in this definition it makes sense to say

	

^.	 that according to equation (1) F defines a mapping, say F , from the set of

all G-distributions, say G, to the set of all induced h-densities, say H.

	

a	 If F:C . H is one-to-one and onto, then we say H is identifiable.

In our case we will be interested in the so called finite mixture. For

the finite mixture the measure induced by G assigns positive probability to

only a finite number of t-values. Accordingly, the finite mixture can be
f	

A 1

L'written as

	

	 f',

M
(2) h= 2;	 f

J=1 J 4j

where 0 <_ xj s 1 and F kj = 1. As we will discuss shortly, this representa-

tion of mixtures appears to be most useful in remote sensing applications.

As described by equation (2), the finite mixture model is a parametric

model and therefore to specify the model one must estimate or otherwise

determine the parameters M, kj, i;j for j = 1, 2, . ., M. When H is

identifiable these parameters are uniquely determined and therefore one should

be able to estimate them from just the random observations which have density

h. dote that since the xj's can be considered as the prior probabilities and

are being estimated from "the data" (i.e., the observations that have density,

h), this is a form of the Empirical Bayes Problem as discussed by Robbins [2].
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In this paper we will be concerned with the case where F is a translation

family; that is, fr_ (x) = f(x - q). Since the family F is now defined on

3

the translates of a given function we will denote it by Ff. Yakowitz et al.

131 and Heydorn et al. 141 have shown that any translation family leads to an

identifiable mixture.

We have chosen to restrict ourselves to the translation family for two

reasons. First of all remotely sensed measurements of radiance values from a

given class of materials on the Earth can often be reasonably well represented

by some translation family. And, therefore, even though we consider this work

as being ,just in the early stages, some applications appear to be possible.

The other reason is simply that by studying the translation case, we believe

that considerable insight into the more general problem can be derived.

Our previous work (cf. reference [41) addressed the finite mixture model

for the case where the mixture density h is known. In that case a somewhat

more general version of the translation family was treated in the sense that

certain (nuisance) parameters whose values were unknown were allowed. The

approach was based on a theorem of Caratoeodory and made use of a constructive

proos of that theorem due to Szego (as described in Grenander et al. [51).

When h is numerically well determined we found that M and the translation

parameters cj, j = 1, 2, . ., M could be computes] in many cases. When h is

not known and must be estimated from a moderately small number of random

observations, then the variance in estimates of M and cj, j = 1 1 2, . ., M is

very large. Thus for the small to moderately large sample size cases, we have

chosen to take a fresh look at the problem.

In this paper we will consider an "integral equation" formulation of the

mixture problem and discuss two approaches for obtaining a numerical solu-

tion. One approach is based on the regularization method of Tikhonov et al.

[61. Wahba [7] discusses this method in connection with density estimation

problems; Rice et al., [16] in connection with estimating derivatives and

deconvolution of densities; and Medgyessy [81 in connection with mixture

problems. The other approach i s based on the formulation of a posterior

I
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operator that, in a certain sense, avoids the inversion problem implicit in

the regularization method.

Applications to Remote Sensinq

T
The finite mixture model of equation (2) provides.us  with a representa-

tion for remotely sensed measurements that can be applied toward the solution

of several application problems.	 We mention three such problems.
F

	̀ I One application of remotely sensed data deals with inventories of

G selected materials on the surface of the Earth (for example, the determination

of the acres of wheat, the acres of conifer trees, or the square miles of

water).	 MacDonald et al. [91, for example, discussed the use of remotely

t	 ^°
.

sensed data for inventorying wheat. 	 A popular approach for this application

U. is simply to classify each measurement observation into one of M given

material classes and count the classifications to determine the proportion of

t the area surveyed that belongs to a given class.	 This method only works well,

in general, where classification errors are small.	 Large classification error

l can lead to biases in the inventory. 	 If in the mixture model of equation (2),
u .

a given parameter ^j can be uniquely associated with a given material class,

then xj is the proportion of that material when this association can be made.

In other words, given the knowledge that each material class on the ground can

be represeisted by a member of some known family F, that leads to identifiable

mixtures, one should be able to unbiasedly determine the proportion of each

F material class.	 We point out, however, that the mixture model does not

^., directly give us a way of assigning a material class name to each xj-value.

This has been called the "labeling problem." 	 One application of the finite

mixture model to crop inventories and an approach to the labeling problem is

discussed by Lennington et al.	 [101.

Another application of remotely sensed data is concerned with the

determination of certain properties of materials on the Earth's surface. 	 Goel

et al. [111, for example considers the problem of solving for the variables in

the Suits [121 vegetation canopy model from the light reflected (more

specifically reflectance) from the canopy at several view angles.	 These

r

_..,.___--_^.—.._..,. .. ^^ . e.^m-, ^inree^r.r•«..xw^.-.+^r..rwrrrrwe...^....^.._..,........^ . -_.. ...... 	 -	 .,	 _..	 _
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variables include the leaf transmittance, the leaf reflectance, the soil

reflectance, the projections an the horizontal and vertical planes of the	
J

average leaf area per unit volume. If we let xk , k = 1 1 2 9 . ., K represent

r

	

	 reflectances and Yk , k = 1, 2,	 ., K the canopy variables, then Goel

addresses the problem of solving for the canopy variables given the equations

xk = qk (Y12 Y2: • •! Y09 k = 1 1 29	 ., K. If x is the vector of

reflectance variables, y the vector of canopy variables, and T is a 1-1

F . A i

	

	 transformation determined by the above equations then x = T(y). finder this

transformation the probability that the canopy variable values lie in a given

set, say A, is given for the kth species to 
befT(A) 

f
4 (x) dx where fc i5	

'Lt	 k	 k

determined from the mixture model. In this approach the transformation, T, is

s: 4
never inverted.	 Inversion is generally a difficult numerical operation for

E

the Suits model, for example.
i

i^

f The final application we have in mind is classification. 	 The classifica-

F tion function, o, is a function that assigns each measurement x to one, and

_ only one., of M possible classes. 	 If each parameter ^j, j = 1, 2, 	 ., M in
,.^

the mixture model in equation (2) is uniquely related to one of these classes

then the Bayes classification function becomes

R. ',.	 E ^"FT	
1,

o(x) = k iff ak f	 (x) >- max x 	 (x}^

^k	 a 4j

If one is searching for members of a particular class, say, k, then a map

4	 I

M

- related to a class map could be obtained by observing x kfc (x)/	 Xjf^ (x)
k	 J=1

which is the posterior probability that x is an observation from class k.

An Integral Equation Formulation of the Mixture
n n

is

The formulation of the finite mixture given by equation (2) treats the m'

.	 k aquantities of interest M, a', r', j = 1 9 2,	 .	 ., M as parameters.	 While ina _

€t

many cases the estimation of the parameters aj, 4j, j = 1, 2,	 ., M can be

v ,1

F
e	 4

^
4

I	 r

k._1

E

I

i!
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done quite well, the estimation of M appears to be a more difficult problem,

as may be suggested by the fact that fewer papers address this problem. Part

of the difficulty seems to be that the parametric formulation tends to isolate

each parameter so that a separate estimator is needed for each parameter. The

formulation given by equation (1) gets around this difficulty somewhat by

"bundling up" these estimation problems into one problem, viz, the estimation

of a function G.

If G was an absolutely continuous distribution function, not a step

(Heavyside) function as in the case of a finite mixture, then G would define a

density function g and we could write

LLj

where feFf . This gives an integral equation representation for the

mixture. For a finite mixture, however, g is a delta function, or more

correctly a singular generalized function (as discussed, e.g., by Gel 'fond et

al. [131) and so the integral equation representation is not correct.

However, when feFf we can consider a "smoothed" version of the finite mixture

and thereby use the integral equation representation. We now discuss this

approach in the scalor setting (i.e., [RI =[R).

Following the definition of a generalized function as given in Gel'fond

et al. [131, let (g,it) denote a linear functional defined by g where ^e D.

Here D is a family of functions, each member of which has bounded support and

is continuously differentiable. For the finite mixture case we have (g,) =

M
y(r j) . Since our mixture is a convolution between the kernel function

j=1 J 
L; S

S

	

f and g, we have (denoting convolution by " *'j)

S^

where f^_ (x) = f(x-t j). And smoothing with a function teL1,
3	 J	 3^

h(x) _ I N f(X-y)g(y)dyiR

'!

;.

1

:i



f^: a

m-^

t^
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O

1

(t*h,o) = (t*(f*g),^) _ (f*(t*9),d0)

Since (t*g,o) is a regular generalized function we have letting ht = t*h and

gt = t*9

b

(3) ht(x) =

	

	 f(x-y) gt (y)dy

a

where [a,b] contains the domain of gt.

We can choose the support of t to be small so that this integral equation

formulation (equation (3)) can be a good approximation to the finite mixture.

For example if we choose

(4) t 	 = 16 \/-n- (1- nx2 ) 2 , 1 \/n— x 1 <- 1

and 0 otherwise, then (t*h) (x) - ► h(x) (n -t -) if x is any continuity point of

h (cf. Bochner [141). And since generalized function spaces are complete and

H is assumed to be identifiable, lim (t*h,,^) = (f*g,(^).
n -^ m

Equation (3) expressed in terms of the operator iF becomes ht = rFgt•

Whenever f is continuous on [a,b] (and therefore bounded), M is a compact

linear operator. This means (cf. Kolmogorov et al. [151) that F-1 cannot be

bounded on an infinite dimension space and hence 1F_
1
 would not be a

continuous linear operator. Thus, when we attempt to estimate ht by

ht = ht + et where et is an error function 	 ht could be grossly different

from gt (as measured by the supremum norm).

One approach for solving this problem is to use the regularization method

of Tikhonov et al. [6]. In this approach one defines the functional

n+1	
1

{b)	 S^ = 11 iFgt - ht112 + a 11

,1 

9 ( j ) 2 2 
11 2

t

i

L`

7
tiy^	 r



9f
raj 11

	f	
where gt is assumed to be differentiable of order n. Here a is called the

regularization parameter. The resulting solutions say gt,, which are obtained

by minimizing S. are approximations to gt.

If we replace ht by some approximation h t then as our approximations to

ht become successively better we can successively decrease a so that gt ,a

j	 approaches ( in some sense) gt. Wahba [7), for example, considers such an

R!	 estimation problem and uses the method of cross validation to pick a-values.

Rather than considering the operator IF whose inverse is discontinuous,

"

	

	 it is possible in some cases to derive another linear compact operator from
m

the kernel f, say M so that (Ph = gt. We now consider this approach for
L..J

solving for gt.

ff
Assuming for a moment that we can take the Fourier transform in equation

(3), and letting " " denote the corresponding transformed function w re have

H^	 (for w = 2 irv)

ht(w) = f (w) gt(w)

and,	 r

i

f (w)

if t(w)Jf(w) has an inverse Fourier transform, say tf then

b
tf (x - y) h (y)dy - g,.(x)

a

` r	 and if further tf is continuous on the bounded interval [a', b'], then the
1

.	 linear operator fP defined by the kernel tf is a compact operator as was IF.
i
	^!5	 We refer to IP as the posterior operator since it operates on h to produce a

{ prior function.

a	 ,

Za...___...^-..`..s.r-_.^._a^-_.-¢-a. 	 aslairfreaRSe _Xr^neMMr rnf!l+R^r re•rw.,... ^1^.	 ...	 ..r •	 y`	 ^.^..	 ., ... r..a.^+ss^.. -^_..	 +e ^^:
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If we consider, for example, the function t of equation (4), then since

(t*g,o) = (g,t*4)) and ( t*o)+ (x) (n--) we would have lim(tf * h ,o) = (g,0).

Thus, by properly choosing t we can obtain a good approximation to g.

An example of a case where t(m)/f(w) has an inverse Fourier transform

comes from the gamma family of densities where f(x) = I n+l x ne-x/Y for x >_ 0n 

and is 0 otherwise. Later we will consider some numerical examples of mixtures

of gammas. The Fourier transform in this case is (1 + i.y)n+lt(u,Y), and hence,

if t has n+1 derivatives in some interval [a,b] and t ( n+l )(a) = t(n+l)(b) = 0

then the kernel function t f is of the form tf (x) = (1 + ( nil ) YD + (n2l)Y2D2 +

Y
n+lD

n+l )t(x) where D is the standard derivative operator. Notice that the

above gamma function does not have an (n+l) St derivative at x = 0. The role of

the function t in this case is to smooth the gamma function so that the (n+l)st

derivative exists.

Numerical Solutions

To understand numerical estimation problems associated with both the

regularization and the posterior operator methods discussed above, we conducted

simulation studies using translations of beta and gamma distributions. One of

the reasons for choosing these families is fha,t they have positive support and

are skewed. Both of these properties are also found in typical densities of

remotely sensed measurements.

For the regularization approach we chose mixtures of translates of beta

densities. Our mixture density, h, in this case was

M
h(x) -	 ai f(x

J=1.

() = 12 (l-x) 2x, 0 _< x ^5 1

0, otherwise



I IF
	

1i	 i

1 1,
	

In equation (3) h t , which is an approximation to h, is of the form

ht (x) = E	 (t(x - X))
^E

j' where X is a random variable distributed according to the mixture h.	 Given a
R

set of iid random variables X1, X2, .,	 Xn each distributed as X, we can

estimate ht as

MJ.
h x 	 -ht (x) =	 n

+	
tx{ -X. 

P

For our simulation we chose t to be a third order B-spline, i.e.,

1 2,05x<A

r^
E^

.^	 (-2(0)2 + 6 -xi
 
-3)

t (x) =	 2	 A <_ x< 2 A

1x 2- _	 <2(3 0) 2A _ x <_ 3A

Moreover, we used the following B-spline approximation to gt, viz,

L+1
(6)	 gt(x) = 0 c Qt (x - %A)

f	 Finally, we used a modification of the regularization formulation of1

j	 equation (5); and that is, we considered only the second derivative of gt in

i	 the constraint rather than all of its derivatives. This form of the regular-

]

	

	 ization problem is considered by Rice et al. [161. In that paper bias and

variance expressions for the solution function (which is also approximated by

B-splines) are derived.

To obtain gt we have to solve for the c-coefficients in equation (6).

Letting these solution coefficients be c Q , Q = 0 9 1, 2 1 . ., L+1 we have from

equation (5) with the above approximations,

4

717175

t

I^
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where

C = { A A A + yaB) -lA^h
	

(7)

A = (a(j,z))'

b

a ( JO =

f
f (x j - Y) t (y - ZA) dy

4 -4 1 0 0 0
-4 4 -4 1 0 0

1 -4 4 -4 1 0
B= 1

a3

0 1 -4 4 -4 0

0

h '	 = (h(xl)i h ( x2), . . ., h(xn))

0
0
0

0

1 -4 4

c'	 _ (CO- cl,	 cLf1)

n	 = number of random observations from the mixture

N	 = number of points at which g is estimated (this is the range of the

"j" index)

L+2 = number of B--splines (this is also the range of index 11911)

A	 = interval spacing of the B-splines

It is seen from equation (7) that c is a ridge - regression-like

estimator which minimizes the variance of each, c, by adding bias, The size of

the bias is influenced by the regularization parameter a.

Figures 1, 2, and .3 are examples where a mixture of two beta densities,

with equal mixing, are considered. In these figures the spacing between the

B-splines was .05. We see from figure 1 that when ^2 - C 1 = .05 then the	
rs

betas are too close to distinguish the fact that two components are present.

When ^2 - C 1 = .1 as in figure 2 we begin to see two modes to the prior

function plus some oscillatory behavior; when c 2 - ; 1 = .15 as in figure 3 the

two modes are very distinct. The major peaks of the graph of the prior
a.

a
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function, gt appear to be located to within .02 of the translation values 1

(^ 1 and ;2 ) in figures 2 and 3.

For the posterior operator approach we chose mixtures of translates of

1 gamma distributions. 	 In this case

gt	 (x) = n	 tf(X	 - Xl)
i i	 l=1

f	 L• :!

I

,I
_

where now the random variables X1, 1 = 1, 2,	 n each have density h and

the components of h are of the form

n

12 xe-x^Y, x ? 0
Y

f(x)	 --
0, X<0

The posterior kernel, tf, is of the form

tf(x )	 t4(x) +	 oY ( t3 (x ) - t3(x - A))

2

E
5

+	 2	
2(t (x) - 2t

2
 (x - ^) + t

2 (x - 2A))02 .° e

where the tk , k = 2,3,4 are 2nd, 3rd, and 4th order B-splines respectively, a

(t3 is the same as the function t considered in the regularization method.i

E The expression for 	 and t	 can be found in Schumaker [ 171 ).p	 4	 z 

j Figures 4 to 7 are example graphs for mixtures of two gamma densities

equally mixed.	 In these cases the spacing between the B-splines was .1 rather

than . 05 as in the previous figures.	 Figure 4 shows that ^2 - 4 1 = . 1 is too

CC
small to distinguish the existence of two components to the mixture. 	 At

r. 2 - ^	 = .15 we begin to see two components in figure 5.	 At	 -	 _ 1	 2	 1
figure 6 shows two distinct components, and finally at 

^2 
- 1 = .35, a{
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figure 7, the gt function has two very distinct peaks. The graphs after

figure 4 also show that the peaks in gt occur at essentially the translation

values.

Figures 8 and 9 are examples where the components are unequally mixed.

In figure 9 we see that for x  = .1 and x2 = .9 the first peak can get

confused with the oscillatory behavior of the gt functions.

Finally figure 10 shows a case where the number of random observations

from the mixture was only 100. In the previous graphs 1000 observations were

used. This suggests, perhaps, that much fewer that 1000 observations could

have been used for these examples.

CONCLUDING REMARKS

Our purpose in these studies is to explore some of the estimation and

numerical problems associated with solving for the prior function in a finite

mixture. We chose to begin by considering mixtures of translates partially

because convolving the mixture with some smooth function is the same as

smoothing the prior function. This fact leads to an integral equation

representation of the finite mixture. The solution of the resulting integral

equation by either the regularization method or the posterior operator method

leads to a graph of the prior function in which the number of components in

the mixture can often be easily determined (at least visually) and the

translation values can be reasonably well approximated. However, by smoothing

the prior function, it now appears to be difficult to estimate the mixing

proportions, x j ,j = 1,2,. . M. When, for example, maximum likelihood methods

are used to estimate these parameters, for a given M, the x  values are often

easily estimated.

There are of course a number of numerical problems associated with these

numerical approaches. The fact that the spline solution for the prior func-

tion tends to oscillate and can go negative is disturbing. We hope to examine

some of these problems in future studies.

Y	 r

iJ
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ABSTRACT

K

r-

In this paper we describe our work in bringing nonparametric

methods to bear on data-intensive problems faced by NASA. The theoreti-

cal development of efficient multivariate density estimators and the

novel use of color graphics workstations are reviewed * The use of non-

parametric density estimates for data representation and for Bayesian

classification are described and illustrated. Our progress in building

a data analysis system in a workstation environment is reviewed and

preliminary runs presented.

^i
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I. Introduction

Our research program has focused on developing strategies based on

nonparametric density estimation to aid in the varied large data

analysis tasks faced by NASA. Our efforts have been twofold: first, to

build these statistical tools into a highly interactive color computer

graphics environment to experiment with multivariate data analysis;

second, to vigorously pursue theoretical research in multivariate den-

sity estimation that will directly aid the practical application of our

statistical tools.

In the first area, we have developed software based on new density

estimation algorithms particularly well-suited for interactive comput-

in& . This software has been tested on simulated and real data sets with

two, three, and four variables. The psychological impact of data

analysis performed in this manner has been favorable and we continue our

efforts to greatly facilitate use of our tools for new data sets. In

fthe second area, we are examining those theoretical issues involved in

our application of multivariate density estimation. We have developed a

new density estimator called the averaged shifted histogram that is many

times faster than the well-known kernel estimator. The statistical pro-

perties of this estimator are contained in Scott [7]. The calibration

of density estimators is addressed in a joint paper with Terrell [111.

The result of this work should be an exportable product that can be used

by researchers with varying levels of expertise in statistics.

In this paper we illustrate several applications of our methods and

the workstation environment. First, our multivariate density function

r.	 ::.
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graphical representation is a powerful aid to constructing and under-

standing Gaussian mixture models for data in three and four dimensions.

Second, the power of the average shifted histogram as the basis of a
4.

Bayesian classifier is illustrated on bootstrapped trivariate data. 	 The

performance is compared to that of a maximum likelihood Gaussian clas-

sifier.	 Third. we examine the practical significance of relatively mod-

est departures of data from Gaussian assumptions. 	 our results indicate,
 u

that some useful gains may be realized for such data. 	 Fourth, we demon-

based	 Silicon Graph-strate a prototype of a data analysis system 	 on the

ics Iris workstation.	 This system allows rapid comparison of data in up

to four dimensions.	 We believe that significant gains will be realized

as we break the two-dimensional barrier and begin to work directly with
°r

e:U

three and four dimensional data.	 We have attempted to create algorithms

that make	 it possible to analyze	 such data with modest computational

requirements.	 attempting	 to	 realize	 real-time	 representation	 and

analysis..

2.•	 RQyiew l

k1J,	 GraphicBJ., 	 j.	 . Anal'siS it

A recent theme in multivarrable data analysis as advocated by, for
i

example, John and Paul Tukey [13] emphasizes graphical techniques for a^

looking for multidimensional structure in data.	 The bivariate scatter

diagram has been a very useful tool in this approach. For data in more 'i

I

than two dimensions, careful selection of bivariate projections can

reveal structure in higher dimensions; see, for example, a description`

of the projection pursuit algorithm [3]. Alternately glyphs may be 	 r,	 ^'
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drawn instead of dots in a bivariate scattergram and data values not

displayed are represented by features in the glyph, such as length*

angles etc. Computer graphics workstations have recently made trivari-

ate scatter diagrams feasible. A true three-dimensional effect may be

had by either continuous rotation of the scatter diagram or by a variety

of stereographic techniques using red /green or polarized glasses. Holo-

grams and rapidly vibrating mirrors also can proved 3-D effects. For

data with more than three variables, side-by-side scatter diagrams of

subsets of variables with visual links (such as coloring the same point

in the different diagrams) allow a representation of the data.

Scatter diagrams do have limitations in data analysis. The most

important problems relate to sample size. For moderately large samples

(n>500) data replication (or overstriking on the graphical medium)

begins to occur frequently. This problem has been referred to as the

problem of "too much ink" [121. With continuous rotation many more

points are viewable but current computer technology limits real-time

rotations to about one thousand points. Secondly, clusters of points

that are close together are difficult to detect in scatter diagrams. In

other words, scatter diagrams provide only modest indications of the

density of points in a given region. Thirdly, our impression of data

from the same underlying density function is highly dependent on the

sample size. This makes comparisons of scatter diagrams with different

sample sizes nontrivial. The eye naturally leaves the center of the

data and focuses on outliers and apparent structure (lines) in outlying

regions. Such features may or may not be of great importance depending

on the objectives of the data analysis.

L_

i,
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l

,Y
Vie also advocate using scatter diagrams for looking at data. How-

ever since we are interested in discovering structure such as modes and 	 L

high density regions, we have found that the density function is a more

useful tool when taking a preliminary look at data in several dimen-

sions. The density function does not change with sample size, although

the quality of estimation changes. In a sense the scatter diagram

points to the density function.	
F

ir.Z QomRUtational anA RgRresen Ational P3.gh lems	A

Nonparametric density estimation methods for multivariate data are

often simple extension of well.-studied univariate versions. 	 The mul-

tivariate histogram is a computationally efficient estimator but suffers

from empty bin problems and bin edge effects. 	 Statistically more effi-

cient and smoother multivariate estimators may be	 obtained	 by kernel

CIp J.	 believe	 fixedmethods;	 see Tapia and Thompson	 Thus we	 the	 mul-

tivariate kernel estimator of Cacoullos [21 	 is a useful technique for

data in 2-4 dimensions.	 Unfortunately computational requirements grow

rapidly in higher dimensions 	 if one desires	 to	 evaluate	 the estimate }

over a representative multivariate mesh. 	 The estimator also requires

the entire raw data in order to compute the pointwise estimates. 	 Some

research has focused on one and two dimensional numerical approximations ...T

to kernel estimates in order to achieve computational efficiency [9].

However few results are currently available for more variables.

Another approach	 is	 to	 construct	 a frequency	 polygon	 estimator l

which is formed by connecting with straight lines the mid-bin values of .-

a	 histogram.	 This	 estimator	 has	 the	 same	 order	 of	 statistical
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efficiency as the kernel estimator and also the computational efficiency

of the histogram. The frequency polygon of the ordinary histogram works

well for two dimensional data; however, bin edges, effects stall can be a

problem for small samples and in higher dimensions. Thus we have

recently proposed a new density estimator based on a frequency polygon

of a generalized histogram estimator called the averaged shifted histo-

gram (ASH) [73. The ASH is simply the pointwise average of m histograms

with common equally spaced bins of width h but different bin origins

t0 + ;';h, i = 0,..,m-1. Thus the ASH looks like a histogram with bin width

him. As m-}oo the ASIA. is identical to the triangle kernel estimate.

Values of m between 3 and 10 are sufficient for most purposes. Mul-

tivariate versions are easily constructed by shifting and averaging in

all co-ordinate directions.

Representational difficulties have been addressed for three and

four variable density estimates (function surfaces in four and five

dimensions, respectively) by displaying generalized contour plots. For

trivariate data, a particular contour of xsy,z) will be a set of

points

Sc = ( (x,y,z) a R3 : I(x,y,z) = c ) .

The set Sc will be a surface in &3 (or more than one surface if the

density is multimodal at this level). On a graphics terminal we have

chosen to represent Sc by intersecting it with a series of equally

spaced planes orthogonal to the x-axis, say, and then drawing the con-

t	 df' d b	 h	 h	 ^	 "d'ours	 a one	 y t ese	 intersections.	 T e	 resulting	 ware	 agrams

give a strong 3 dimensional impression.	 If color is available, several

E„ contour	 levels may be simultaneously displayed 	 by using	 a	 different

j

t

a
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color for each level.

It is helpful to imagine what this representation looks like for

trivariate Gaussian data. For the independent variable case. Sc is sim-

ply a sphere so that a display would show several concentric spheres

f	 with the mode located at the center. If the variables are correlated we

`	 will see ellipsoids rather than spheres.

To represent the density estimate of four variables, 1(x,y,z,t),

we look at the sets

st*C 
	

3 (x>y,z.t)	 c) .

Here we have arbitrarily chosen one variable and placed it in a refer-

ence frame which may conveniently be thought of as a "time" axis. By

looking at a time-lapse sequence of representations of 
S t

*c we obtain a

useful view of the data which highlights important features such as

modes * outliers, symmetry, skewness, and covariance structure.

Again it is useful to construct this representation for quadravari-

:._	 ate Gaussian data. For a fixed contour level c, as t moves through the

relevant interval of support 
(tmin' t max )* 

St,c will be a sequence of

r
initially expanding spheres ( ellipsoids) which continue to grow until

r

the mode is reached and then contracting and finally vanishing when St,c
4

becomes the null set.

-Z.Z Gra2hiGa7 ^i Model.-Dried Discrimination and Classificat-ion

We shall assume that our data samples are labeled so that super-

vised clustering and discrimination are feasible. As a preliminary.
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step, side-by-side scatter diagrams may be displayed to get a rough

feeling for the separability of cluster classes. This may also be

accomplished by displaying side-by-side density contour plots for the
T

cluster classes. For large training samples the latter is more useful

(the scatter diagram might indicate no separation at all).

When the preliminary density estimates have been refined by optimal

data-based choices of smoothing parameters, classification may be accom-

plished using a Bayesian classifier. Evaluation of the averaged shifted

histogram for each class involves only a bin location operation (sub-

{"'	 traction and division) and then a table lookup for each training class

(hash function, perhaps). This is a computationally efficient operation

although large memory requirements are necessary in several dimensions.

Examples are given next.

3-. Example

1.1 Three-Dimensional Analysis Using Bad r Data

We shall consider the scatter diagram approach as a preliminary

step towards producing a nonparametri.c classifier. The data are

trivariate and come from a model applied to individual pixels (1.1 acre)

using temporally measured Landsat data. Five acquisitions of 4-channel

1	 remote sensing reflectance intensity data were converted into a single

"greenness" time series by looking at a certain linear combination of

the yo--channel data. The time series was fitted by Badhwar's C1] growth

model, which resembles a bell-shaped curve. For each pixel three param-

eters from Badhwar's model were extracted: x, the time of peak green-

ness; y, the ripening or reproduction period; and z, the peak greenness

s

L
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level. Each measurement was recorded on a discrete scale from 0 to 249.

The data are processed in a segment, which is 5 by 6 nautical miles and

contains 22,932 (117 by 196) pixels. Ground truth was obtained by send-

ing observers to the fields.

The first group oZ examples and algorithms will be illustrated

using 1977 data from segment 1663, which is located in North Dakota.

The segment is primarily in agricultural use and contains large fields

of sunflower, soybeans, sugar beets, spring wheat, barley, flax and

oats. We wish to observe that our style of analysis is possible in a

wide range of remote sensing and multivariate applications. These data

have been furnished and are not completely unfamiliar to researchers.

To simplify the presentation, we -. chose to analyze pure pixels from

three crops: sunflower. spring wheat, and barley. Sunflower is fairly

easy to distinguish from other crops, but spring wheat and barley are

less easy to distinguish. We have also chosen to analyze the three

f ., estimated Badhwar parameters for these pixels. This segment contained

3694, 3811, and 892 pure pixels, respectively. In Figures la. 2a. and

3a, scatter diagrams of the pure pixels are shown for each crop. The

digital nature of the data is apparent from the display. Unfortunately

r in this paper we cannot use the color cue to give the value of the third

orthogonal dimension. The axes are oriented as though we were looking

at the data from infinity along the vector (1,1,1). The Badhwar estima-

tion procedure produces clearly poor values for a small fraction of the

pixels. Pixels with Badhwar parameters falling outside certain ranges

for each crop were deleted from the analysis. The final numbers of pix-

els considered were 3505. 3782, and 873, respectively. The mean vectors
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and covariance matrices for these data were obtained using the usual

maximum likelihood estimates. The contours of the fitted trivariate

Gaussian density are shown in Figures lb, 2b, and 3b, respectively. The
r

contours are nested ellipsoids and are drawn at the levels 10%, 35%. and

70% of the respective modal value. The graphing area is the same for

'	 all views and crops. The same level contours of the estimated average 	 s

'.i
shifted histograms 0 shifts in each dimension) are shown in Figures lc,

IOU

2c, and 3c, respectively. Remembering that the average shifted histo-

gram faithfully reproduces features in the data, we see some interesting
r

but not dramatically non-Gaussian features for the spring wheat and bar-

ley data. What is not as clear is that the covariance matrix for the

I
	sunflower data has been affected by outliers (in spite of the deletions 	 sl

above) and the Gaussian mode is 0.00014 while the ASH mode is 0.00051. -r
F

This illustrates the robust nature of the nonparametric density estima-

tor. For the other two crops, the respective modes differed by less

b1

than 25%.

	

If we had more sophisticated displays, we could more clearly demon- 	 !

	

strate the separation of the sunflower density from the others. In fact 	 i

r rl

the separation is so large that even the overinflated Gaussian covari-

ance estimate does not result in overlap with the other densities. In

`	 general, we should not expect to be so fortunate. There is significant

overlap of the spring wheat and barley contours, the barley having a

somewhat larger x-mean (peak greenness) than spring wheat. By the way,

Ir.
the sunflower density is forward-left in this picture, having a larger

	x-mean (later time of peak greenness). These features are more easily	 !^
r^
r

seen in the workstation environment described below.

!
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We may ask what a mixture density would look like in this represen-

tation for a field with roughly equal numbers of pure pixels of the

three crops. Using the estimated densities shown above, we formed the

mixture density by adding the three densities and dividing by three.

The contours (levels 1% and 10%) of the mixture density are shown in

Figure 4. The sunflower contribution appears only in the 1% contour and

not the 10% contour because of the inflated covariance matrix estimate.

The usefulness of graphics such as these in programs that fit even more

component densities seems clear and should be of great help in under-

standing these procedures.

The next step in our data analysis is to use the estimated densi-

ties to perform a pixel-by-pixel classification. The actual ground

truth layout makes it difficult to present or understand our results, so

we decided to use some modern statistical techniques to create a realis-

tic field of size 60 pixels by 60 pixels using the bootstrap technique.

The ground truth was chosen as shown in Figure 5 (unfortunately, the

colors are not distinguishable with B&W film, but the error pictures

indicate the pattern selected). The actual Badhwar parameters for each

pixel were selected from the real database by selecting a pure pixel at

random and assigning it to the "new" field. This bootstrapped field has

roughly equal numbers of pixels for the three crops, about 1200 pixels

each. The estimated densities were the same as in the previous discus-

sion, obtained from the full outlier-deleted data sets.

The results of the classification are shown in Figures 5 and 6. in

Figure 6, the left column indicates how pixels were classified (ASH on

tops Gaussian below). To the right of these classification maps are'	 4T

x
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`	 the error maps; black pixels indicate correctly c lassified 'xp ,	 p	 y 1	 pixels while
E
f	 colored pixels indicate the crop misclassified. The misclassification

table is shown in Figure 5. Both density estimators classified nearly

100% of the sunflower pixels correctly, as expected. However with the

small grain pixels, the averaged shifted histogram performed much better

than the Gaussian estimates, in spite of the rather modest non-Gaussian

features. For spring wheat, the ASH correctly classified 76.5% while

the Gaussian only 65.8%. For barley, the results were 73.8% and 76.7%,

respectively, the Gaussian density performing slightly better. In an

error reconciliation map, it is clear that both procedures misclassified

many of the same pixels, but the nonlinear boundary of the ASH procedure

resulted in superior performance.

The good performance of the ASH carries over to subsequent classif-

ication smoothing algorithms. For example, if we use a simple majority

filter to smooth the previous pixel-by-pixel classification, we find the

results shown in Figures 7 and 8. With this smoothing, 100% of sun-

flower pixels were correctly classified. For spring wheat, the results

were 93.7% and 80.3%, respectively. For barley, the results were 89.9%

and 93.7%, respectively. Clearly the Gaussian classifier has improved

its score on barley pixels at the cost of many misclassified spring

wheat pixels. This is the result of the non-Gaussian features in the

data. We do not expect a substantial amount of bias in these estimates,

but we have not pursued this point.

3_.,7, Workstations and Zour-Uamensional TXM ExamRle

j
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The development of a workstation for the analysis of multivariate

data is a project now receiving special attention due to the recent

acquisition of a sophisticated computer graphics system. The Integrated

Raster Imaging System (IRIS) by Silicon Graphics, Inc. provides our

research at Rice with real time graphics capabilities. With the IRIS,

instantaneous scalings, rotations, and translations of colored graphical

images can be performed. The addition of real time graphics capability,

which was lacking with our previous graphics hardware. not only enhances

our analysis of 3 dimensional data but also provides for the effective

representation of 4 dimensional data.

Our representation of 4 dimensional data is accomplished by using

the fourth component as a "time" component, as described in section 2.2.

For each interval in "time" we have a 3 dimensional data set (comprised

of the first three components) which can be separately viewed as in the

previous example. By displaying the smoothed sets of 3 dimensional data

in sequence we effectively represent a data set of dimension 4.

Although the workstation for multivariate data analysis is

currently in a prototypical stage of development, we present here its

application on a data set provided by NASA. The raw data are 7 channel

spectral measurements of aspen and spruce forests. This 7 dimensional

data set is reduced in dimensionality from 7 to 4 by selecting the major

4 principal components axes as subspace projection axes. After the

reduction in dimension from 7 to 4 and then a rescaling of data for pur-

poses of graphical display, we calculate a sequence of contour shells

for visual inspection.

1I
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t. In Figures 9-13 we illustrate how the workstation may be used in

the comparison of data sets. On the left hand side of the photographs

are the contour shells representation of the data from the aspen forests

only. Opposite on the right hand side are the contour shells for the

spruce forests only. Most apparent from the pic^.ures are the observa-

tions that (1) the locations of the modes of the two data sets are well

separated and (2) the shapes of the contours are different -- meaning

the covariance structures are different. A more subtle feature of the

contour shells is that thay are not precisely elliptical, but skewed,

indicating that the data are not quite Gaussian.

1F. Conc 14s ions

We have attempted to illustrate how nonparametric density methods

may be brought to bear directly on multivariate remote sensing problems.

Multivariate parametric models based on mixture models [4] have many

advantages, both conceptually and in production mode. The fitting prob-

lems in the parametric case are usually quite difficult. We hope to

investigate how nonparametric models may provide guidance to the fitting
^P

and verification of such parametric models. This would be a direct use

of the exploratory capabilities of the nonparametric models.

Workstations are an exciting development for statisticians and data

analysts. Our figures and the particular data sets chosen for analysis

g ive one just a glimmer of what ty pe of analysis will beg ^ g Yppossible on theY p

workstation. Further work long these lines will focus on the nontrivial

problem of how to reduce high dimensional data sets to dimension no

1 greater that 4 for analysis on the workstation. The optimal reduction



of dimensionality of data is the object of those working in the area

labeled projection pursuit. Ile plan to incorporate these techniques

into our software.

IF_
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Top Row: Figures 5 and 6: Pixel-by-pixel classification
of bootstrapped scene. Figure 6 is a blowup of
the second and third rows in Figure 5. See text.

Second Row: Figures 7 and 8: Result of majority smoothing
filter applied to the previous scene. See text.
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Figure 9 (top): a-D Data represented by a sequence of
contour shells. Aspen data (left) versus
spruce data (right). Time slice 13 means x4=-.2.

Figure 10 (bottom): Continuation of sequence from Figure
9 with x4=-.1.
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Figure 11 (top): Continuation of sequence from Figure
10 with x4=0. .

Figure 12 (bottom): Same contour shells as in Figure 9
with different rotation.
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Figure 13: Same contours shells as in Figure 10 viewed
down the x1 axis with grid overlaid.
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ABSTRACT

A general theory of image texture models is proposed and its appli-

cability to the problem of scene segmentation using texture classification

is discussed. A new algorithm, based on half-plane autoregressive filter-

ing, which optimally utilizes second order statistics to discriminate

between texture classes represented by arbitrary wide sense stationary

random fields is described. Empirical results of applying this algorithm

to natural and synthesized scenes are presented and future research

is outlined. l
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INTRODUCTION

The purpose of this paper is to present preliminary theoretical

and experimental results of our investigation into approaches to auto-

matic scene segmentation based on texture analysis. It is imperative

to examine fundamental methodology.

As perceived through our senses of touch and vision, texture is

a property of surfaces and images easy to assimilate yet difficult to

articulate. Consistent with this view are the following remarks:

"Despite its importance and ubiquity in image data, a formal approach

or precise definition of texture does not exist." - Robert Haralick,

ref. [ 10].

"Texture is an elusive notion which mathematicians and scientists tend

to avoid because they cannot grasp it. Engineers and artists cannot

avoid it, but mostly fail to handle it to their satisfaction." - Benoit

Mandelbret, p. 310, ref. [181.

In consideration of this view, it may be argued that, for the purpose

of developing computer algorithms to perform scene segmentation based

on texture analysis, empirical descriptions of texture are more appro-

priate than formal mathematical models. While acknowledging the utility

of specific ad hoc techniques developed using this approach, we question

the ability of this approach to provide a f ramework for developing tech-

niques comparable in performance and flexibility with the human visual

system. Discussing he limitations of the empirical approach of theg	 pp

modern behavioral school of psychology, in ref. [5] Noam Chomsky remarks:

w" I
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"To go further, I believe that the inability of modern psychology to

come to grips with the problems of human intelligence is in part, at

least, a result of its unwillingness to undertake the study of abstract

kl
	 structures and mechanisms of mind....." "Had the physical sciences

limited themselves by similar methodological strictures, we would still
F h	

be in the era of Babylonian astronomy."

It is our opinion that formal mathematical models of texture are

necessary fc - developing algorithms and for understanding their per-

formance.

Our methodology employs three processes. First, we assert a theory

for a class of image textures. This theory is a metaphor, based on

our experience with the physical phenomena of image texture, which draws

a comparison with a mathematical model as des -c ribed by a , set of axioms.

This experience includes an inspection of myriad images, rich in tex-

tural detail, arising in histology, ref [16], the classic photography

of Phil Brodatz, ref. [2], [3], [47, Landsat Imagery, ref. [8], and

many optical, infrared and microwave images at APL's Image Processing

Laboratory. The mathematical model describes images which appear to

decompose into distinct connected regions such that each region is per-

ceived as homogeneous and distinct from the regions contiguous to it.

The quality of homogeneity occurs when a region within an image has

a constant brightness, a repetitive pattern or a random pattern which

appears the same throughout the region. The model consists df associat-

ing with each region a stationary, ergodic random field that accounts
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for the texture class of the region. Contiguous regions are required

to 'belong to' different texture classes though more than one region

may belong to the same texture class. The image brightness values

over each connected region correspond to a realization of the random

field (a choice of sample values for each of the random variables

corresponding to the lattice points within the region) over the region.

Stationarity accounts for the homogeneous property of the image over

^IJ

	

	 each region and ergodicity is equivalent to the assumption that the

parameters that describe the random fields (the joint probability

"

	

	 density functions) can be estimated from the image brightness levels.

Textbook accounts of random fields are found in ref. [1), [241, and

[251. The concept of stationarity we utilize is rather general.

For the purpose of developing the scene segmentation algorithm dis-

cussed in this paper, which utilizes only second order statistics,

we assume stationarity in the wide sense (that the means and covariances

exist and are translation invariant). We have also developed a non-,
^i

linear extension of the algorithm that assume stationarity in the

strict sense (that the joint probability distributions are transla-

tion invariant). Furthermore, we have extended the concept of station-

arity so our model subsumes both the fractal model discussed in ref.

[171, [181, and [20] and the structural model discussed in [21].

The second process employed by our methodology is a mathematical

elaboration of the model. This consists of an exploration of logical

consequences (theorems) of the axioms describing the model that have

a significant predictive value. These predictions allow formulation
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of experiments to test the theory (determine whether the models proposed

by the theory are consistent with observations) and they provide design

criteria and design architecture for algorithms to solve the problem

of scene segmen tation based on texture classification.

Because the subject ,, random fields is in its infancy, it was

necessary to discover new mathematical results as well as examine

known results related to our model. The concept of representing image

textures by wide sense stationary random fields and the subsequent

application of autoregressive techniques to image processing problems

is not new, see ref. [15, p. 238-2431, [22], [9], [191, and [23].

However, assumptions are usually made restricting the class of random

fields to which the techniques are applicable. These include the

following assumptions:

Assumption 1. The random field has a joint Gaussian distribution.

Asseumption 2. The random field is described by a quarter plane

(causal) finite autoregressive model.

Our mathematical investigations resulted in a precise characteriza-

tion of the restrictions imposed by assumptions l and 2 above and a

method for extending autoregressive techniques to arbitrary wide sense

stationary random fields. Also, we generalized the autoregressive

technique to 1) an autoregressive technique applicable to wide sense

stationary random fields with values in a vector space (to include multi-

spectral imagery), 2) a non-linear filtering technique, based on condi-

tional probabilities, applicable to arbitrary strict sense stationary

.^._,.,..d._a.,^_^,.^,.^_^r^nn^.r.Y.-,ns^,.-,nww.^..:^w.n^.rwr.w^N.Y.......-. ^..,-_r..._.., .:..., 	 .•...,	 .... ...	 ...__	 ._.... _	 ,. ,.,.. ____ ,...__.'.._.__..._..,.^.
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random fields with values in an arbitrary set (the set might consist

of 'local primitives' as defined by the structural approach, see ref.

[101, (211). Each of the techniques above can be proven to be optimal

in the sense of Sayes. A complete mathematical treatment of these

results is beyond the scope of this paper and will be presented in

a final research report.

The third process consists of designing experiments and making

_	 empirical observations. These include the computer implementation

of an algorithm for scene segmentation based on texture classification,

utilizing autoregressive filtering, which is described in Chapter

2, and the application of this algorithm to natural and synthetic

images, which is described in Chapter 3, Chapter 4 discusses future
	 i

experimental research.

{

1

f,
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2. SCENE SEGMENTATION ATGORITHM

The purpose of this chapter is to describe a new algorithm, based

on an autoregressive filtering technique, for scene segmentation using

texture classification. The scene model assumptions, which are quite

general, are the following.

Assumption 1. The scene or image data consists of a real valued

function X defined on a finite subset D of a two dimensional lattice

L. The function X represented the image brightness level.

Assumption 2. The set D decomposes into a finite union of disjoint

connected subsets, called regions. To each region corresponds a wide

sense stationary real valued random field on L, whose second order

statistical parameters represent the texture class for that region,

such that the restriction of X to each region arises as a specific

realization of the random field corresponding to that region over

that region.

Assumption 3. The second order statistics (consisting of the

mean value and the autocovariance function) of any two random fields

corresponding to contiguous regions are not identical.

It is important to observe that we do not impose an special

properties for the second order statistics. Nor do we assume any

specific form for the ,point probability density functions of the random

field - in particular we do not assume they are Gaussian, in any sense,

or even stationary. Furthermore, it follows from our assumptions

that the performance of any algorithm for scene segmentation based

on these assumptions will be limited by its ability to discriminate

between texture classes based only on estimates of second order statisti-

.
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, 	 ^1I

cal parameters.	 To support our contention that this does not impose

' a practical limitation, we make the following observations. 	 First,

there is substantial experimental evidence indicating that human visual

texture discrimination utilized only second order statistics, see

ref.	 [13], [14].	 Second, Fourier methods of texture analysis, which

utilize second order statistical information, have proved useful in number

of applications, see ref.	 [61, [7].	 These two observations suggest

that second order statistics yield a reliable basis for discriminating

I between statistically distinct regions in natural	 imagery.	 Third,

it follows from a theorem we derived that if an algorithm utilizing

second order statistics yields a high confidence of correct classifica-

tion using Bayes'	 formula with Gaussian parameters, then the level

1 of confidence is also high if the actual distribution is non-Gaussian.

J
^ Fourth, the restriction to second order statistics reduces computational

complexity immensely. 	 Fifth, usually the actual distribution of the

random field is not usually known (an exception occurs for synthetic

radar images of clutter backgrounds which have a ChiSguare distribution

ulj
with the two degrees of freedom).

f.	
^ J

The algorithm consists of the following steps.

r.
Ste J.	 Select a scene X	 natural or synthesized. 	 We h vp	 ,have developed

f	
^y a computer routine to generate realizations of jointly Gaussian distri-

1 buted random fields whose spectrums can be arbitrarily specified by

a finite sum of functions, each constant over a rectangle. 	 It uses

the FFT algorithm to perform an approximation to Norbert Wiener's

stochastic integral representation of Gaussian random processes.

1 n .:e ^^^^^^h!a s±!r-werec. -.- Ke•.fr.w.sa MMWfM'w..w.^uu+.....:.^^..'.^ ....-^ ^... .. 	 ^_	 - __	 ^-
p
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 Y

Step 2. Select training areas and estimate the means and autocovari-

ances for each of the N texture classes.

Step 3. Choose a finite subset S which is a subset of the half-

plane i(m,n) such that n>+J(m,o) such that mZo	 For each W ...,N,

calculate a function F k :S-►R, Fk (o,o)=1 and the variance of

Fk*R k is minimized where Rkdenotes the random field for K-th class.
xi

Step a.	 For each K= 1,...,N, convolutional	 filter the original
"rfff

scene to form X = F *X.

Step 5.	 For each K-1 ,...,N, calculate Yk=1og07Vk * 
(Xk-Mk )2/2V k Y

where V kand M
k
 isthe variance and mean of X kas calculated using para-

e

L
meters from steps 2 and 3.

R^

- Step 6.	 Choose a box size B > o and apply an B x B box filter

_ (average filter) to Yk to obtain Zk.
r

v	 ^^

Step r.	 Classify pixel	 (a,b)EL into the j-th class if Z^(a,b)<__

Z k (a,b) for all	 k*j.

A flow chart depicting this algorithm is given in the attached

-

algorithm flow chart. °s	 '^

I

Based on the theory of half-plane prediction developed in ref.

[111, [12] this algorithm has the following properties: u	 '

Property 1.	 As the set S gets 'large' and the box size gets

large, the performance approaches that for an optimal Bayesian classi-

fier if each texture class is described by a jointly Gaussian field.]
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Property 22. If the performance of the algorithm is high, then the

r	 level of confidence is at least as hiqh as predicted for a jointly

Gaussian process.

Property 3. The algorithm has minimal computational complexity

among the class of all algorithms satisfying either property above.

{

r-_

'	 II

i

s
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3. Algorithm Evaluation

The autoregressive filtering algorithm was evaluated using various

synthesized images and some natural scenes. Two types of image synthe-

sis methods, convolution method and direct spectrum synthesis method

were implemented. The algorithm was applied to the synthesized images

with fixed parameter set up of training area (64 pixel by 64 pixel),

autoregression window (24 neighbor pixels) and smoothing window (5 pixel

by 5 pixel) for evaluation.

The convolution method synthesized an image as a function of neigh-

bor pixels as described in equation 1.

(1) B(i,j) = clA(i+l,j+l) + c2A(i+l,j+2) +

c3A(i+l,j+2) + c3A(i+2,j+2)

where A is the uniformly distributed random noise image array and ci,c2,

c3,c4 are arbitrarily assigned constants.

The Figure 3.1 shows the segmentation result of a uniformly distri-

buted random noise image and a synthesized image using the direct convo-

lution method. The segmentation result was found to be 85% correct.

Figures 3.2 and 3.3 illustrates histogram distribution characteristics

of the two images.

More synthesized images using the convolution method were tested

with various cl,c2,c3, and c4 values. The figures from 3.4 and 3.6

illustrate algorithm robustness against image similarities. When the

convolution constants of two synthesized images became closer to each

other (i.e., images more similar to each other), the segmentation

results became slightly worse.

y

^5
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The direct spectrum synthesis method was developed based an the

fact that if the spectrum of an image generated by convolving an arbi-

trary function with a Gaussian random noise is known, the image can

be synthesized directly from the spectrum. The equation Z shows the

detail relation.

(2) B F * G
= APP. [Fourier (SQRT(S)) G

where S is the user defined spectrum
Spec( g ) = S
F = Fourier SQRT(S)
G is the Gaussian random noise.

Therefore, various spectral characteristic images can.be  synthesized

by applying different spectrums. For implementation convenience, the

spectrum was generated as several rectangular shapes of spectrum coef-

ficients. Figures 3.7 and 3.8 illustrate the synthesized images from

the given spectrums.

Figure 3.9 is the segmentation result of the two synthesized images.

The result shows perfect segmentation of two textures. The figure 3.10

shows the high frequency noise effect on texture classification. Fi-

gures from 3.11 to 3.14 show segmentation results applied to various

types of spectrum images with smoothing window size of 5 by 5 and 10

by 10. Enlarged smoothing window showed a little improvement.

It was found that the segmentation performance gets poorer when

the spectrum distribution became broader. This is due to the relation

between the spectrum eftergy concentration characteristics and the auto-

regression window size. The detail relation is not yet defined and

requires further study.
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techniques can be applied to maEce them modellabie. This research will 	 "^`
i^: :	^:

.	 examine the pre-processing techniques; that can convert images into
^.

^'	 modellabie textures.	 E,^

I'he second question may be answered sim^^ly that the training area

^,
should be able to represent the statistical and spectral characteristics

'
°`

r^ of the entire texture class, the autoregression window size should be ^'

large enough to capture the spatial relation among pixels far the g^;ven
^^

^„

class and the smoothing window size should be selected so that the scene ^r

^'
class boundary confusion and false c1assificati.on can be minimized.

.
^' Wowever, the precise expression of these parameter sizes as functions °°
^;
k-:
^^, of the texture characteristics are not yet defined. ^^^

'' In order to understand the relation between the parameter sizes
^J

and the texture characteristics, a large set of images	 synthesized

e.,

48

textures and natural textures) with various statistical and spectral
F;i

Lflcharacteristics will be applied and the segmentation performance will

- be evaluated with respect to parameter sizes. ®-'.r
► ^

The third question can be answered only 'after the human percep-
^.a

F;
f

' tion is understood quantitatively. 	 It may be impossible to understand

^^

.̂
^

^^ the way	 hnw a human perceives textures completely. 	 In this research, ^. ^

''^ more detailed relations between the hrlman perception and the statistical °^
^;

^. and spectral	 characteristics of the natural 	 scenes will	 be examined.
p i1
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"MATHENIATI CS 1 S THE 1V10ST POWERFUL TECHNIQUE

FOR THE UNDERSTANDING G^ PATTERN AND FOR TH'E

ANALYSIS OF THE REU4T1t)NS OF PATTERNS."
4 ^?

,r	 Alfred North Whltehet^d
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P HY S I CAS.	 MATHEMATICAL
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1. EXPERIENCE WITH P. P. EEAGS TO A T'rIEORY - A ^i^ETAPHOR BETWEEN THE P. P. AND

^°	 SET OE AXIOMS DEFINING ^. 11^.M. -• BASED UN INGUCTION.

,,

,
2. MATHEMATICAL E^.ABORATiON OF THE M.M. EXPLQRES THE LOGICAL CONSEQUENCES-

THEOREJVIS - OF THESE AXIOM'S -BASED ON DEDUCTION.

3. THESE THEOREMS CORRESPOND TO PRED I CTA BEE BEHAVIOR 01 = THE P. P. L.E.^^ IP-1G TO

OBSERVATIONS TESTING THE THEORY -BASED ON EXPERIMENTATION.
^,

_. _ ._.	 ^^
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CLASS i. REGION 2.

MATHEMATICAL MODEL

'	 I. EACH TEXTURE CLASS CORRESPONDS TO A STATIONARY, ERGODIC RANDOM FIELD
X: SZ x L ---^ R, ^ ° PROBABILITY SPACE, L = LATTICE, R =REAL NUMBERS.

=	 I I.	 THE IMAGE BRIGHTNESS VALUES OVER EACH CONNECTED REGI ON D ^ L FOR THAT

CLASS CORRESPONDS TC^ A REALIZATION OF X OVER D, i, e.	 X: ^ w^	 x D --^ !i, c^ E ^,
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11V^AGE SEGMERITATiON PROF LE1l^"'r
iDEIV^'tFiCATiON OE REGION5 AND CLASSES

APPROACF^ USING NIC^DEL

1. UTILIZE TRAINING AREAS SELECTED BY HU:"4N ANALYST TO ESTi^1^ATE THE PARAMETERS

(JOINT PROBABILITIES 1 FOR EACH CLASS

2. FOR EACH ' BLt^^CK' OF PIXELS IN THE IMAGE, APPLY vAl^`ES' THEORIJVI TO CALCULATE

THE A POSTER i OR i t COND iT I ONED ON IMAGE BRIGHTNESS VALUES OVER THE BLOCK f

PROBABILITIES FOR TFIE BLOCK TO LIE 1NITHIN A, REGIO!'^ BEL^INGING TO EACH CL^,SS^

3. USE 'CONTEXTUAL CUES' TO PERFORiVI FINAL SEGMENTATION

^	 .^
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r	 I I^BEOR^dg1 ^ [RY ^S 1 ^ ® ^' ^ i i.v^JJ v ^ ^^ L®G N AND —^ ® i^ PRO^B CORRECTF^	
CLASSIFICATION —^' ^.f

Is
L^f r^k =MEAN OE ^—^^t CLASS AND LET C k ^ COVARIANCE OF ^ FOR k—^h CLASS

.,.	 TORE 3 [ GALCULU S OF VAR IAT Q ON S D FOR mk , C^ AND p [ k D FIXED,

^^
—^ H [ CLASS ^ v D t S	 XIS lZ,ED I p [^ I ^ D I S GAUSS IAN FOR ALL j = ^, ... , N
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J ^ MATWEMATICAL ELABORATION OF MODEL
LET B BE ANY ^ BY M BLOCK OF PIXELS LYING Vl^dT^?tN A REGt01V F ^O^E 	 N

TENURE +^LA►SSES. L^' ^,► BE A VECTOR REPRESENTING THE tI^AGE VALUE5 OVER B, LEf

p [kD, k = ^., ..., N BE THE A PRIORI PROBABILITIES FOR THE REGION CONTAINING B

TO BELONG T® THE k—^h TENURE CAA SS, LET p ^ v_ t k D, k = ^,, ... , N BE Thy COND fT I ONAL

PROBI^BILtTIES [OR DENSITIES D FOR ^(, AND LET p [k I ^ D BE THE A POSTERIORI

AROBABtLIT[ES.
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^^^^8

DEF I N iT I ON. LET X : S^ x L ---^- R SE A STAT I ONARY RANDOM FIELD. THE MEAN

m = EXP ^X ^ ^, q ^ ^ FOR ANY q ^ L AND THE AUTOCOVAR IANCE FUNCTION { S

A : L --°^ R WHERE A (p 1 = EXP ^X t w, p + q ^ — m ^ ^ X (c^, q 1 —^ m^ ,ANY q ^ La
c^^ S^

THE MEAN AND AUTOCOVAR IANGE FUNCTION COCt^PR I SE THE SECOND ORDER STATISTICS

OF A STATIONARY RANDOM F{ELD.

WE CONSIDER SECOND ORDER STATISTICS BECAUSE THEY

^ ^ COMPLETELY CHARA CTER I ^E 4 .^O I NTLY ^ GA USS IAN RANDOM F l ELD S

2^ ANY ALGORITHN^ WHICH YIELDS A HIGH PROSADILITY OF CORRECT CLASSIFICATION

USING SECOND ORDER STATISTICS, UNDER THE t GAUSSIAN ASSUMPTION', WILL

ALS 0 PERFORM WELL I F THIS A SS UMPT t ON i S NOT ^lAL I D S ^Y THEOREM 3 3

31 RESTRICTION TO SECOND ORDER STATISTICS REDUCES COMPUTATIONAL COMPLEXITY

IMMENSELY
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^^3U^ER TR^4^SEC^RMS	 ^ SPE^T^4L Aa ► L^S^S	 N

DEFINITION. F^sL--^RANDFZ Iu, v 1, 0 ^u e 1, ®^ v E1

ARE FOUR t ER TRAM SFORM PA ^R S,
F1 = ^" t F2 ),	F2 	

= ^ .,1 I F^ ),	 if

F¢ la,
^.

b)

1	 1
=	 F	 lu,

2
v^ EXP I-27riau - 27ribv^ dude, i^ = -^

00

F	 lu, vl =	 ^	 F (a, bl EXP (2^r'iau ^- 2^ribv)

	^^^^	 D EF l N I T l ON. THE S PECTR UM S OF A STAT I ONARY RANDOM F I ELD X I S

	

` ^	 Stu, v I = ^" 4 A I t u, v D INHERE A I S THE AUTOCOIlAR IANCE FUNCTION FOR X.^^
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A

	

^ s^.	 -	 IMAGE

	

i	 _

	

^s-^.,,^...', 	 j	 t^	 T^.....Y-b	 v^..E......,	 u_._,.—,	 a	 -._-::	 C-	 tir	 c..-,^., .^	 s..:.^--,_o	 -..-..-3	 ^--	 _i	 c...—^,.;1	 ,	 -^	 _-.-.. ^1	 ,._-.,.,	 a,..,^_,,.	 rte..—i	 8^--,...m.,^,. -.,.	 .. ^.	 r	 ..	
4

_	 ^

i	 ^^

.._... ^	 ^^ _T--.-..-.

	

. ..	 .... .. __	 ,M .^^.^^.-a.-.-.-..
—	 ^	 .—	 -	 ^	 y,^. ^...	 -.. -...	 _	 -... _.	 ._	 ..	 _,



	

3	 FlLTEIING ^I® BUT ® RERESS^
}^
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	^'	 DEFINITION. LET F : L --^ R BE ZERO EXCEPT ON A E I N ITE SET S ^ L AND LEi'

	

^':	 X a S^ x L —^ R BE A RAND OM FIELD. THE F—FILTER OE X I S A RANDOM FIELD

F * X c SZ x L ---^ R GIVEN BY

^,

	^^^	 q ^ L

THE F—FILTER I5 QUARTER 0R HALF—PLANE IF S LIES IN A QUARTER OR

HALF— PLANE, IT ^ S GALLED S —AUTOREGRI=SS IVE 1F 40,	 0 ^ ^ S AND F 40, ®3	 = 1

	

` ^	 AND TIE VARIANCE OF F ^ X 4AUT000VARIANCE FUNGTI®N OE F ^ X AT 40, 0^)^^

	'^	 IS MINIMIZED 41NlTH RESPECT TO ALL FILTERS WHICH ARE ^. AT 40, 0 y AND ZERO
^^	 4I

	^^	 OUTSIDE ^S^ THEOREM 4 4CLASSICALf SPECTRUM 4F ^ X3 = ^ ^ 4F ^ ^ ^ SPECTRUM 4X j
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.^	 C^I^^RTE^ PL^1^VE AUT^^E^RE5S11/E ^M^3®ELS'

A POPULAR MODEL FOR IMAGE TENURES CONS ^ STS OF A STATI ONARY RANDOM FIELD !C
SATISFYING THE FOLLOI^ING: 	 .

^ THERE EXIST A QUARTER PLANE Q c L, A FINITE SUOSET S e Q, A^lD AN

S-AUTOREGRESS IVE FILTER F SUCH THAT THE AUTOCOVAR IANCE OFF * X I S

ZER 0 EK CE PT AT t 0, 0) ^ L

® THE VARIANCE OF F ^ X I S MINIMUM WITH RESPECT TO ALL T AUTOREGRESS IVE
F I LTERS G^ X FOR ALL T c Q

THEOREM 5 1FA5Y) SPECTRUM fX) = 52^^^iF) I2

THEOREM ^ i SEVERAL COM PLE^4 VAR IA BLES) THE F I LTER F t S STABLE i ROOTS OF

^' i F ? i Zi, ^2 ^ HAtIE 1^tODULUS ^ a )

^^	 THEOREM ? iALGEBRA I C FIELD THEORY) ^ ^ LOG i SPECTRUM i X) )^ t p) = 0

F	 Q AND -	 Q;^	 P^	 p^
f̀ 	 a

°^
RENtARK, THESE MODELS SHOULQ BE LESS POPULAR
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`€	 I^L^-PLC ^ ,^l^°	 E1'	 IL°^II^C^

THEORF.^! ^ (6-IELSON, f^. 1^+ND LOS®ENSLAGER, D. ). [F ^ !S ANA RAN®ONE FIELD

AND H ^ L 1 S ANA' CALF-PLANT: THEN

L I^I iT SPEOTR { F ^ ^1 —^ ^ 2
S	 I^	 s

S GETS LARGE
!I;^

	

,, Iii
	 1	 ^.
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^^	 STATISi'ICAL SCENE SEGMENTATION 	
^ i`

ALGQRITHM

r

STEP 1,	 SELECT SCENE -NATURAL OR SYNTHESIZED

STEP 2.	 SELECT TRA f N ING AREAS AND ESTIMATE MEANS AND AUTOCOVAR fANCES

STEP 3.	 CHOOSE A F I LTER IN f ND O^U S LY f NG f N A HALF-PLANE AND CALCULATE

AUTOREGRESS IVE FILTERS Fk: S-~^ R FOR EACH TE^"URE CLASS 1. ^ k ^ N

STEP 4.	 FfI_TER ORIGINAL SCENE VIIfTH F k TU QDTAIN Xk FOR 1^ k ^N

^Ep ^'^ APPLY TRAN SFORMAT I ON X -^-^- Y =LOG (22 ^ VV + (X - Nl 2 Z V^	 k	 k	 ^J	 k	 t k	 k^ ^ k
^'OR I^k^N

STEP 6.

	

	 CHOOSE B ^X S IZE L AND APPLY L x L BOX FILTER TO Y k TO OBTAIN Zk
FOR 1^.k^N

STEP 1.	 CLASSIFY PIXEL ^a, b l INTO j-^h CLASS iF-^^ Ia, b} ^--^--k ta, b l
FoR ALL k ^ j

^^^

jj 	g
^1.,.^6

^:

^ Vk AND Xk I S VARIANCE AND MEAN OF xk AS CALCULATED USING PARAMETERS

FROM STEPS 2 AND 3.

.f
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' ^ ^	 STEP ^	
STEP 3	 ^,

	

'^	 SEIfGT CLASS I.^;

	

^j	 TRAINING AREA,	 CALCULATE F^,	 AUTOREGRESS IVE	 80X FILTER

	

^^	 ESTIMATE	 V^^ M^	
FILTER WINDOWS	 SIZE L^^

	

^	 STATISTICS

^^ ^
STEP 4	 STEP 5	 STEP 6

I^

Ei

	

^

'^	 cALCULATE	 cALCULATE	 cALCULATE

	

^.^,	 X	 Y	 Z

	

^^,	 1	 1	 ^,

STEP 1
STEP 7

^^` SELECT
COMPARE

SCENE
z^ AND Z2.

^ STEP 4 STEP ^ STEP 6 CLASSIFY

'}'^^ CALCULATE CALCULATE CALCULATE

.^}
.;
s.	 ,.

X^ Y2 Z^

^^

E	 ' I STEP 2
`^ SELECT CLASS ^ -	 STEP 3

'	 °;^ TRAINING ARFA, CALCULATE 1=^, AUTOREGRESSIVE BOX FILTER

.a ESTIMATE	 ^' VZ, M^ FILTER WINDOW5 SIDE L

STATISTICS

i
E

V
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® AS .AUTOREGRESS IVE WINDOW 51ZE r^ND BOX SIZE GET LARGE, PERFORMANCE

APPROACHES BAYES IAN ^ OPTIMAL) CLASS IF1ER FOR .1OINTLY GAUSS IAN

TEXTUREs

• PERFORMANCE STILL VALID FOR NON-GAUSS IAN TENURES, AND ALGORITHM

IS OPTIMAL FOR UTILIZING SECOND ORDER STA^'ISTICS

® ALGORITHM ACHIEVES PERFORMANCE WITH MINIMAL COMPUTATIONAL

COMPLEXITY

^ ^	 ALL THESE ASSERTIONS ARE MATHEMATICALLY E'ROVABLE!
^I
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® E^^END MODEL TO MULT I S PECTRAL IMAGERY {DONE y

® EXTEND MODEL TO SUB5U1^lE FRACTA^ MODELS 4 DONE ^

® EXTEND MODEL TO SUBSUME STRUCTURAL NEODELS (DONE 1

® DETERMINE OP^'IMAL AUTOREGRESSI^E WINDOW SIZE, BOX FILTER SIZE, AND
THEIR DEPENDENCE ON .CONTEXTUAL KNOWLEDGE {INCOMPLETE ^

® SYNTHESIZE STABLE ^fALF-PlANE AUTOREGRESS IVE FILTERS {DONE ^

ANQ _UTILIZE THEM FOR OP`T'IMAL IMAGE COMPRESS ION {INCOMPLETE f
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ABSTRACT

A Baye Sian, or pena]ized maximum 7ikelihaod, approach to the prob]em

of estimating the parameters of a mixture of mu]tivariate norma] distri- 	 `'

butions is proposed. The Bayesian formulation e]iminates the problem of

singularities in the Tike1ihood function and results in an attractYVe

EM-like procedure. A]though the question of consistency is not settled,

it is suggested that the proposed method has certain advantages over both 	 ^^

the constrained anr] unconstrained maximum like]ihood procedures. 	 ,-,^
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1. YfVTROpUCTTaN

I.et kl , •••, Xn be a random sample from a finite mixture density

m

f(xJe)	 i^lgifi(x^^i?,

where the component densities are d-dimensional multivariate normal and
m

the mixing propastians q i satisfy q i >_ 0,	 £ q i = 1. We let B i W
i=1

(^ i ,E i ) denote the mean and covariance of the i ĥ component density

and let 9 denote the aggregate of all the parameters involved in the

mixture density, including q = (q l , •••, qm}. We assume throughout that

m is known. It will be convenient to consider also the precision matrix

T i = E 7 1 , and we sometimes let 6 i = (^i,zi}.

Maximum likelihood is the method of estimating the parameters 8

which has recently attracted the most interest, C 8^. According to this

method, the estimate 6 = 9(X1 , ••, Xn ) is the parameter value which

maximizes the lag likelihood function

n
^(e) = ^ log f(Xi(6}.

i-1

Unfortunately, as simple examples show, the function Q(e} is unbounded,

and one must consider 7 t^cal maximizers of Q (8 ) or else modify Q (8 } i n

some way so as to praduce a global maximizer. Hathaway C 5 7 took the

second approach in proposing a constrained maximum likelihood estimator.

For mixtures of univariate normal densities, he developed an kffective

computational procedure for finding a maximum cif Q(9} subject to the

constraints

703
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^^ '^

where ai is the ith standard deviation, amyl = al , and c > 0 is a

constant, chosen by the user. Ne also proved that ^{e) has a global

maximizer, subject to the above constraints, and that the global maximizer

is a strongly consistent estimator, as long as the true parameter satisfies

the given constraints. Hedner C7 ^, mentions a penalized likelihood

function of the farm

m

Q{e) - a E J ^Ti ^ ^ k,
i^l

where a, k > 0 and ^^TiE^ is a norm an symmetric dXd matrices.

Bayer solutions for common loss functions, such as quadratic lass,

appear to be computationally infeasible E 3 7. For example, assuming that

the mixing proportions are the only unknown parameters, and using the

Dirichlet prior distribution given in the next section, there is a^

explicit formula for the Bayer solution ►,tith quadratic lass. However, it

contains mn terms and is not useful except far very small sample sizes.

The method proposed in the next section utilizes a prior density g {6)

of a certain form an the parameter 8 and takes as the estimator the

made of the posterior density

n	 ^_,

C lI f{Xj^a)]g(8)

g {^E XI^ sxn ) _	
awn	

rvr

^.^'

	

6 ^ = 1	 ^	 ^-
^^

Equivalently, the estimator maximizes the penaZz^d log likelihood function,	
3

`^

Q l {e} _ ^ {s) ^- lag g { e ) r,,

^:

^^

,.	 ... ,:.
-:	 _.^^

_...__^w.,_,..	 .......,.,.,^...,,...	 ..^	 . ..	 .
I^s16Y^Y31^11^j#RRIdW^^	 :̂	 IfILL/	 r _`LJ ...	 '.'1'...:_.__.. _.__._.^..._.^_... ..._^ _-._	 '. .. .. __. .. __-.. ..__... _.rv.^A^.r^__'. 	 .^
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r	 Such a procedure can be justified in Bayesian theory as being the limit
-r	 as ^ -► 0 of Bayes solutions ^ corresponding to 0-1 loss functions

^`
	

~0 if ^j6-6i ^ < ^

i	 if J^9 -8`( ' E .

It will be seen that ^ l (8} is similar to, but is more elaborate than

the penalized likelihood function suggested by Redner.

2. THE PRIOR DISTRIBUTION

Recaii that y = (q l , •••, qm} is the vector of mixing propostians

and that 6 i = {^, i , Ti } is the pair consisting of the mean vector and

precision matrix of the ith component normal density.

Assumption i	 q, 6 1 , ..., 9m are mutually independent.

Assumption 2': q has a Dirichlet distribution with hyperparameters

A i , ••• , gym , all > 0. The prior density of q is

r(^, 1 -^ ... a- 
gym} al - 1	 ^m-1-1 a^ 1

f0{ q }	 ^, Al ...^ am	
ql	 ... qm-

1
	qm

^+
is:,

Assumption 3	 Given	 z-,	 the prior distribution of	 u•	 is

d-variate normal Nd {ai , cizi}	 with mean ai ^ Rd	 and precision matrix

#'̂
`"

^^. cizi^	 where	 ci > 0	 is a hyperparameter. The prior distribution of	 zi

^^ is 4lishart with v i > d-i degrees of freedom and expected value	 vih^l,

where	 h i	is a positive definite matrix. Thus the joint prior density of

	

_	 _	 _.	 __

	

^._..	 -_
^.,.	 ^.

•.emu:=-	 ^	 .--°__.... ._. _ .. .. ......__.__`.__...,,.o..^. .a.
	 ___	 ^,
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r

x exp ^[- ^^ (u i -c^ i )T^ri (ui"^i ) _ 2 trh i ^ i
 } .

r

^i

The prior distrtibutions given in Rssumptions Z and 3 are the standard

conjugate priors for multinomial probabilities and the parameters of the

normal-Wishart distribution of the sample mean and covariance, Cla. 	 _+
•	 f;

Their use here is for matf^ematical convenience = rather than
_,a

because of any prior conviction as to their suitability. However, it is 	 ,^,

apparent that the large number of hyperparameters involved (7^ i , v i , c i ,	 ,^,	 ;^

a i , h i ) allows a great deal of flexibility in applications.
r

^^
The penalized likelihood function corresponding to this prior is 	 ^;	 3

	

n	 m
Q l {0) = E log f {Xj ^O) ^- ^ ^ i log gi

	

j =1	 i=1

-^ Z ^ (v i -d)iog^T i ^ - 2 E Gi(ui..ai)TTi(ui-ai)
i=l	 i=l

m

- 2 
1E1 trh iT i .

Here, we have eliminated terms which depend neither on the parameters, 	 j`
L^

nor on the samples and, far convenience, have also replaced ^7 in the ^n	 I
r

original definition of f 0 (c^) by ^i + 1.	 ^^
i	 f	 .
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3.	 GLOBAL ANa LOCAL i+RAXIM,4 OF	 Ql f 8 )

The prior density of	 9	 given in the preceding Section is unbounded,

^, as is	 Ql {6),	 unless the hyperparameters satisfy 	 7► 7 ? O,	 v i >_ d.	 There-

'^	 ^- fore, these restrictions will be assumed for the remainder of this paper.

m
The ordinary likelihood function can be obtained by allowing 	 A i = 0,

^^ vi = d, c i = 0, h i = 0	 for each	 i.	 This corresponds to a posterior ;^
distribution derived from an improper, noninfermative prior.^:

Choices of the hyperparameters which guarantee a global maximizer
9

-	 ^:

^-^.
of	 Q 1 f6)	 are given in the following theorem.

ry	 ^ THFOR^M 1.	 ^f	 v k > d	 and	 hk 	is positive definite for each 	 k,

-
-^	 '^', then	 Q 1 ( 6 }	 has a maximum.

^i
.i^
-

^^ a

;s_

^° PROOF:	 Since	 ai L O, ^^

'r

t^.= Q	 (^) s	 E	 log max f.(x.^e i } a- ^	 ^ fvi-d}1ngjTif
1 ^^^ :1	 i	 ^	 ^	 i=l

;,-^;^ m
-	 1 ^	 trhiTi

t-^

^^
2 

i=1

f =	 1	 { E	 max C1ng^T	 ^-(x.-u.}T^.(x -p.}^
^	 1	 7^	 z

ii

-
;;
^^.
u^

j=1	 i	 ^	 ^

r,

;,

m

+	 E E(v i -d)log^z i ^- trhiTi]}

,.

i=1

^^^ _	 d	 -	 -	 T	 x-	 ^	 _Far each	 7,	 let C i te)	 {x E	 R ^log^^^^	 ^x u i } Tip	 u i }	 iag^Tk^ ^h. M

,^^

^
,f,

( x-pk) ^r k fx-u k )	 for each	 k},	 let	 c^ i fe)	 be the number of samples in
^

!ti

^^

cif6},	 and let

^y

^^-

^^,s..^... _	 _	 _	 ..	 _ ^—_	 '^.^.	 •— `tx 4T!]fawr.4lib.^MMI' 	 4	 g'^avL^^^tn,.s^^i^123._ ^_.__.^ ^
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Then r

.
m

k i (9} <_ ^	 E CAi {e)1og^ •c i ^	 - trBi(e}zip
i=i ^^'

^ _where	 Ai {e) = vi-d-^^i(6)	 and	 B i le)	 - hi -^ si(6}
,

i
-^

Q	 {e}	 ^ 1	 E	 C{ v• -d}iog z^- trh•z•]1	 2	 ^	 ^	 i	 7	 i ,^	 ` '̂'
^TZ^^l

^
1

w

.^
2	 7	 i	 i	 i ^^'

.€
het	 n(z i )	 and	 p{T i )	 denote the largest and smallest eigenvaiues of	 Ti

` P 	 ^	 5^	
a

respectively.	 If	 p{ •e^) } ^	 or	 n (z k } ^ g	 for same	 ^c,	 then the term n	 ':..	

1

i

^ corresponding to	 T k	 in the inequality above tends to	 -^	 while the
^

:^	 ^

. other terms are bounded. 	 Therefore, there is an	 r > 0	 such that ^^	 ^.
^- c.^	 • _'

Sup Q i (6} =	 sup ^, l {B) < m,	 where

}

^"^- 6	 6^Or :r	
k

^-4	 ,

^, pr = {g ^ ^ < n (z^} s p(^ k } s r	 for each	 fc} . '^,
:.:{a

Represent	 Or	 as Q x ^l x ... x ^,m , whe re	 Q = {q ^ Rm ^ q i ? 0	 for each	 i
^n

and	 i_

^^ m
E gi ^- i^,	 and	 ^i -- {{u i ,z i }	 l 

r 
^ n ( z i }, p { z i } < r}.	 ^.et	 ^i	 be the ^^	 t

i =1
,.

one point campactii=ication of	 ^, i ,	 so that	 8 i E ^'i	 tends 
tp	 ^	 if and ^r	 k

4,	
^^

only if	 ^ ^^i^^ ^ -^ m .	 If	 $i	 -^ ^,	 then	 fi (x^^e i } } Q	 for all	 j;	 thus, {

^t
^^

F ^^ r

i

L^'-. fir



by allowing -m as a value, ^, l (e) can be extended continuously to

Or = Q x ^l x ••• x Vim , and has a maximum on that set, say at 9.

Suppose 9 is a point at infinity; i.e., that ^ k = ^ for some k.

Then c k = 0, because otherwise Q 1 (8) _ -^. ^, l (@) is obviously not

decreased by replacing ^k by any finite value. Therefore, Q 1 (8) is

maximized by a point in Or . QED.

Lfnfortunately, as with other penalized likelihood functions

the circumstances under which a consistent global maximizer of Ql(e)

exists are not known. Even if one exists there is no procedure for find•-

ing the global maximizer. Therefore, we must consider local maximizers.

The necessary conditions for a local maximizer of ^, l (a) are, for

i - 1, ..., m:

^ g i fi^ x '^ e i ) + a.
3=1 f x^^ i

m
where J^ _ ^ 7^ • ,

i-1 ^

ciai + ^ g^f^(x^^e^) xJ

(^.^)	 ^ -
^ r c• ^. E gifi(x^lei)

^	 j -1	 f x^ a

l09

_, __	 ^.
_,

^	 .,	 r 	
.. ^._	

...	 -
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1l0

h. + c.(u.-a•}(u.-a•)T + ^ gifi(xjl ^i}(x•-u• }(x•Wu•}^7	 z,,	 ,^	 ^-1	 f x^ a	 ^,	 ^

^	 v.-d + E gifi(x-le i)
,^=1 f x^ e

These equations are the basis for an EM-like iteration procedure defined 	 r.

by evacuating the right hand sides with the current values of the para-

meters to obtain updated va'tues of the parameters. Each of the updated 	 ^̂:

parameters is a convex combination of same prior estimate and the ENf
4

update far ordinary maximum l i kel i hood estif^ation. IntFrestingly, tf^e 	 ^^,

updated q i is a convex combination of the EM update and the prior mode	 ^^

Ai
^	 of q i , whereas the updated E i is a convex combination of the EM

^:., i

update and the prior conditional mean 	 ^	 `^^

^-:,

hi+ci(ui_ai) ^u i-ai }T 	 ^^_^a

vi -d

^:

of ^ i given u i , not the prior made. gbviously, the larger the sampce
1

size, the greater will be the weight given to the EM updates and the 	 ::^

less given to the prior estimates. When the update equation (2.4} for	 r--^
.	 i

E i is evalua^;ed using the gust updated value of u i in the products	 ^^^

(x i -ui
){ x i -ui ) T and {ui-ai)(p,^-ai)T this successive substitutions

procedure is equivalent. to the modified EM procedure suggested by ^;,,,

Dempster, Laird, and Rubin C 9-^ for finding posterior modes. Hereafter, 	 ._u

we shall refer to this procedure as the generalized EM prac:edure (GEC).	 -t
4

The general convergence properties of the GEM procedure follow from 	 ^^
^R

44

i

^^

^^
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C8, 'theorem 4.11, more specifically, starting From any point B (A} in

parameter space, the sequence {9 (k} }^	 praduced by the GEM procedure
k=0

converges to a nonempty, connected, compact subset of parameter space on

which the penalized likelihaod ^.1 (a) is constant, and on which the

equations (2.2)-(2.Q^} are satisfied.

^,	 The next theorem assures that the GEM procedure converges to aYi

`^	 consiste!^t local maximizer of ^,1 (e), given a goad enough starting value.

THEOREM 2. 7f the true parameter B is in the interior of the para-

meter set, then there is a neighbarhood N of 9 such that with proba-

bility 1, if n is sufficiently large there is a unique solution B of

(2.2)-(2.4) in H and 6 -^ 9 as n -^ ^. Furthermore, with probability 1,

for large n the GEM procedure converges to 6 if the starting paint

^s near enough to 6.

PROOF. The existence and uniqueness of a consistent local maximizer

is a consequence of a consistency theorem due to Chanda C21, (see also

Peters and Walker t61). A simple modificatioh of the proof of that

theorem shows that the Hessian d2Q1 (B) is negative definite at a = 8

for large n. Therefore, ^.1 (^) is strictly concave in a neighborhood

of 8. The local convergence of the GEN1 procedure to 6 now fol7aws

from the consistency theorem and Lemmas 7 and 2 of C71.

4. OVERMOOELEA MIXTl^RES

Far mixture problems in which the number of normal components is not

precisely known, the present model is not appropriate From a Bayesian

point oi' view. However, it is possible that the penalized likelihood

^'

._ ..^_
r...^	 ^,

._	 __.__
...	 ._ . ,,

^.
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f

function exhibits better numerical and statistical properties in this

{ situation than the ordinary likelihood function. 	 To illustrate, suppose

that the model contains	 m	 normal components, but the true density is a

mixture of	 k . m	 normal components.	 Thus,

k_

^

_	 _	 _

f^x^$(^C T 	E gi fi ^ x ^ $ i }	 ^qi > 0)}}

^-1

is the true density, anon

:f m
=# -

f(x ^e(m
}) 3Elgifitx^Qi}

- -^_^
4i

is the model.	 ^.et the hyperparameters for the model satisfy 	 ^ i = 0,

^' vi > d, c i > 0, a i E Rd ,	 and	 h i	positive definite for	 i = 1,	 ..., m.
^,

_ By Theorem 2, there is a consistent solution a {k} = (gl,...,gk, $ l' " '>^k) of

^. equations X2.2}-(2.4} for the	 k	 component mixture.	 Let	 qi ^ 0,

^i ^ o. i , E i = h i /(vi -d}	 for	 i ^ k+7,	 ..., m,	 and let	 6^m}

^ (ql,	 ,,, qm' sl'	 ..., 
em} ,	Clearly	 e lm}	 is a solution of (2.2}-(2.4}

F.	 ,
^ far +the	 m	 component mixture which is consistent in the sense that
1

^	 ^ 'F(x]^^n}} ^	 f{x^e^ k} )	 as	 n -^ ^.	 In contrast, it is not known if there

_-

^"
is a consistent solution of the ordinary likelihood equations in this

situation.

5. REMRRKS AidD C0^ICLUSTO^IS

The remarks at the end of the preceding section suggest that in

cases where the number m of normal components i5 unknown, but d reason-

able upper^ bound can be assumed, fine should take A i ^ Q, v i > d, c i > Q,

h i positive definite. ptherwise, the choice of the hyperparameters may

be guided by prior guesses at location and dispersion of ^:he mixture
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parameters. For example

7► .*l

(^ i ^-1 } (7^ k+i }
cov(gi ,gk} ^ -	 2(aim} (^►^-2)

( 7^ i ^•7 } (7^-7^i•^m-1 }
var(c^ i } =	

E(a•^m} (^^m^-1 }

can be used to aid in choosing the 7^ i , while the equation

^(E i } = c i var (^i}

(provided v i > d+l) can aid in choosing ci.

The procedures outlined herein may be especially usefui in applications

r, -^
such as crap inventories from satellite data. There, spectral measure-

^-
ments may be sampled from a large ground area (segment) which is itself=

^-	 chosen from a large number of possibilities. The normal mixture model has

Î tI "	 often been used far the distribution of spActra1 responses from particular
I!

^^	 segments. Thus the parameters (g, B 1 , ••, 6m) can be considered
P-`

^

	

	 characteristic of segments, while the prior distribution of these para-

meters can reflect their variability among the possible choices of seg-

'^^,	 meats. Since there are "ground truth" segments available in which each

^'	 pixel has a known class identity, it is possible that the hyperparameter5

I^
of the prior distribution could be estimated from the ground truth segments.

Further research into the numerical and statistical properties of the

G^^i procedure is planned. The properties to be studied include the

.emu-. ^.^_.m ._..	 _ _.^:W^	 .^_^:T^^ , ^	 _	 _-^-----	 -____^_.a^.	 .. __.^^^ __.^,.:-

^___.__	 t...._.t,....^..,......_....^.. 	 -	 -	 - ...^-- ......... _ . a.	 ,.^..,..._.... 	 . ^4	 ,.^
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	 _

a^
1i4	 '^
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_^

consistency of the global maximizer, the behavior of the GEM procedure

far avermodeled mixtures, and the sensitivity of the procedure to 	 ^"

'i
starting values, for various chaises of the hyperparameters.

i
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rABSTRACT

;;

Multi-channel	 satellite image data, available as 1.Af^DSAT imagery, ^I

are recorded as a multivariate time series 	 four channels, multiple
,^

passnvers} in two spatial dimensions. 	 We consider here the application

of parametric empirical Bayes theory to classification of, and estimating

the probability of, each crop type at each of a large number of pixels.

Phis theory involves both the probability distribution of imagery data,

conditional on crap types, and the prior spatial distribution of crop

[.,
types.	 For the latter we use Markov models indexed by estimable

Abroad outline of the general theory reveals several ^,	 Ỳparameters.
'._^	 ^.

questions for further research.	 Some detailed results are given for the °`
^-n	 y

special case of two crap types when only a line transect is analyzed.

1

There is also a detailed discussion of estimation of an underlying

^,

^-^

continuous process on the lattice, which would be applicable to such
'^	 ^.
^'

quantities as crap yield. '^	 '	 ,:
-^

^-- '
4.

_^!,	 q

^^:
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;^
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a
7. Introduction

Multichannel satellite image data, available «s [.ANDSAT imagery,

are recorded as a multivariate time series {four channels, multiple

passovers) in two spatial dimensions. We consider here the application

of parametric empirical Bayes theory to estimating the probability of

each crop type at each of a large number of pixels.

Parametric empirical Bayes modeling has proven effective in various

spatial applications previously. For example, applications have been

made in revenue sharing {small census areas), insurance {territories),

false alarm estimation {neighborhoods in a city), epidemiology {cities),

and forestry (areas), as reported respectively by Fay and Herriot [lI]

and Morris [I6^, Carter and Rolph [7], Efron and Morris ^9], and Burk and

^Ek [6]. Such applications could 6e further improved by better use of

neighborhood information, as by use of affinity matrices {Morris and

Kostal [l7]}, based on ideas in Stein [T9]. Much more substantial ad^

vances are needed for LANBSAT data.

We define "Empirical Bayes r^iodeling" to be the convolution of two

families of distributions, one for the measurement data x given unknown

parameters e ,

^Y N	 ti M	 N

and the second for the unknown parameters

{1..2)	 e ti ^^( a ) 9	 a e a

Expression (]..7.} provides the likelihood, whilst {^.2) defines a family

^ of densities or, in the "Parametric Empirical Bayes" case, a parametric

^..

.	 ^„^^.	 ^T	 ..,	 w.	 -
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family indexed by a E a. The problem is to make an inference about e

from x, knowing a. If a corresponds to ail possible distributions on e,
	

^^

then standard frequentist methods are appropriate; and, if a has but one

,.	 a •., ,	 ..	 ...	 -.

il8,q

element, then a pure Bayes approach for .the single known prior distribu-

tion is appropriate. Different (empirical Bayes) procedures arise if a

contains many elements, but not too many. The key is that one can Learn

about a by considering the marginal density of the data

(Z.3)	 ha(x) = f f(x(e) ^a (e) d e,

This empirical Bayes approach provides some conceptual advantages

for i.ANDSAT data, because it suggests that we separate the satellite

measurement process x and the ground truth image process e, The major

^.-^	 part of spatial correlation is in the ground truth process: neighboring
-:

pixels are likely to have the same crop type. The distribution (1..1) of

^-	 the measurement process normally would involve much less correlation,

although the theory does not require this.

R	 The empirical Bayes approach accepts the Fact that available satel-

^'
life and ground truth data (U.S. sites) can be used to estimate the func-

h

Lions f( • ^e), Thus, for example, extraction of "greenness" and/or

"brightness" functions from the four channels is a legitimate operation

from i.AIVDSAT data, as are the appropriate. time series transformations,

e.g. "Badhwar numbers". }lowever, the appropriate prior distribution

era ( • ) far the ground truth (crop types) for a target site may be very

different from that er a at a training site. Crop sizes and relative
n

proportions may vary widely in different states and countries, and thus

(	 it would be unwise to assume a = a^. The empirical Bayes approach then
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provides an appropriate method of estimation, in which (1.2) enables us

to restrict drastically the probable spatial arrangements on e.

With these considerations in mind, in this paper we analyze situa-

tions where the density (1.1) is assumed known, and where particular

families eta ( • ) are chosen. ( for Further comment, see Section 5.)

Section 2 concentrates on the relatively simple situation of dis-

crete Markovian (correlated) a corresponding to two crop types, on a

transect, and takes F( -fie) to be known. we learn there ichat the poster-

ior log adds on each crop type can be approximated by a "moving average";

that the correct moving average depends on a = (LO ,^.^}, the average lengths

of fields of type 0 and type 1; and that a can be estimated without ac-

cess to ground truth data. The theory suggests how one might proceed in

more realistic, more complicated situations. Section 4 addresses the

more complicated two-dimensional situations with discrete a using Gibb-

sian Markovian distributions, as described by Besag ^A^] and Gemara and

Leman [12]. Section 3 considers related empirical Bayes theory for con-

tinuous autoregressive ground truth parameters e. Section 5 contains

general remarks, including an outline of the further research needed to

bring our approach to the point of providing viable software for automatic

processing of LANOSAT data.

2. Two-Crop Models on the Transect

On a (lattice) transect, as illustrated in figure 2.1, let e =

(6 2 ,9, ,,.} indicate the sequence of crap types, where e i = 0 or 1. The

measurement vector x i (possibly multivariate) corresponds to a LANp5RT

reading for pixel i. We assume that x i has density f ^ i (y}, with both fp

^^

-^	 ,_



lattice

transact -^

croptypes:

RA^iDSAT
measurements:

n

120

and f^ known. Far fixed e, the x i 's are assumed to be Independent.

Then, letting ^ i = logdfr(x i )/fp(x i )} be the log likelihood ratio for the

i ĥ pixel, we can write the whole likelihood function as

i
ignoring an irrelevant constant multiplier.

FIGURE 2.1 Transact model notation

A simple class ^ of prior distributions on the binary crop indicator

parameters is the stationary random walk (first-order binary Niarkov pro-

cess) with transition probabilities

{2.2)	 Pr(ei^1= 1(s i ) = poi = }. - qgi ,	 e i = 0, l..

Thi s defines a two-parameter family ri indexed by p l = 1- q l and p0 - 1- q0.

Equivalently, one may parameterize with L 1 ^ 1/p0 and LO ^ 1/ql , the ex^

petted lengths of segments far crop type 1 and crop type 0; ar with

^r 1 = L 1/{L 1 -^ L O ) ^ 1 - ^0 and v = 2/ {L O -^ L 1 } the relative proportion of crop
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^^

I (^r l = marginal probability of type I at a given pixel} and the segment

intensity parameter (nv = expected number of sigments in a transact of
;.

length n},

The induced prior density on a is proportional to the natural expo-

nential family density 	 -	 'p

(2.3}	 exp(^INI - ¢,2F), where

N I	 x e i = ^ crops type I,	 F = E ( e i - e i^ I )^ _ ^ segments - 1

^'	 and ^ Z = log(p I/q0), ^2 = zlog(p ZgO/q lp^);	 endpoints are Ignored in	 (2.3}.

Note that N I and F are not independent:	 F is restricted by the value of

NZ . Also, EN I = n^ I and EF = nv if there are n pixels in the transact.

^y
The posterior density of e, given both x and the unknown (p0 , pI)

,,	 a, is obtained by multiplying	 (2.1) and {2,3}, and has logarithm (ignor-

^'	 ing an additive constant that does not depend on e}

^:	 {2.4)	 .^{e fix, a) =	 E s i (Z i ^- ^ I }	 -	 ^ 2 E ( e i - ei^I)2.

^`^	 The empirical Bayes viewpoint acknowledges that ^ I , ^Z are unknown,
L;

^	 but that the marginal distribution of Z i may be used to estimate them.

^_	 Far example, consider the case of normal, homoscedastic measurements,

xi ^ai ti N( u ei , a2 ), for which Z i = 
a{x i 

- u) /a with s = ( u l - up)/^ and ^ _

(uo+ u l )/^ . Assuming n pixels, define Z= x Z i /n and r^ ^ ^ (Z i^^ - Z}
i

(Z i - Z}/n to be, respectively, the mean and 
3th 

autocorrelation. With

respect to the marginal distribution of Z,

N(2,5)	 EZ = d Z (^r I - .5},	 Erj ^ S4 ^r0 ^ I ( p I - p0}^, j = ^., 2, ... .

F^'

One then can estimate ^ I and pI - p0 , hence a, from Z and r I by equating

^'	 to expectations, that is without ground truth data. The autocorrelations

._.^ ._	 _ s^

^-	 _	 -	 . _ . ^ . _ ..... - 	 --__ . _...w_., 	 - -	 - -s—_	 --
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r^ ,r^ .,. can be used to check the order of the f^arkov model. One way

to develop a parametric empirical Bayes estimate, which is satisfactory

for large samples, is to use the estimated 6Z in {2.4), and proceed in

a Bayesian fashion.

There are at least two approaches to the use of {2.4}, various

authors have recommended choosing a to maximize {2.4), subject to

8 i = 0 ,1	 we have taken a different approach, using (2.4} to develop

a formal a far

p {6i = 1.^ Data, d,) =pli = I - p0i .

Rn approximation to the exact formula, good in the normal case if ^ is

small or moderate, is the logistic spatial moving average

{2.s}	 lag 
P17/^^ 	

_ W z. +w {z.	 +z. } + W {z.	 f z. ) + ... ^w^z

	

POi/^0	
0 ^	 1 i-1	 ^^-1	 2 ^-Z	 i^-2	 ^ ,.

with

The Pli value determined in this way, with p i and p0 estimated

from {2.5), is a parametric empirical Bayes estimate far the required

probability.

One possible approximation to the 9^ which maximizes {2.4) would

be to set ^ i -1 if pli > az , otherwise zero. This is equivalent to

setting 6 i = 1. if W'Z > log{^rp/^^) = log{p0/q l )	 The scanty numerical

work we have done thus far does not contradict the near equivalence of

the two methods. If this approximation is good it would improve any

complicated algorithm required to .maximize (2.4); see Section 4. Note

that the maximization problem {2.4) can be thought of in non-f3ayesian

i- J
^.,

^,

.^

^,

L-

wv

w p

:^

.,	

.^_ LL^ .	 ..	 ._- .._ ^... ^ - -	 ....,.^

''̂z

...^	 --,
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^^

terms as maximizing the Iikelihood function ^6 i l i subject to two	 'I^

k ^	 constraints, with e W ^ 	 and with	 a enact coefficient Iimitin^^	 ^	 ^2,	 p	 y	 9

the number of segments.

The weight wj may be estimated by Wj ^ rj 8-4/^0^^ , with ^i

the estimate far ^ i	in the normal distribution case. This may be more
I `	 i

Ĵ+	 robust than (2.7) if the actual Markov process for @ has order Higher

than one.	 y

,^.

	

	 formula (2.6} develops probabilities from the "spatially moving

average",

(2.$)	 SMAi = WO^i -^ ^,^ 
wj{zi^-j +Ziw

j) ,.

Many proposed spatial estimation methods have been based on (2.8}, with

^ i ^j ^- z i _ j replaced by more complicated forms in two dimensions.

Switzer ^[20^} suggested estimating the W T by discriminant analysis,

or logistic regression, using ground truth data. This is unsatisfactory,

from the empirical Bayes viewpoint, if the true crop distribution

characteristic DL O , L^} in the site to which the formula is to be applied

differs substantially from the characteristics pertaini^^g to the available

ground truth data.

The empirical Bayes viewpoint is that the weights W 0 , W^, ...should

be estimated from the marginal distribution of the data in the targeted

area. Discriminant analysis will be satisfactory only if ground truth

patterns are similar for training and application sites.

r

^`R

. ^- e

IY^iaS LsY^-__ - - - "GI;w.A^.i^a1.1aP '	 --__ _^.^^^^^s_^
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3.	 Empirical Bayes Modelling with Spatial Autore^cressive i'riars

^

Parametric empirical Bayes applications are mare common, and more r	 "'

easily developed, in situations with continuous parameters. 	 Such rules

also provide moving average estimates of the form (2.8},	 Our earlier ^'

„^_^ work (Morri s and iCosta1, j ].7^) studi ed both cases where the weights 	 W^
'.

are partially determined by "affinities", independent of the data, and
,^

cases where localized shrinkage factor estimators were obtained with the {
^'	 `'

W^	 determined separately for each pixel. 	 Each of those approaches :?,	 ^	 ^,

resulted in pixel-dependent moving averages. 	 In this section we extend ^--,
^_,
^-	 ^

..^ the earlier results to incicde parametric empirical Bayes estimators
^;

Ii

^` which derive from explicit spatial models.
1 _^

^. ^
We Suppose that on a	 p x q	 lattice there is a mean process '

^^
_

{^ i^ : i =1, ... ,	 p; j=1, ... ,	 qJ^ ,	 which	 is not directly observed.	 For ^J	 ^	 r
r

example,	
^iJ	

might be the yield of a particular crop at the pixel

labeled	 (i,j)	 Corresponding to each	
uiJ	

is an observation	 xis
`:G	 ^,

±:

obtained from LANDSAT imagery data. 	 Our Bayesian model then consists of
^_I	

,;^._w
two parts:	 a distribution far the observations, namely that the 	 x i a `..	 E

€:^ are Independent	 N(u i^ ,Q2 }	 and a structural prior distribution

^n

,;^,

F.:.

.^

^.^ Here	 u	 is a vector version of the	 n = pq	 means	 u.. .
^J

L} J

^^^^^

1	 ^ The posterior distribution for	 1^	 is ^

^^	 ^ (3.2)	 u^x	 `^	 Nn ((I-B)X ^- Bm,	 ^I-B)o2) ^
rs^	 t

^where	 I	 t s the	 n x n	 identity matrix and ^=
1

i	 ^s

i ^^
i

^_^

^' r'
- .r ;	 ..,	 .^

.^
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I1
^'he Rayesian estimate of u is taken to be the posterior mEan. The whole

post^riar distribution may be used for inference or discrimination, as

appropriate to the context.

The empirical Bayes approach presumes that while we accept the form

of the structural distribution (3.1), the parameter values are not

known a priori, The observation vector X , through its marginal

distribution

(3.4)	 X ti Nn (m,cs2 I ^- ^2A} ,

provides information on a ^ {m, i2 , A)	 Usually o2 is taken to be
N

known, as in Section 2, or independently estimable.

Some knowledge of the structure of m and A involving a limited

number of parameters is necessary for (3.4) to be useful. The mean m

may be a regression surface, m = U^ , or a trend surface, m ij being a

polynomial function of the coordinates i and j	 More complex spatial

models for m involve describing fields. Since our objective in this

section is to describe methods for estimating the unknown variance matrix

A , we shall take m = {?. Thus the posterior mean of {3.2) wi71 be of

the form

(3.5}	 ^ _ (I^B}X .

A spatial autoregressive distribution arises from the simultaneous

model

^,	 i j	 1 -^^J	 j 93 -^.	 7^-1^.^	 1 ^^'E l..	 i
I

^'	 with appropriate modifications on the boundary of the lattice,

2
c ti N{0, i I)	 and Ip^ < 1 to ensure stationarity {Cliff and Ord,	 i ^.^

i

[ 8] ). Similar models have been considered by Besag (^5a^}, who uses a

1f	 conditional analog of (3.6), and by Ord {[18l), in non;Bayesian contexts.:.	 ^ ^'

{	 4;

:_ A-^ -.^.	 ^.._____^.-. _-._.. __._.._.._.__._^_..._. 	 ---	 ._	 __	 _	 _.^..	 . _	 - —	 -

e'^ialf'83nh^ '.i.^"' !de 6.is_^.n.^..^ g( ^% ^Cdlf 	 •'.+^+vra^., r,	 ^, ^	 k	 —	
i	 -	 _ _-_ ^. .._	 4

%i

!'

I {,
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Hence, wi^ih C an n xn matrix determined by (3.6}, u = p au ^- E , or

^ _ ( I-pC } -1 e . Thus i n ( 3.1) ►ve have

(3.7}	 A ^ (T-pC}-T'(I-pC'}-1 ,

which depends only on the parameter p .

Since (3.4} implies that ^(XX'} = e2 I ^ T EA , Haff ([^.:3^}, in the

context of autaregressive priers far time series, suggested estimating

e in (s.?) and (^.^} by ^ = 6^ {tXX r .^ (^- t)^ } - ^ , where a <t <^ and

M is an a priori value far 62I + ^2A . This artifice is required

because XX' is singular. ode follow instead the more standard practice

of obtaining maximum 1iKelihood estimates far T Z and p (Whittle

C2 1-] )

We follow the suggestion of Herzberg (in the discussion of Barlett

[ 3] far design matrices, and now write C in terms of KronecKer

products

(3.$)	 C = T p (^ Cq ^ Cp {^ I q ,

where I r is the r x r identity matrix and Cr depends on how (:^.5) is

modified at boundary points. If we let pij = a in (3.5) when either

i ^ { 1, . , . , p} or j ^ { 1, ... , p } , then Cr wi 11 be the rx 'r matri x

with ^ appearing ors the first upper and lower off-diagonals,

cr =	 a	 a	 o	 a	 ...	

d

a

y	

o

q a q a	 0 a
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Then Cr = Pr Ar P^ , where Pr is orthogonal and Ar is a diagonal

matrix, so that (3.8) may be written as

C = (p p ^)c Pq}{Ip ^ Aq ^ Ap C^1 Iq}(Pp Q Pq }' = P1lP' .

Now i t i s easy to show that ff2 I ^ ^e2A = PPP' where i' = 62I ^-^r2(I
-pA} 2 ,

. Hence ^a2I ^' z2A ^ = l^y i^ = nta2 +T2 (l.-pA i ^} -2 } ,

The log likelihood arising from (3.4} is then

^(^2 ^ p ^ Y} _ -i(E iogy i ^ ^-^ ^i3/Yid}

where Y'= P'X . The partial derivatives of Q with respect to ^ 2 and

p , when equated to zero, give the likelihood equations

^(^ - p
^i^

}-^ (yid - y2^}Y i ^ 2 = a ,

(3.9}

EzZ 1 i^(i- Aai^}-3 (yid -y^^}y i3 2 - 0 ,

whe.^e	 yi j - e2 -^ e2(i-paz^ }
-2 .

Nate that Pr , Ar , and so ^ and A , can be easily found (Anderson

^^ }. The numerical solution of (3.9} for ^2 and p is obtained

using'an iterative procedure such as Newton-Raphson or the method of

scoring. Reasonable initial values are

(^.1,^}	 p^ = 0 and ^^ = X°X/ pq - c2 .

The computed values of T 2 and p" are then used to find ^ and ^

in (3.7} and (3.3}, leading to the estimate (3.5} for u . ,^

`	 These results are a special case of results in Kostal (LIB]} which

^^^	 include other autoregressive structures, spatial moving averages, space- ti

time processes, and non-zero m. 	 ',^

^	 1.

^:

^^

._	 _..__.^ ^__.r_.	 -------	 - ^^
.	 ..^	 --	 ,,
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^. Markov Prior Models and Their Ilse 	 ^
^^

The line transact analysis in Section 2 involves a special case of

a general class of Markav prior models for crop codes 8 . In this 	 ,,

section we outline the general class, and discuss its use in construction 	 ^-^

of Bayes and empirical Bayes estimates for ^ . A similar development 	 `^

would be possible in the somewhat different context of Section 3,

providing an alternative to models such as (3.6).	 Y
^^,

Ne begin by Hating that the first-order binary Markov model on the 	 ^	 '

^:ransect, as in (2.2} or (2.3}, can be written in two other, equivalent

farms . Again 1 et e = (el ^ ... , en ) and write a {' } = i; ^^ : ,^ # i } .	 ' '^

Then, for some normalizing constant K n depending on a -(S,Y) ,	 r
,:U

(4.1)	 Pr(a} = Kn (a) exp( -^^e i - YEeiei^.l)

^'1
and

^:^

(i) ^	
r

(4.2)	 Pr(^i ^B	 ) -- 
Pr($i !ei-1 , 9 i ,^ 1 ) «exp{- 66i - Y(ei-1 $i } l ei+l ) ^

^^.

where, in the natation of Section 2, ^ _ -Iog (p pg l/gp) and Y = w2^ 2 ^	 ,;1
e

simple boundary modifications of (4.2) are needed at i - 1,n . The	 ^^
1
t 	

1
^__ 1

formulae (4.1) and (4.2) correspond respectively to a Gibbs distribution

^.
and its local, conditional representation, both of which are capable of

^.

t

	

	 wide generalization to accamadate the more complex situations with which 	 nn

we wish to work.

.	 The general structure illustrated by {4.1} can be described as

follows {Besag, ^ ^) and Isham, [x.41 }. Suppose that 6i depends,	 °a
.,^.

stochastically, on values of 9^ at the neighboring pixels, j E N(i)
L^

in the sense that Pr{^i ^^{')) = P r(ei j9^ , jEN{i))	 for example, we

^.^

^^^

{^

!	 +^^3

_	 _. .^.... .........^^.^.—ne..s±..rx aaY_w 	 ""I^y`T'7	 k' 1 .	 ^_	 W._. _.__._^.._	 ._.. ,_ ...3 _. ae... _...... ^..W _..._
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see in {4.2) that N(i} _ {i-3.,i^1} except at the boundaries, where

M(1} _ {2} and ^V(n} _ {n-L} , Next, define a set C of pixels to be

a cl_ ique if C contains a stingle pixel or if all pairs of pixels in C

^^re neighbors of each other in the system of reighborhoods N(•) ; for

example, with (4,2} the list of sets C is {l,} , {2} , ,,, , {n} , {^ . ,y} ,

{2,3} , ,,, ,{n-l.,n} , Then the general form of Markov, model for a is
N

(4.3)	 Pr(9} = Kn(a} exp{-^dC(aC ,a)}
C

wherein dC { • ) depends on 6 only through e C W {9j ^:j E C} ; far
N

example, in (4.1) d	 ( B • ,a} _ ^^. and d{i} i	 ^	 ^	 {i,ia-1 }{ei ' 6 i,^1 ,a) ..^^iei^1

Corresponding to (4.3} is the local, conditional model

exp	 2	 d (8 ,9(^),a)

(4.4}	 Pr( 9i ^B (i) ) = Pr(ei 
^Sj , 

j E^1{i)) -	
C:i EC

C i ^ C

Eexp - ^	 dC (s,6^^ ^a)
s	 C: i EC

where 6 ( ^ } _ { 6j : j E C , j ^ i } ; equation (4.2) is an example.

Both (4.3) and (4.4) can be used far discrete or continuous values

of e i , sa long as the normalizing constant Kn (a} exists. Rlso, the

pixel label i can be two-dimensional, so that general lattice models

are included, Since the function d C ( • } Gan depend on C , it is also

possible to define nonhomogeneous models fnr 8 within this Markov

framework.

By way of illustration, we outline the two-dimensional analog of our

earlier binary transact model. Ignoring boundary effects, suppose that

the neighborhood N(i) of pixel i = (j ,k} is the set of four closest

pixels, labelled (j-1,k) , (j+1,k) , (j ,k-1.) , (j,ka-1) . Then the set of

L:.1

r!:.

1^I

^::

^s^,

^.

^^

i.

^^

'^



cliques, G , consists of all single pixels {j,k) 	 all pairs

{(j,k) ,{j,k+^)} . Now take the fallowing simple forms for d^(•)

C	 d0(e0,a)

The conditional representation (4.14) then gives the autologistic form

',k	 _	 _
(4.5)	 loge 

pr(6. =0^9 ^ }	
- ^ 

Y1(OJ- 1 , k+
^J }1 ^ k) ..Y2(O

J^ k- 1 ^ g^^k^'l)	 _^	 V,^

^^k

	

i	 N	 k

which is isotropic if Y1 = YZ .

	

I	 ^l
Recall that these Markov prior model, for 9 are intended to model 	 `'"

Y

the spatial correlation that exists among crap codes, this correlation 	 r3	 }
^:<^	 ^P

	^`	 being a stochastic way of describing the phenomenon of fields, within
^,

	

F; ^	 which crop codes are i derrti cal . To i 11 ustrate the kind of patterns that cart 	 V.

be generated by the models, we simulated the autologistic model (4.5) an 	 r^	 t

	

F:	 ^	 k

,. a 10x3.0 lattice (with fixed boundary) with S = 2 , Y1 W Y2 = -1 and	 '-z
r

obtained the pattern in figure 4.I. 	
n

^^
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	FIflUR^ 4.I Simu]ated map of binary crap codes using	 '

model (4.5) with ^ = 2 , y I =y2 = ^I .

,^

0	 0	 0	 0	 0	 I	 I	 ].	 I	 I	 I

O O O O	 I	 I O fl	 I	 0	 1

0	 0	 D	 1	 0	 I	 0	 0	 0	 0	 I	 ''

0 0 0	 0	 0 0	 Z	 I	 0	 I	 I

0	 I	 0	 T	 I	 1	 I	 1	 0	 I	 I
,;

fl 0	 0	 1	 I	 I	 I	 T	 0	 I	 I

O	 I	 I	 fl	 I	 I	 I	 0	 I	 D	 I

0 0 0	 1	 0 0 1 D fl	 I	 T

D o I	 I	 D o a	 I	 o	 I	 I
,r

fl 0 0 fl	 0	 I	 I	 I	 0	 1	 I

0	 0	 0	 D	 0	 I	 I	 I	 I	 I	 I

+	 f'

^a

To return to the general development, our aim is to use models such 	 ^̂_

as (4.3) as priors in conjunction with the sampling model for satellite

data X = (X I , ..., Xn ) , so as to obtain Bayes or empirical Bayes

inferences about crop codes 6	 We assume the xj to be conditionally
.E

independent, with joint density IIf{xj iA j } , Then, by Bayes's Theorem,

{4.6)	 Pr { e ^X = x} = Kn {x,a) • exp{- ^ dC {6 C ,a) . + ^ log f {xi ^ A i ) }	 ^

	

Kn {x,a) • exp{- Ed C {x,6,a}} ,	 y
C	 t

Y

say, where d^{x,6,a} = dC {6 C ,c.) except t^uhen C is a singleton	
t

^^
C _ { i} , in which case	 ^

^' ^

_.

^t	

`ice

'	 ._.	 _...,. _.. . ^...,.	

-	 -	 - _	 _. ^	
^`"^?_'r ry ^__.""' -. ti.. ^.....,c..._^._.. _.,.....	 'ice—.... - .^._- _ ^	 _	 ^--

:^m±s^xxx .^e3ac+••+st^zaY4Ll^2ò'^{S*"+•i• -	 ^3-."̂'iam .
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d{i 
} (x,6,a) = dp i } (e i ,a) - lag f (x i ^ ei)

The normalizing constant K n (x,a) in (4.6) is the reciprocal of the	 ...,

marginal likelihood of a , from which we would, in principle, estimate 	 -_

a using data x .	 `'

equation (4.6) reduces to (2.4) for the binary transact model of

Section 2, and empirical Bayes inference proceeds as described there.

In general, however, it is difficult to use (4.6) even to obtain the

posterior mode for 9 when the prior parameters a are specified.

Leman and Gemara ([3.2]) present an ingenious iterative "relaxation- 	 -

annea1ing" algorithm for obtaining this posterior mode, taking advantage 	 ^^

^.

of the fact that the mode is invariant under scale change of the expo-
'-U

nentia1 family (4.6). The algorithm does not yield marginal posterior

probabilities Pr(A i ^x,a)	 for which the direct approach of Section 2	 ,..

led to Togistic spatial moving averages in the binary transact case. 	 ^,

At the present stage of development, several important questions
	 .:

.:,
remain to be answered before the promising Markov prior approach yields 	 ':	 .^

L" ;;

a clean empirical Bayes algorithm for Image reconstruction from I.ANDSAT 	 ... 
k:

data. In the next section we discuss these questions briefly and indicate 	 -v

where further research is going. 	 m^

,.: ^:

5. Discussion and Outline of Further Research

.^

We have emphasized the importance of modeling the underlying 	 a
"^

{:

structure of fields, where crop types occur in pixel clusters. In order	 '^^`

that new geographical areas be amenable to adaptive statistical analysis,

empirical Bayes methods are needed. bse of the class of Markov priors
^r
.^ r
.	 i

^, i



. 	 ..	
e

^{J

^^

^^.
5

`` for the crop-type "map"	 9	 leads us to the following questions:

j^ {i) F]ow can we determine the order of the Markov prior model?,
^^

(ii) Can one usefully add an "edge" distribution, as described by Geman
s

^^?i and Geman {[12l) ?	 (iii) l^hat methods or algorithms are possible for

!^	 `
estimating the parameters	 a	 which determine distribution {4,3) ?,

t
^` (iv} Can we, and need we, estimate	 Pr{Q i ^x}	 in addition to calculating

'E IS
^'

the posterior modal estimates of 	 e i ?

To take these in reverse order,^we note first that the advantage of
-;

^

^	
_ having	 Pr {ai ^x)	 is that aggregate characteristics, such as proportion

^.
of area covered by a particular crop type, could be more efficiently

estimated.	 We conjecture that gen^eraiizations of (2.6} will prove

^_'
useful.	 On question (iii}, one possibility is to use some type of ^M

algorithm (with. 8 as the missing value vector} embedded in the

{ -to in Section 4.	 Thererelaxation annealing algorithm referred	 are

^;^ three points to bear in mind here:	 (a) the iterative algorithm is slaw,

^ ^^ ^I

^'

a
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especially in the context of th.e simple model of Section 2,

(b} likelihood estimation of a from e is non-trivial( see.Besag[4J).

(c) marginal correlation properties of x , as used in Section 2, are

made difficult on the Lattice by the poor understanding of correlation

properties far 6 {Bartlett [2l) .

4n question (i}, standard contingency table methods would be

applicable if results for ground-truth data could be extrapolated.

Large-sca7^e ground-truth data are available for - the U.S, and ari17 be

analyzed.
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^`^	 Abstract
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	^,	 This paper is concerned with the use of spline functions in th`

^.
development of classification algorithms. Tn particular, a method is

,f

formulated for producing spline apprvximations to bivariate density 	 ^,

functions where the density function is described by a histogram of

measurements. The resulting approximations are then incorporated into a

8ayasian classification procedure for which the Bayes decision regions and 	 ^!

the probability of m7sclass^fication can be readily computed. Some

preliminary numerical results are presented to illustrate the method.
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§1, Introduction.

This paper is a continuation of our earlier work [13] tin the use of

spline functions as a tool in statistical pattern classification. t^hereas

in X13] we dealt only with univariate problems, our aim. he re is to develop

methods which are suitable far 2 or mare dimensions.

The main mathematical tool to be used here is the tensor-product

splines {see Section 3 be$ow^. In particular, we show how splines can be

used to estimate multivariate conditional density functions for the

classes of interest. Using tensor-product B-splines, we then develop

efficient algorithms for finding the associated classification regions.

Moreover, we also show haw to compute the probability of misclassification

associated with the classification method.

The paper is divided into ^ sections. In Section 2 we discuss the

general Bayes classification procedure. In Section 3 we introduce the

tensor-product splines and discuss their use in the general problem of

density estimation.	 in Section 4 we present a specific method for

estimating densities based on biquadratic Splines. The problems of

computing the related classification regions and the probability of

mi scl assi fi cati an are treated i n Sections a and b, respectively. 	 ^Je

close the paper with examples and remarks,

§2. The Bayes Classification Procedure.

Suppose that some group ^[ of objects can be divided into ^C classes

'^'	 which we wi 11 denote b ^ 	 ^y	 1 , 2,.,.,]t^C. Now suppose that we are trying

to decide which class a given randomly selected abject belongs to an the

.z^^ ,
w	 _	 _^,

^^_. ^^ ^
	 ...^^1^,^-mom.	 .: — ^ ^	

i,	 ^.	 .,	 ^i	 ^	 .^s:

_	
r

9^I

f^

°i.
^.



i^a

basis of d measurements which have been taken on the object. In

particular, suppose }{ is a mapping from n = ^t^ u ... U nNC into Rd

such that if w ^ ^t, then X{w) _ {x1,...,xd) is the measurement taken

on w. Fina]1y, suppose that for each i = 1,...,NC, we know the apriori

probabi 1 ity a i that an object wi i i fat l in c] ass 3I i and that we also

know the conditional density function P ; asscciatec# ^rrith measurements

taken from the i -th class.

Given this stochastic framework, the 6ayes optimal classifier is

.^	 defined as follcws:

F	
... _ I	 .

1

^_^	 Assign an element w to the ith class II i if and only
^:

^:-.. ' ^	 i f its measurement X{w) belongs to the set Ri ,

where R1 ,,..,RNG are the 8ayes decision regions defined by

(2.1)	 Ri = {x E Rd	 aiPi (x) > aj Pj (x) far all j ^ i } .

The numerical problem of identifying the Bayes decision regions is
f

equi vat ent to finding the boundaries of the sets Ri . These i n turn are

^^

-^ .

--^ ^

^^^`I

^,	 ^

f..^

^Z 1

defined by the equations a i Pi (x) -aj Pj (x) = 0 for i, j = 1,...,NC.

There are several wel1Wknown ways of measuring the quali ty of the

8ayes classification scheme described above. One convenient way is to

compute the probability of misclassification {pmc) {cf. [z,2]) defined by

r^
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NG

(2.2) G	 = 1 - f	 max[a.P. {x )]dX ^ 1 -	 ^ a. f P (x}dx .Rd	 i	 ^ ^	 i ^1 ^ Ri a

In general, the Evaluation of the pmc G is a di^ficult problem since it

involves integration over irregularly -shaped regions in d^space.

To apply the sayer classification praredure tin a practical setting,

the following steps need to be carried out:

1) estimate nC ^ number of classes,

2} estimate the a priori probabilities a1,...,aNG,

3) estimate the density functions P1,...,PNG,

^) estimate the decision regions R1,...,RNG,

5} estimate the value G of the pmc.

i^! this paper we shall concentrate on steps 3) - 5}. For some methods

dealing with problems 1} and 2}, see 015,24].	 .

§3. estimating Densities Using Splines.

In this section we discuss the problem of estimating a multivariate

probability density function an the basis of a finite number of

measurements taken on the underlying random variable. This is a siandard

statistical problem, and there are many parar^^etric and non-parametric

methods available (see e.g. 04,6,7,3.1,15,21-24]W Since in many

applications the densities of interest are not standard parametric

densities, we focus an non parametric methods, and in particular on

methods which are based an tensor-product splines.

^'	 .

	

J	 g

,.:r-
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^^^ +I.

t
There are several compelling reasons for selecting splines to

approximate density functions. These include among others (cf, ^$,19^}:

1} splines are easy to store and man^pu1ate in a digital computer, 2)
^.

there are stable efficient algorithms for evaluating splines as well as

their derivatives and integrals, 3} splines are smooth but at the same

time flexible, and 4) splines are capable of approximating smooth
,:

Functions to high orders of accuracy.

Our method for constructing a splines approximating an unKnown_

density function Pon the basis of a finite number of measurements will ^,

proceed in two steps:

1} use the data to construct a histogram, 	 - ^
t .J

2) approximate the histogram by a spline.	 ,^

The problem of histograming data has been the subject of considerable
;.

study by statisticians. Hence, throughout the remainder of this section 	 `""

we concentrate on step ^, assuming that the histogram has been 	 ^^ I -
t

,-,
constructed.

t. ^	 4

Before we can proceed any further, we need to introduce same 	 ^^	 ^.

notation. In order to avoid undue notational complications, we shall now 	 -

restrict our discussion to the case aF two dimensions; i.e., d = 2. 	 ``^
E

^_'. j

For the extension to d > 2, see RemarEc 3	 tp.
r

iRle begin by introducing some parameters to describe the histogram
^_

which we wish to Fi g:, Let nbx and nby be positive integers denoting the
r.- ->

(-

number of bins in the x-,and y^directions, respectively. Suppose that 	 ^-^

xt ^ < ... < xtnbx-^1 and yt ^ < ... < yt nby^,^. Let h
ij 

be nonegati ve	 ^I

Li

real numbers, Then the function
n^

^`

rt.:#4
^.^

	

^	 ^

^^

^..
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E

a

hid

t 0	 ,
..,

if xt i c x < xt i,^^ and ytj < y < ytj^^

with ^. < i < nbx and 1 < j c nby

otherwise

j ^` ^i
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represents the histogram we want to fit.

We now introduce B-splines. t ale begin with univariate B-splines.

Suppose that yx i < ••• ^ yx
nx^mx 7S a set of real numbers, where nx and

mx are positive integers. Then associated with these points, there

exists a set of mx-th order normalized B-splines ^x{x},...,H^X(x} with

the properties {cf. C$,1.9]}:

Nmx (x) is a piecewise polynomial of order mx with join paints

{knots ) l acated at the points yx i ,... ,Yxi ^-mx'

N^'x {x) has mx-2 continuous derivatives on R;

r^x { ±̂) 15 positive on {yxi,yxi+mx} and vanishes elsewhere;

Nix {x} can be computed efficiently and accurately.

Suppose mY and ny are also positive integers, and that

N^y(y),...,N ^̀' {y) are similar B-splines associated with a knob

sequence yy l < ... i yy ry,^my . we now define tensor-product B-splines as

follows:

(2.4)	 ^^^'my(xsY) _	 ^mx{x}N^y{y}	 i = 3.,...,nx and j = 1,...,ny.

_'^
^.,..	 __,_.. .^..._nt^^....,,,t^,.,,-.^.,._^..,^,^^^...,...,^.^.._.,_. ,,.x.^._ 	...	 _^., __
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.,

The knot sequences yxi ,. • • 'Yxnx^mx and YYny'" •'YYny^-my divide

the rectangle St = Cyx^ 'Yxnx+mx ^ " CYY^ ,YYnY.^^^ into subrectangles

^iJ = 
CYxi ^Yx i .^^) x CYy^,yY^^.3.)° i = 1.,... anx^mx-1 and ^ = 1.,...,ny+my - 1.

It follows from the properties of the univariate B-splines that the

tensor-product B-splines have the properties:

^V^^'^`(x,y) is a polynomial of order mx in x and order my in y on

each subrectangle nvu
	

v = 1,..,nx^mx-1, ^, _ ^.,...,nyrtmy-l.;

iD

^^^'mY(x,y) > Q for all (x,y);

N^a'my (x,y) > D far yxi <.x < yxi+mx and yy^ < y < yy^*my.

Figure 1 shows a view of a biquadratic 8-spline (mx = my = 3).

Dur atim is to approximate histograms (and thus the underlying

densities) by a linear combination ofi the tensor-product B-splines ofi the

following farm

nx ny	 mx,my
(^.2)	 s(x,Y) -	

iE1 ^=1 c ad Ni.7	 (X,y ) •

To construct an approximation as in (3.2), we mast select the orders

mx,mJ+, the knot sequences yx and yy, and finally the coefficients cif.

In the fiollawing section we discuss how to compute these coefficients.

^^



Fig. 1. A biquadratic tensor-product spline.
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§^. A Biquadratic Spline Density Estimator.

Tn this section ire discuss a specific density estimation algorithm

based on bi^uadratic splines. First +^e list the input and n^atput.

Input:

nbx =number of bins in the x-direction

nby =number of bins in the y-direction

xt^ < ... < xtnbx^^ the bin edges in the x»direction

yt^ < .., < ytnby^,^, the bin edges in the y-direction

h id , i = 3,...,nbx and j = T.,,..,nby ,the histogram values.

--,

^,;.

Output:

mx

my

nx

ny

yx:

order of the spline

order of the spline

number of B-splines

number of B-splines

^ ... < yxnx+mx' the

in the x-direction

in the y-direction

used in the x-direction

used in the y-direction

knots in the x»direction

a,

.:J

^1

n .n̂'

^,:,

yy^ < ... < yyny^.my , the^knats in the y-direction

c if , i = ?,... ,nx and j = 1,...,ny, the coefficients of the spline.

Algorithm ^,].. (Biquadratic spline density estimation).

1. Set mx = my = 3,

2. Set nx ^ nbx and ny =nby.

3, ^ Set

yx^ = xt^ - ( xt^ - xt1)

yxi - xt i _ 1 , i - 2, ,.,nbx+2

yxnbx+3 - xt nbx^-1. ^ ^xtnbx^-].- xtnbx^ .

^.,,,

^u

n_ry

cal

^'
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4. Set

YY^ = Yt ^ - (Yt2 - Yt 1}

	

YY i = yt i- ^ 	 i = 2,...,nbY^-2,

YY nby^3 = ytnby+^ ^ (Ytnby-r^. - Ytnby}'

5. Compute the c ij 's which solve the linear system of equations

^x
Ŷ 

c^J ^x 

v+^ 
fy ^^1 ^^(x) H^(Y) dxdy

i=l. j=3.	 xtv	 yt^

^'	 hvu { ^tv^-1 " xt^){yt^^^ - yt u} ,

for v = 1,.,..,nx and u = 1,...,ny.

Discussion:	 'his algorithm produces a biquadratic spline which belongs to

C 1 ' 1 ( R2 ) and whose support i s on the rectangle [yx^ ,yxnbx^3] x

CYY^ sYY nbyt3 ]• This rectangle is slightly larger than the support of the

histogram which is the rectangle H = Cxt^,xtnbx^,^] x {yt^,ytnby^,l].

The system of equations in step b can be arranged in matrix 'Farm as

dal 1 ov^s

where C =.(c } nx, ny ^ Z = {z ) nx' ny	 and

	

ij i=Z,j=1	 ij i=1,j= 1

(4.2)	 z
ij 

=	 h
ij 

(xti+1 - xt i )(Ytj^.^ - ytj }	 , i -- i,... ,nr.

j - i,...,ny .

Here fi x is the nx by nx matrix with entries

-,

(4.3)	 (^x}ik = f xt^+I Nk(x) dx	 i,k = 1,...,nx,	 '
xt i

. _ .	 ^ .^.. _ ;^..^ w^____---	 —_-- _,
^.	 `•

^ :̂^. ^y.	

r
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and ^y is the analogous ny by ny matrix. The entries of these matrices

can be generated by standard B-spline methods {cf. [1.9,Coro1 i ary 5.18x} .

It is not hard to show (see Lemma 4.2 below) that the matrices ^ x and

^y are tridiagonal, nonsingular, and totally positive.

Following deBoor ^9], we may solve the system (4,1) in two steps:

1) Solve ^x U = Z for the nx by ny matrix U,

2) Salve ^y C T = U T for the nx by ny matric C.

In carrying out step 1} it is desirable to first compute the LU

decomposition of fix , and then to compute the columns of U by back-

substitution using one column of Z at a time. Because of the handedness

of fi x , the decomposition can be done with special software designed for

banded matrices. Because of the total positivity, the decomposition can

be done without pivoting (cf, [8]}.. For appropriate linear algebra

packages, see the FORTRAN subroutines BANDET and BANSLV in ^8^. The same

comments apply to step 2).

The technique suggested above is mare than simply a convenient way to

arrange the solution of the system of equations in step 5) of the

algorithm -- the approach takes essential account of the tensor-product

nature of the problem and results in major savings in storaga and

:^.	 operation counts. In particular, in equation (4.1} we need only store Z

and the three diagonals of the matrices ^x and ^y. The total

operation count for the algorithm is D{nx^ + ny 3).

The equations in step 5} of this algorithm are precisely the

conditions that the volume under i;he spline surface in bin v^ should be

.	 -	 ^	 _	 ^,
,_
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i^

^

r-,

^-^^ exactly equal	 to the voi ume of the histogram in bin vu, al l v = 1,... ,nbx '
c

^^
and u = i,...,nby.

.
^^:

Lemma 4,2.	 The nx by nx matrix ^x defined in (4.3) is tridiaganal,

;^

^^; nonsingular, and totally positive. ^^

``	 ^
^^

Proof: The tridiagonal nature of ^ x is obvious from the support
^^

^ ^,.

properties of the B-splines. 	 In particular, because of the choice of

^, knots, the only B-splines with nonzero values in the Interval

^I Cxti,xti^^^ for ^ < i c nx are the 6-splines t^TN^, and N^^l . (fin the-3 ,

^a

_ first and last intervals only two 8-splines have nonzero values).

lta Ide turn now to the assertion of total positivity.	 Suppose that we ,^

s e l e c t Z c v l <	 ...	 c v k < n x and ],<^^<.,.	 c u k < n x w i t h^< k< n z; .
^`

We need to show that the determinant
(^'''

..
y3ll + ..

^
'

v^,...,vk	

xtv1^,^	
3	 k	 !c

^^^^9e.. ,^,(k^	 L

f,

i!E
L

= de^	 ^ j K.y, v^	 I^f^^^x^dX	 ),^^^'^^^

^pp
^ .9

'i	
Ta

xtv ^^	 Xt^ '}'y
k	

[det(N^ 
^^i))ij	

...	 f	 ^d^l...d^k
xt^	 xt	 °^^^"^.

.^

k^^^ ^
^^

vl vk	 ,l

w:
_

i

is nonnegative.	 But by the total	 positivity of the S-splines (see e.g.

^ C19,Theorem 4.65]), t^2 determinant in the integrand of this multipie
^^

^. Integral	 is nannegati^a^e far all ^^< ... < ^^,	 Since the intervals aver

`^
-'1 which the integration is performed are in increasing order, the total

pastivity assertion faila^^s. ,

_ `

t^J
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Finally, the nonsingularity of ^x follows from the fact

(cF. [19,Theorem 4.650 that the determinant in the integrand of

1,...,nX
D(1,...,ny) is a continuous function which is strictly positive far

certain values of the ^'s in the intervals over which the integration

takes place. c^

§5. Com uting The Bayes Decision Regions.

In this section we discuss the problem of computing approximations to

the Bayes decision regions R 1 ,,..,RNC in the case d = 2. Since in

general, vre do not know the densities P1,..,,PNC, it is natural to

approximate the Bayes regions by using the approximating splines si

in place of the P i in the definition (2.1) of the R i . Thus, we define

(5,I}	 R^ _ {x FR2 	ai s i (x} > aj sj (x}, all j # i}	 i = 1,..,NC.
c.: J

When the equality aisi(x) _ ^cjsj(x) holds, we put x in the set	
=^{.

^^

R i provided i is the least integer j for which « i P i (x) = ajPj (x).	 a,

The boundaries of the decision regions are Contour lines defined by the
ry

equations s ij (x} = a i P i (x) - «^Pj (x) = 0.	
:.:J

The problem of locating the 0-level contours of the s ij can be	 =^

handled by any standard contouring algorithm (see X20] for a review of

several methods). We now present an algorithm which is particularly 	 ,'

efficient far our applications since tensor product splines can be 	 e
,,

evaluated very efficiently on grids. 	 ^'
^,..

is^.n
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c^
+I

i^

Ef,	
Algorithm 5.1. (To find the zero contour of a spline surface s):^...

r
1. Choose positive integers ngx and ngy.

iS

^^	 2. Choose xgI < ... < xgngx and yg 1 < .•. < ygngy^

^;

3. Compute s	 - s(xg iyg )^	 i ^ 1,...,ngx	 j	 Z,...,r1gY,tl i	 i ^ -	 i	 ^

4. Triangulate the grid by drawing in upward sloping diagonals (see

'^
	

Figure ^}.

^:

	 5. Identify the edges of the triangulation vrhose endpoints have

opposite signs.

6. Use inverse interpolativn to compute an approximate crossing
	

r'
point for each of the edges in step 5}.

7. Order the points on each contour and thread a curve through them.

u

^•	 In practice one would normally choose the xg's and yg's to be equally

spaced . The choice of ngx and ngy cant rots the resolution of the

contouring process -- 1arge values of these parameters will give a fine

grid and correspondingly better resolution, Step 3) of the algorithm can

be made very efficient far tensor-product splines (the algorithm can be

used on any function s which can be evaluated at the corners of the

grid). Step 7) can be accomplished using straight line interpolation if a
	

^,

contour consisting of a polygon (with sharp corners) is acceptable,

Otherwise it is recommended that a parametric spline curve (possibly with

same tension) be usedo Steps 6) and 7) can be eliminated altogether it'

one is willing to accept a polygonal contour. In particular, ,if C is a

contour of s, we can replace it by the boundary of the set D, where D is

the smallest union of rectangles drawn from the set

__ -	 —_.^-	 ...:_rte._-x^	
',

}^ ^^_ _ —^	 •_

:^	 _ __	 _ _	 ..—rr^+/YYWM^Yf X4(1 ^^^ 	 ri:; _	 _	 _	 _	 .._—i.. ^- ^.a .a__. ..^,^....e..^.^._..r _

^..

.;

;i ,(•..

j.	 I^..•

I3	 ^^
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xgl	
x^2
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xg^
	

^ .^

xg2
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x

Fig. 2. A contouring algorithm.
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(5.2)	 {^xgi,xgitl^ ^ CygJ ^Y9^.^ 1 7	 1<i^ngx, 1<j<ngy}

such that C c g. Figure ^ shows a typical situation when a smooth contour

has been replaced by a polygonal one.

§^. Computing The Probability Of i^isclassifieation.

Suppose once again that s 1 ,...,s ^C are spline estimates of the

conditional probability densities P1 ,...,P^C associated with a classifi-

cation problem. Suppose in addition that Ra,...,R^C are the

approximate 8ayes decision regions defined in {5.1). Then an estimate

G far the pmc 6 defined in (2.2) can be computed as 'Follows:

NC
(6.1^	 G -	 1 -	 ^ a	 f ^ s (x)dx .

i=1 i
	 ^^ i

Rs already observed earlier, it is possible to integrate

tensor-product splines exactly over rectangular sets. Thus, if we replace

the R, in (6.1) by R i , where lei is the sma1Test union of rectangles drawn

from the set D in {5.2^ s ►̂ ch that R^ ^ 1Fi , we can compute a71 of the

tha integrals in the expression

IBC

i =1 z	 ^^ i

exactly.	 Ths estimate G can be made arbitrarilly close to G by taking a

sufficiently fine grid.
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Fag. 3. R polygonal approximation of a contour.
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^^r-a

^, ^f the 3 i r 5 are nonnegatiue (as they are supposed to be, although

^;	 ^ in practice they may miss by a little -- see Remark 4 	 ), th`n since R^ ^

;^
	

L``
ì

^
^• for all i, we concluded that G < G	 tie can obtain an upper boundry i^	 _ ...

^IF #	 L-=
far ^ by replacing (for all 	 i^	 R^ by a the largest Ri which is a union

i ^J of rectangles drawn from the set {5.2} and which satisfies R i c	 R^.
^,

r:r

j	
L:

^ §7.	 Numerical Results

j( The methods discussed above have been implemented in FORTRAN, and we
L ;t ti ^

ro
have begun a testing program utilizing both known distributions and actual

^, ^.andsat data.	 F7 gure 4 shows a standard bi vari ate normal distribution ,

with mean (^,1.) and variance {,04,.04). 	 A sample of 500 points was drawn

from this distribution usin 	 a random number	 enerator	 and a histo ramg	 g	 ^	 s
4

^;
with bin width (.25,.25) was constructed. 	 The result of fitting this

histogram with a biquadratic spline is s?to^vn in Figure 5. 	 A comparison of ^	 ^.
r^n
{^^, the views clearly indicates a very good flit has been achieved, although it '

should be noted that the spline in Figure 5 does take small 	 negative ^	 -^^^

^- values at some points.

^^' Our second example involves actual ^andsat data.	 Figure 6 shows a ^	 }^
ti^

histogram which was generated from 500 samples taken from Channels Z and 4

^

of	 Figure 7an agricultural scene.	 shows that the corresponding spline

fit is very good, despite the camel exity of the histogram.

Wa

^	 ^.
^^
^^
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Fig. 4. Bivariate Normal Distribution mean = (I,1}, variance
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Fig. 7. The spline fit to the histogram in Figure 6.
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§8. Remarks

1. The idea of fitting a spline to a histogram in such a way that the
y,

area of the histogram in each bin matches the corresponding area of the

spline is due to Boneva, Kendall, & Stefanav [6]. Schoenberg [18] showed

how the idea could be carried over to bivariate histograms (see also [7]}.

2. The usual approach to fitting splines with area matching (cf. [7,18]} 	 -;

is to compute a cubic spline which fits the cumulative histogram, wnd then

to take its derivative. In the bivariate Setting one may fit a bicubic

spline S to the cumulative histogram, and then the desired density fit i^	 ;.,,.

given by s = Dx yS, In Section ^ we have presented an algorithm which	 ^-^

works directly with the biquadrati c B-splines and the original histogram.
-^

3, Our discussion in this paper has concentrated on the case of two 	 ^^

dimensions. except far some notational difficulties, there is no 	 ",
'	 is

theoretical problem with carrying over the methods presented here to 	
._„

^^

higher dimensional cases. There are, however, some practical problems.
^:J

Clearly as the dimension d increases, the storage requirements for the ^n

parameters of the histogram and spline increase correspondingly. The cost 	 ,^.

of solving the analogous linear system to (^.1} also increases with d, but

the tensor technique of deBoor [8,9] can still be used. Additional

difficulties arise in connection with finding the Bayes regions and in
r.:-.

computing the pmc. In particular, the Sayes regions now become subsets of rs„

d-dimensional space, and their boundaries are sets in d-1 dimensional 	 =^^

space. We are currently planning experiments with d = 3.

.:a

_^;,
s

ru

h.,,

r
_3
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4. The volume-matching algorithm presented in Section 4 is not guaranteed

to produce a spline which is nonnegative. (Figure 5 shows a typical

example where stakes on small negative values at some points). This is

not an ideal situation since, after all, s is supposed to be approximating

a density function. There are several approaches to adjusting s to obtain

nonnegativity. For example, one can simply replace all negative values by

zero. Alternatively, one can add small positive multiples of selected

B-splines to achieve nonnegativity. We are currently exploring such

post-processing schemes.

5. Another approach to achieving nonnegative spline density estimates is

to determine the coefficients of the spline as the solution of some

constrained optimization problem with $ide constraints. This is the

approach which we used in [13^ in the univariate case. A similar approach

can be carried out in the bivariate case, but the resulting linear

il °	 programming problem involves a very large tableau and hence requires

r-°	 considerable storage space as well as computational time. Ode are
^^

currently exploring special optimization methods for approximation by

^^±	 tensor-product splines which will take advantage of the tensor nature.

•--^a.;
,,

s^	 ^^ ;
I: -	 ^-e

^.
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ABSTRACT

^°^.	 ....

The method o-F dete^^mining asymptotic confidence bands 'For 	 =

autoregressive spectra due to Newton and Pagano ^3^ is extended tr y the

case of data observed in the p?ane. One Quadrant At^toregressive ^^ode7s
	 ^^

are used as a basis for the method
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1. INTRODUCTION

The analysis of data observed aver a regular grid of points in

multi-dimensional space has become an important problem in recent years;

particularly in the area of remotely sensed data such as data observed

by satellite. Viewing such data as a realization from a time se^••ies

having a vector index set representing the location of the nbservatians,

one seeks to extend the results far scalar index set to the more general

case. The purpose of this paper is to extend the method of one

dimensional autaregressive spectral Confidence bands to the two

dimensional case. The extension to more than two dimensions is

straightfo Huard.

2. T4J0 DIMENSIONAL. TIME SERFS

We say that the collection of random variables {Xt^T,t,-r=O,f,l,+2,

...} is a (w

/

eakly} stationary two dimensional time series if

1 )	 E ( X t ^ T ) = Il	 1^t,T

ii) There exists a function R(called the autocovariance function

of X) having integer valued arguments such that

R(s,u} = Cav (X	 ,X	 }	 V't,Tt,T t+S,T^'ti

An important function for modeling and interpreting two dimensional

time series is the spectral density f^.:nL^ian f of X which is given by

(if it exists) the two dimensional Fourier Transform of R:

f{^y,^}	
^2^)2 

^	 ^	 R(s,U} 
e- ZSt^- iU7,	

^ m,J^e^->;',•^]

C=_oo it=-^oo
ci

Yi. -^

r

.^

'

	',

^•^

r ^.



f	 Given data {Xt ^t }, t^l,...,nl, T=1,...,n^ from a zero mean series X,

we may estimate (without assuring any parametric model for X) R by the

sample autocovariance function

n l -^s^ n^-^u^

R(s,u) = 
nl n2 t^l	 ^r E l	 Xt'TXt^1s^°T^'^u^
	

^s^<nl,^u^<n2, (2.1)

and f by the windowed periodogram spectral estimate

nl -1	 n2-1

f(^'a) 
r ( 2^r } ^ ^	 ^	 fc(s,u)R(s,u)e-is^-iva

s--(n l -1) u=-(n^-1)

^ ^
= f f 9C ( m-^,a-v}I(u^^)dudv ,

-^ -n

where the periodogram I of Xis given by

I(u,v} =	
1	

^l	 ^2 X	
e-its-iry 2

(2^r) Zn l n^ 	 t=1 r=1 t,T

and k is a suitably chosen lag window, while the spectral window K is

given by

nl-1	 n^-1

K(^^v) - 
(2^)2 

^	 ^	 K(s=u) e-is^- iuv

^n the ane dimensional case an alternative model-oriented method of

estimating f is to assume that X can be adequately approximated by a

causal autoregressive model in which case f can be expressed as a

function of a few parameters which can be well estimated from the data.

:^*^;	
A^

.,,8
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r^'
the idea of modeling an observation at time t as a linear function of

'.	 ^^: finitely-many previously observed values is intuitively appealing when

^ ,^'	 the index set is time. Wowever, defining the causal analogue for spatial
^ ^:

E	 series is notoriously difficult (see Whittle [^] and Besag [1^ for

s'(	 example) as there ?s no natural ordering of the data. T^^stheim [Q^^,

,-.	 [5] has investigated analytically and numerically the efficacy of what
,y	 i ^

``	 are called one-quadrant autoregr pssive models as approximating models

for X. Tn this paper we adopt this approach and find simultaneous
t	 ^^^

1	 confidence hands for the spectral density function of such a process.

3. 0^'VE Qt^ADR,4i^T AUTOREGR^SSI1fE PRQCi=SSES

^-
The two dimensional time series Xis called a one quadrant auto-

^i^	 regressive process of orders p l , p2 if
i` ,,

p i p2
(3.1)

j =0 k=0

where a(O,D) =l and a is a two dimensional white noise time series, i.e.

the E's are zero mean, uncorrelated random variables with common

variance o2 . We write X QAR (pl,pG,a,^2). Tj^stheim [5] discusses

sufficient conditions far a spatial series to 6e representable as a QAR

and suggests that the class of processes so representable is quite large.

If the complex valued polynomial

p l p2

9(Z l ^Z2 ) = ^	 E	 a(j,k) zl^zZk
,^-Q K=0

)^^

__ ^_

_	 ^_	

..	 ..	 _^^ w

^^
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satisfies g(xl,z2)=0=^

X is stationary. Also

multiplying both sides

on both shies, and not

r ands are both zero}

jx, l (>1	 ^z2 ^ >1 then the QAR is called stable and

one has Yule-Walker type equations {obtained b.y	 ^.

of (3.1) by Xt-r,T-s 
for r,s>0, taking expectations ^^

	ing that st^T is uncorrelated with Xt_r,T_s unless 	 ^-:

.^

p1	 p2	 :'^

a(j^k}R(j-s,k-s) = sr8 sa2	 r,s>0	(3.2)
j =0 k=0	

T

r^

where & v is the Kronecker delta, i.e. 6 v is one if V=0 and zero

otherwise. Rlso, the spectral density of X is given by

z
Z	 p	 p	 ^.^

(2n}	
^1 ^2 a(j,k) e-

ij^- ika 2

j-0 k=0	 E

^_
Solving (3.2) for r=O,...,pl and s =O,...,p2 with the R`s defined by

^^

(2.1) replacing the R's, one can obtain estimators Q 2 and a(j,k) which can F--^
^•r.	

be inserted into (3.3) to obtain an estimator f of f. ►lustice ^2^F	
..^

r	 describes a Levinson type algorithm for efficiently solving (3.2)

,^^
f	 recursively for varying values of p l and p2 . fj^stheim [5] discusses
_	 ^=}.

methods of optimally choosing the orders p 1 and p2 but we sha11 derive our

inferences contingent on having adequately chosen them. ^-,

.:^

4. ASYNipTO^IC CONFIaENC^ BANDS FOR QAR	 ;^	 )
F

... i
In the one dimensifinal setting, the reciprocal ^^f the auto- 	 ^	 ^-^

regressive spectral density is a linear combination oi' a finite number 	 ^'	 ^^1i

(-1

_	

^	

^^l3

F+3

`^
j.
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of parameters that can be estimated by asymptotically normal estimators.

Thus Scheffe	 ra'ections can be used to find as m totic confidence bandsP	 3	 .Y	 p	 ^,

on the entire autoregressive spectral density (see Newton and Pagano

[3]).	 In this section we describe the analogous procedure far a

^: AQR(P ^PZ ^a,^2 } process.	 ;,
1

There are p={p1a^1}{p2^'1}-1 	 a's to be estimated (a(j,k) 	 for j=d,...,

^.
p1, k=O,...,pZ, but a{0,0)=1}.	 Define the vec operator on an nxm matrix

^( A having columna a 1 ,...,am to be the process of forming the nmxl vector

a = vec (A) by a = (a^,...,a^}T.	 Let tvec {A) be the result of removing^,

^^;

_

the top element of vec (A).'

}, l.et A and R be {p 1 +1}	 (p^+1} matrices having (j,k}th elements

`' a	 k	 and R	 k	 ' =4	 ..	 k=0 ..	 res ectivel	 .	 Then one can	 ^'t,7a	 )^	 {J^	 )^	 J	 ^	 •^ p 1>	 •^p2	 P	 y

r
1,

write the Yule-balker equations (3.2) in amtrix form as
;

^-

^_

i'

Ra-- r

rr,

^ where a = tvec (A), r = tvec (R}, the first p l 	rows of R correspond to

^^^ (3.Z)	 for s=0 and r=l,...,p	 the next p 1 +1	 are for s=1 and r=0,...,p1,1^

i^" and the last p 1 -^l	 are for s rp2 and r=O,...,pl.	 To farm R explicitly, Hate	 ^.

.	 !^^
that a and r can be partitioned into a p 1 x1	 vector a(0), r(0) followed by	 ;^

t

^ ^

-

pZ	 vectors a(1),...,a(p2};	 r(1),...,r(pZ)	 each of length p l +l.	 Thus R can	 y

,^,<<	 .

^-

be pa rtitioned into a matrix containing p2 -^1	 rows and columns of blocks. ^	 ,

Ca11	 the	 (i,j}th block C(i,j},	 i,j=O,,..,pZ.	 Then C(0,0)	 is p l xp l ;	 C(O,j}	 ^,

^ is	 p l X(p 1
+1),	 ,^=1,...,pZ;	 ^(^a^)	 is	 (P 1 ^-1) xp 1 ,	 ,^-1,,..,pz;	 while	 for

t. ^.

,1^k>1^	 G(J>k) is{ p 1 +1) x ( p l ^'1}•	 Thus
}	 ,

^^^^^
,.

-- ^^.: --
MIIijI1^R°'^	 __^J-,e.^„r_^;.w 	- _	 —NMf.'w	 4	 a^ 1 — s._.^ ^_.. •	 _	 _ —	 -

^.

____
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^,

^^

i1
^^

1 ^z
'1:;

.^
_	 '"
^	 ^

p^

'^

f k-a

A careful inspection of this equation shoes that
^^

_

CQm(0,0)	 = R(m-^,0)	 ,	 ^,m=0,..	 ,pl-1
4.	 r^:

• ^
C Rm (Q,3) ^ m^,{j,0) - R(m-Q- j>^> 	 J~1^	 xp^

^'

^,=0,..	 ,p l -i ^	 ^i^.

m=0, ... , p l

^^

^.-,

^,

Q,emEJ^k)	 = R(m-^,,	 k-j)	 ^	 j,k-l,...,p2 sil
^^

Q,m=O, ..	 , pl
^.

-:

and in fact R is the block Toep1itz matrix having (j,K)th block C(k- j}
. j^
^-

where G^m(v) = R(m-^,v)	 ^v^^p^,Q,m-O,...,p^, except that the first ^'^

raw and column have been removed.	 Thus to form R mne needs R(r,$) for
-:u	 a	 ,

^rl^l^	
^sE<p^,

J

Theorem	 {l'3;^,i:heim C^ j )

r..n	 y

?	 ^
^^^;

^
Lpt a be she solution to the Yule-stalker equations (3,2) R a = -r

^'	 "
`

^'^P

." n

where R and r are the same as R and r with R{j,k) replacing. R{j,k}. :^
i,

Suppose K is a s-table ^AR(pl,p^,a,ff^) where the white noise series E is

^^` ^
_-	 ! of independent, identically distributed random variables. 	 Then as nip,

:-:;

::i i=1 ,Z, we have that
..,;,	 ^
':	 ^,
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^^^
^'^
^I

{ recal l that; p = (p l ^l) (pZ^-1)-1) .

iVow the reciprocal of the QAR spectral density is given by

f (w,a? =	 1	 = {^n)^/^^	 ^ 1 Ez a{5,^) e
- ijw -i^ca ^

z	 f w,a	 {2^) 2 	^=o k=o

which is the spectral density function of a two dimensional moving average

process Z of orders p l and pz having coefficients a{j,k) and noise variance

(2^r)^'/^ Z 	{See T,^^stheim [4]). Thus

p l p2

ti

where ^ is a white noise process having variance (2n) 4/^Z . Now clearly	 r

RZ (r,$) W Cov 
{Zt,^r'Ztfr,r+s) 

is zero for ir^>p l and ^s^>p 2 while RZ(r,$)

is a complicated function g of the a's and ^ Z , i.e RZ (r,$) = g{a,62).

Thus

f (^,a) =	 1	 E	 ^	 R (r,$) e
-irw-is^

Z	 (2^r)2 ^ r ^ `p l ^ s ^^^ Z

1	 R {r,$) Cos rw Cos sa-Sin rwSin sA]
{^ ^ r ^^Pl ^sf^2 Z

which is a linear function of RZ {r,$) far ^r^^p l , fs^<p2 . Since a and Q2

!^	 are asymptotically normal by the above theorem, we have that the R Z (r,$) =

g(a,Q2 )-are also asymptotically normal -and one can use Scheffe projections

to et simultaneous confidence bands on f a d t s9	 Z n
	 hu on f. It rema7ns to

^	 obtain convenient expressions for the asymptotic covariances of the R Z and

bj _	 to determine the best way to display the bands graphically.
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ABSTRACT

Satellite estimates of agricultural characteristics often are net

	

. ^	 sufficiently precise for reliable use in small geographical reg^ ,ans. The

	

'	 grecisian of estimates of agricultural characteristics such as crag pro-,.-^

	

.^	 partians and leaf eras indexes can be increased by modelling ground

^^
abservatians as a function of satellite estimates. linear regression

-; models using least sgaares estimators of the medal parameters is most

	

^^.t	 often advocated as ass appropriate methodology; however, least squares

	

=^	 estimation requires that the gredictor variables are measured without

` 1 ^	 error, an unreasonable assumption fox this application. An alternative
s^..

^^	 estimation methodology which assumes that bath the response variables
^.

(ground abserva} ions} and the predictor variables ( satellite estimates)
^f

	=1	 are measured with error involves the use of linear structural models. In

^' this paper the application of linear struct^sral models tc the estimation

of agricultural .:hara4:teristics using satellite spectral measurements is

examined.

^.^
;^

^^

,.:
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^``
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1. introduction

Satellite remote sensing is an important technology for rapid

collection and processing of spectral information an agricultural and

vegetation characteristics. Estimation of crop acreage and biomass axe

but two of the many potential applications of s.atellita remote -sensing

technology. Elowever, the precision needed far reliable estimation of

agricultural and vegetation characteristics often is not obtainable

solely from satellite estimates, especially for geographical rc^gians as

small as counties. Far this reason ground observations from selected

sample locations are often used in conjunction with satellite spectral

measurements to obtain estimates frsr geographical regions of interest. In

this paper the use of Iinear structural models to obtain estimates of

agricultural characteristics from ground abservatians anr^ satellite

measurements is investigated.

La.near structural models assume 'that a variable of interest, the

response variable ( Y), is a linear function of another measurement, a

stochastic predictor variable (h):

(l.l)	 Y ^ a ^ ^X .

In addition, bath the response variable and the predictor variable are

assumed to tae measured with error; 3.e., x and y are observable, where

(1.2)	 x X^ u	 and y^ Y+ v.

Classical linear regression models assume that the error in x is zero

{i.e., u ^ 0) or at least negligible and that the predictor variables are

known constants.

^^

i

__.	 .__	 ...__	 _	 -	
_- t ^	 _ _ ^.	 -	 ^	 --	 _	 __

iir-iNafrr'—.,__".:_	 .^ .^- .r.^*^	 e.aw^^sr»,....a-'u.r^s..^y yam,_,.. •__....._	 .. ^	 ^—.
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Although ground obaervationa can be c^xpeeted to have less error titan
,^	 ;

	

F ,,`	 estimates obtained from satellite spectral measurements, baxh ground

	^ ^	 observations and satellite estimates axe sub3ect to measurement error.
'r

i	 F

	t	 i~or example, there are many sources of measurement error in ti3e cal-
f

culatian of leaf axes indexes from ground observation: trees must be
..^

^i
felled as^d the leaves collected, weighers, and their ind^ .vidual areas

calculated. Y,istewise, satell^ . te spectra], measurements are subject to
r

	

..	 several sources of e.rrar including registration error, randomness

	

-^	 associated with the selection of segments and pixels with which to train
t.^..

classifiers, and technician error in the identification of pixels. Thus
F ,

structural models in which both Cite response and predictor variables are

assumed to be subject to measurement error present a more real^.stic

framework from which to estimate many agricultural and vegetation

	

- ÎI	
quantities from satellite measurements.

_I
^^^ In Section 2 of this paper the theoretical properties pf maximum
^.:
	^#	 likelihood estimators of the parameters in linear structural models which

I,

assume independent normal distributions for X, u, and v are outlined and
^I

	^.i	 conditions under which these estimators ;.educe to least squares esti-
'

	

^.^	 maters axe noted. In Section 3 the dependence o£ linear structural

	

^'	 estimators on knowledge of the ratio of error variances {i.e.,

	

:j	 var(v) / var{u)) is assessed. two a ^.ications of this methodolo 	 arePP	 SY

discussed in Section 4. Section 5 ca ptains coxtclvding remarks and

	

:;	 mentions several extensions which axe currently under investigation.

^`
(.:1

r^Il

!^
t-l1

f:

r^.1

_..^,^...._ .	 k
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(2: 3)

^X ^ a u ^ sx

h
^^X = SxJT

a¢^u^^y

^
2^

X ^ v=sy
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2. L^.near Structural t^iodels

dither of tcsn asau:nptions can be added to the linear model defined

by equations (1.1} and (1.2} to define the t:ature of the true (unobser-

vable) predictor variai^le X. Tf the true va3ues of the predictor

variable X are assumed to be constants, 'the model is referred to as a

linear functional model. if the true values of the predictor variable

are assumed to he stochastic, the snadel is referred to as a linear

struCtcsral model. The focus of this investigation is oat linear atruc-

tural models far which the measurement errors and the predictor variable

X are assumed to be independent normal random variables:

(2.1}	 X M PT(#^gC,^^), u--N(O,eu) and vNN(Q,av).

fiagether equations (1.1), (1.2}, and (2.1} constitute the linear struc-

tural model of interest in this worlc.

Under the assumptions stated above, the 3oint d^lstribution of a random

sample of n observations (x i ,y i) is bivariate normal; i.e.,

u	 ^Z ^ Q2	 s62

(2.2)	
yi	

'" N	
a+^}^	

XSs,2 
u	

^2s2{Q2	 i=1,2,...,n

i	 X	 X	 X v

fihe Fnaximum likelihand estimating equations for the parameters i^n

the 3oint distr^.bution ( 2.2) are:

u

i
l^

1

^;^

^I^,	 _	 _	
.. ^	 _	 .._,.__ .-w___^_._.. ..__^... 	 _	 _._^^	 __._.. __.	 ..	 -	 --._	 -;- ,.,,

	

--	
^ .
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	where x and y are sample means, s^ and sy are sample variancea, 	 J

	

and sXy is the sample covariance. There axe six model parameters which 	 .^„

	

must be estimated from these five estimating equations; equivalently, 	 '-'

there are five aufficiertt statistics from which tv estimate the sax

	

_	 ;,,

model parameters. Without ( a) knowledge of one or mare modal pars-

meters, (b) replication, or {c) the availability of one or more adds--

tional variables ( "instrumental variables"} which are correlated with X

the regressirn coefficients in {1.1) cannot be estimated consistently

under the normality assumptions ( 2.1) because the model lacks identi-
_,

fiability (Reieravl [8]}.

	Satellite remote sensing does not generally allow the type of 	 .^

	

experimental control which permits the co119ctian of independent repli--	 _^	 ;

	sated observations on both x and y. Likewise, satellite spectral 	 :x^

	

readings are usually converted to a single estimate of the charac^-	 ,'

	

,_i ^	 ^
teriatic of interest, thereby precluding an instrumental variables

^,

analysis. Tn these situations consistent estimation of the model
._^

parameters requires some knowledge of the parameters themselves.

:^•
	The model parameters which are of primary interest in the study of 	 :':t

the structural model defined by (1.1}, {1.2), and (2.1) are oc, p, }^^{,
E.

and Q^.	 Since ^X ^ x and a ^ y - Rx, the estimation of ^
YTf

	presents the only serious problem to the estimation of model. (1.1).	
5f

;...J

Consequently one must be able to assume some knowledge of the error

	

variances ate and av in order to consistently estimate the remaining 	 r-.a

	

modal parameters, in particular to estimate s, Kendall and Stuart 	 ^`

{[4j, Chapter 29) detail the solutions to the likelihood equations when

	

one or bath of the error variances is known, as well as the solution 	 ^_
c.:l

when the ratio of error variancea h ^ s Z /az is known.
v u	 ^-^

'^^^^

^:

' ^,

	

`^	 ".

_..	 ' '
^^:^	 _.
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The assumption that the ratio of error variances is known is

perhaps the most frequently-cited condition which is imposed to

solve the likelihood equations. This assumption does not require

-^	 explicit knowledge of either of the error variances and one often

encounters analyses for which it is reasonable to conclude that

the error variances are equal (i.e., h 	 1).	 Knowledge of the

error variance ratio also insures that the variance estimates

calculated f rom equations ( 2.3) are nonnegative, a property which

is not guaranteed when one or both of the error variances are

assumed known.

,-a,	
The solution for S when A is assumed known is;;.

L:
(.2.4) ^	 s(J^1 + sign ( sxy )]s 2 (1^) ^ h}].12 ' s(J^) = (sy--Asx) /(2sxy).

n-

^^	 ^3ue to the nonnegativity of the error variance :tstitnators when J! is
L:1

,,.s	 known, the estimating equations ( ^.3) pLoyicie the following bounds ©rt

the magnitude of the structural model slope estimator:

(2.S)	 ^sxy^/sX ^ ^^^ S sy/^sxy^ .

The lower hound in inequality (2.5) is the least squares estimator of

the slope parameter for the regression of y on x and the upper bound is

the ^.nverse of the least squares estimator for the regression of x or: y.

These two limits correspaned to structural model estimators w'r ►en it is

known that there is no error in the predictor or the response variable,

respectively. The latter estimator is also referred to in the literature

on linear calibration as an "classical" least squares estimator (e,g.,

Lwin and Mar^ .tz [7]).

^^	 Using the method of statistical differentials (e.g., Serf ling [14j,

(^'	 Chapter 5) one can reexpress estimator (2.^} in a Taylor series expan^

^'	 G

.	 _"	 _	 ^	 ^,.., .^`
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t	
^^i

'°^'^

^1

t^^	 J O^

si gn about the true parameter value. Iiy truncating this aeries one can

approximate the d^.stribution and momenta of S. Anderson [1]} cautions

that the asymptotic properties sa derived pertain to tha approximation

to ^ and not to B itself; nevertheless, the asymptotic moments of the

Taylor aeries expareaion prov^.de a potentially uaefu^. description of the

behavior of the structural model estimator.

Replacing the sample momenta in (2.4) by the^.r corresponding

par&meter values one readily establishes the consistency of ^. Applying

the method of statistical differential to a first-order approximation to

(2.4), the asymptotia variance of this approximation to ^ is to 0{n-2)
`:

{Lekshrninarayanan and Gunst [5]}:

where y ^ s^/UX is the "noise-ta-signal" rat^.a far the observable

predictor variable x. ^'or compararive purposes, the asymptotic mean

squared error of the lest squares estimator ^T.S ^ say/s^ is {c.f.

Richardson and Wu [9], equations (2.24} and (2,25}):

{2.7} R2y{n-^+Y)(l+y}"2 + n`lJ^y{1+y)-^ .

When the error variance ratio ^. is incorrectly specified, the struc-

rural model estimator (2.4) i^a no longer consistent. Again ignoring

teams to 0(n^ 2 }, the asymptotic expectation and variance of a firstT

order approximation to (2.4} using an assumed value of ^^ for the error

variance ratio is (Lakshminarayanan and Gu,;st, [5}}^

(2.8) E(^} - g^{^'^} ^ sign(R} {g^{1^^} + h^^1/2

{2.9} Var{^) ^ n-1(R2+h^)"2[3Rxy2(A-^.^)2 +(R2+^^)2^{R2+Jl)7^^.Y2}]

where gx(^19e} _ {(R2..^^}a^a. {^.-.71^)au}/(2Rc^). 	 ^1hen Jl r̂ ^ A, ^{^)

`-,

i

i

^:^	 ^.

,_

{.

'^s	 ^

^,

w,	 ^
^^,

^^	 ^
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E3 and equation (2.9} reduces to equation (2.6).

While the structural model estimator (2.4) and approximate asymg-

' totic properties such as equat^.on (2.6) are routinely used, few thea-

rQtical nr empirical studies have been conducted to evaluate the per-

formance of ^ when (i} the error variances ratio is incorrectly chosen,

or (ii) only small samples of data axe available. Such evaluations are

especially important for the present study since ono generally en-

counters arnall numbers of sample locat^.ons for which both gro^snd

observations and satellite estimates are available and the true =rariance
	 ^^1

ratio is not kncswn. The next section presents a detailed investigation

of these two issues.

3
3.	 Variance patio and Sampia Size >rffectg-

; Lakshminarayanan and Gunat [5^ repc;t the results of an invests-

gation an the effects of two factors an the performance of the struc-

tural model estimator (2.4):	 the choice of the variance ratio ^, anrl.

sample size.	 In this section the ±-exults reported lay l;akshminarayanan

and Gunst are	 resented in	 rester detail,	 InP	 g	 Particular, (i) the ^'

structural. model estimator is shown to be snsensitive to the chnice of
F{

the variance ratio only when ^. is large and y is small, (ii) the struc-

tural model estimator is shown to possess a smaller wean squared error

than least squares only whEn the variance rat^.o is chosen in a rela-

tively narrow nesghborhood of the txue value, and (iiij eatisfactnry use

of asymptotic farmuiae for variance estimation requires a sample size in

^ excess of 20Q.

^ Asymptotically (s.e.,	 replacing the	 sample moments by their

parameter values},

^r
'i4^
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indicating that the rate of change of ^ with respect to h depends on °^^

the true values of g, 7^, and r.	 Figure 1 is a graph of the relative ^^

rate of change ^S$^BJIfIS. 	 This figure illusCrates the gena^ral features
r^,

r..

of equation (3.1): ^ is relatively insensitive to the true value of ^ '

for large values of 1^ and small values of Y (holding ^ fixed}.	 Together .,
,{
,` these two Conditions imply that (fu, the error variance far the, abser-

r

value variable x, is small.	 In other words if v^ is not ne^ ,ligible

the linear structural estimator can be very senesitive to i:he true value ^	 !,.'..J
of ^., suggesting that an incorrect choice of ^ could substantially alter ^^,^

^ the estimator. ^^

^.' Alternatively, one might wish to assess the sensitivity of ^ to ^
^1

when the variance ratio is assumed to lie stochastic rather than con- ^
r̂

stant.	 Lindley and El-Sayyad	 [6}	 propose	 that a Uniform(k-1 ,k) r
1 .J

prior for ^ be assumed if the measurement errors are believed to be of

the seine magnitude.	 Other reaso^iable priors include N(k,cr^ ) and ,w

r	

i
^=
r

Chisquare ( r) distributions. 	 If one approximates the expectation of ^^^	

!

^. (3.1) using a three-term Taylor series expansion, the approximate

,^

^-

expectations far the shave threo priors are, respectively,
...

2	 1 -1	 -1 2
(3.2)	 -2SY^(26 i^k^hk	 )	 ^ (k-k	 }

2	 -1 3 - 1
{3(2^ ^k^k	 ) ^	 ^ r'	 t.s

(3.3)	 -SY{ (^2^•k)
-
1 ^ ph(R2^k)-3} a--^

^.

(^.4^)	 ^-RY{ ( ^2a^k} -^ ^ 2k( g2^k)-3^
r	 1.

,

^_

Eq_uatians (3.2}-(3.^)	 ( divided bar ^} are graph^:d in Figures 2--4. 	 The ,.:,

same Overall C01]Cluaion8 drawn from Tigure 1 are appaxent in these ^_-'	 ^,^

graphs: the structural model estimator (2.G} is relatively insensitive ^" ;,

'-^ to the txue value of the variance ratio only when h (k) is large and y is ;,,
^^ r°7

,^
^.,

small .
^^^

^ }̂ r l

L- ^`^

-	 ^^'^-

^^-

_ `_

-	 e .	 ^	 '
. ^yl.	 mil"7 ^` ^f'I'c.	^ ^	 i^	 ^.	 R...r^.r

t

t9 ^. n -= s-rev?,.w..	 Wes,	 ^ i :i Y.-	 ...	 __	 ..	 ^ ây
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The asymptotic momants ( 2.8) and {2.9) demonstrate two important

properties of the structural ;model estimator when the variance ratio is

chosen incorrectly. When JL is chosen incorrectly equation (2.$} shows

that S is biased. In addition, p has a larger variance (compare

equations (2.6) and {2.9)) than the structural model estimator which is

obtained with the correct value of ^. Thus not only is the structural

model estimator sensitive t q the choice of the variance ratio but Sts

mean squared error properties are also affected by Both the true value

of 7► and by an incorrect choice of the variance ratio.

Figure 5 ie a graph of the ratio of the asymptotic variance,

equation (2.6), of the structural model estimator to the mean squared

error, equation (2.7), of the least squares estimator (reca^.l that the

structural model estimator is asymptotically unbiased). Tn this figure

$, Q^ and sv are fixed at 3,5, and 1D, respectively, so that by

varying a 2 both J1 and y are simultaneously varied; in particular,u

small values of s Z correspond to large values of h and sma11 values of
U

y. As the figure indicates, unless ^ is very small, cars^esponding to a

large error variance for the predictor variable relative to that of the

response variable, tha structural model estimator has a smaller asymp-

totic mean squared error than the least squares estimator.

Figures 6-^9 display ratios of the asymptotic mean squared errors of

the structural model estimator with an incorrect choice of the variance

ratio to that of the least squares estimator. These figures use the

same model parameters as does Figure 5 but with a^ selected so that

the true variance ratio is 1, 6, and 10, respect^ .vely. The figures

demonstrate that the assumed variance ratio must be chosen in a re-

^^	 }
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	'-^	 latively narrow interval around the true value in order for the struc-
i^

	^^	 ;^xror than leasttotal model estimator to have a smaller mean squared
"^

	

r ^	 squares.
.^

The foregoing theoretical properties are asymptotic and do not
F	 -
5

	. E 	necesssarily indicate properties of the structural model estimator for
'r^
	$^	 finite sample sizes. It is particularly important to assess the

	

^^	 behavior of ^ for finite sample sizes because the asymptotic moments

;j
which were derived in the last aectian pertain to a Taylor series

approximation to S and not to the true distribution of the structural

	

^^	 model estimator.

In Table 1-4 100fl replications o$ samples of size n were generated

fram the structural model defined by equations (1.1}, (I.2}, and (2.1)

using normal variates from T.M.S.L. subroutine GGIdM^ on a G.D.C. 6604

computer. Unless otherwise specified, R, o^, and QX are fixed at 3,

5, and 5, respectively (thus 7 ^ I). $y varying a^ the results axe

only a function of A and n. The values in the tables are displayed as a

function of the true talus of A and an assumed value, A*. Correct

choices of the variance reties correspond to entries for which A* s A.

Table i displays ratios of the average of Iflflfl ¢ values calculated

fram equation ( 2.4) to the taus value of ^3. For samples of size n ^ 54

and 104 the maximum relative error in estimating ^ using the carr^?ct

value of the variance ratio is 4%. Incorrectly choosing A^ larger than

the true variance ratio results in underestimation of ^ whereas toe

small a value of A^ results in avereatimation of ^.

Estimated and asymptotic mean squared errors far the structural

model estimator are compared in Table 2. Estimated mease squared errors

are calculated from the usual formula:

mae ^ $($i-^}^/1000

^-ry

_	 ^ °°-"rte	 ..c	 --	 ^.;.:	 _	 -- .	 ^ ^. _	 ^_	 a^ .. __ ..
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and asymptotic mean squared errors are calculated from equation (2.b)

using the true parameter values. The ratios in Table 2 corresponding to

the correct choice of the variance ratio indicate that use of asymptotic

formulae for moments of structural model estimators cannot be recommend-

ed for samples of size n = l0U or less. ^rrars of 15-31190 between sample

and theoretical mean squared errors occur far samples of size lQU when

the variances ratio is correctly chosen; much larger errors occur when

the variance ratio is incorrectly chosen.

Tables 3 and 4 display ratios of sample and asymptotic mean squared

errors for samples of size n = 20U and several values of ^, y, 7t, and

7►^'. When J1 is correctly chosen the ratios are much closer to 1.0 in

these tables than in Table 2. If relative errors of appra^timately lt}%

ar less are acceptable, these tables indicate that samples of size n

200 could be considered minimally acceptable for a wide range of^model

parameters. These tables also demonstrate that 1l^ must be selected near

its true value for the asymptotic variance formula (2.b) to provide a

reasonable assessment of the variability of ^. When S^ is small it is

especially undesirable to choose values of ^* which are ^.ess than the

true ones. The deleterious effects of erroneous selection of the

variance ratio decrease with larger values o^E R and smaller values of y;

moreover, when y ^ 0.1 and ^= 10 the ratios in Table 3 indicate a

relative error of 159'0 or less for most of the cases in which 1L^ # ^.

^^
4. Applications

^:	 '^'	 In this section the use of the structural model estimator (2.4) is^^

^:i ^	 Examined an two data sets for which ground observations and satellite
;^ ;

r? '	 ^^

;i

i

°^ ^
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classifier estimates axe available for the proportion of corn grown in

each of several segments ar portions of segments. No attempt is made to 	 ^,

obtain a final prediction equation for these examples; rather, they are 	 .:

used merely to illustrate several important features of structural model

estimators.	 u

TT,°^e first example is taken from Badhwar, Carnes, and Austin (3].
:^

The data set consists of 41 segments for which the proportion of corn

ire the segments has been determined from ground observation. The	 ^^

satellite estimates are obtained from a temporal model of crop greenness

(Badhwar [2]). Figure 9 is a scattergram of the ground truth pro-	 -3	 ^f
r,	 ^;

portions versus the Badhwar estimates of the proportions taken from the
;_^

raw data listed in Table 5. _--,	
',^

For illustration purposes, assume that the structural model defined 	 ^: {

by equations (i.l), (I.2), and (2.1} is an adequate representation of 	 °^	 '^

^^	 ^t.
the relationship between the true proportions and their satellite

i	 ^^

estimates. Nate that the variance ratio ^ is not known. Inequality 	 ^^ ^	 ^i
^:^	 ^

(2.5} provides bounds on'the structural mode. slope estimate:	 ^^
^,

1.0015R^1.291.	 ^' ^'	 ^^^:^

Thus the slope estimate is bounded in a relatively narrow interval. 	 ^-,
_;

Table 5 lists estimates far several values of the variance ratio. 	 `^'

Observe that the greatest char - , r_ in the estimates occurs for variance
i	 ^:a	 i

ratios in the interval (0,1}. If it is believed that ground observation 	 i
r-+

^'	 I

is subject to less error than satellite estimates, the variance ratio	 .;1;

would be expected to be in this interval. 	 ^

rn a forthcoming report, uniform and beta distributions are assumed 	 `^``

for the unobservable predictor variable X. The use of nonnormal	 ^ 
Î

distributional assumptions for X enables one to obtain estimates of the
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variance ratio without any knowledge of the error variances. The

estimates obtained for the variance ratio under the uniform and beta

assumptions are .501 and 1.16, respectively. These vE•lues of

correspond to slope estimates of 1.20E and 1.146. The salmilarity of

these estimates and those in Table 6 suggests that knowledge of the

exact value of the variance ratio may not be critical far this data set.

The second data set was obtained from a modelling of greenness

values using a mixture of Weibull distributions as aliscussed in Woodward

et al. [11j. Random samples of 200 pure pixels were obtained from a

single segment of corn and soybean craps, the proportion of corn in each

o€ the 61 samples was calculated, and minimum distance estimates of the

corn proportions were obtained. Figure 10 exhibits a scattergram

platted from the raw data in Table 7. Nate that large amount of

variability in the classifier estimates { x} relative to the true corn

propnrtiana {y).

The purpose in examining this data set is to illustrate the

behavior of the structural, model estimator when the data contains more

variability in the predictor variable than in the response variable.

Again using inequality (2.5), the structural model slope estimate is

bounded by the following values:

.100 <_ ¢ 5 1.717.

This interval is much wider than the interval for the previous example

and suggests that greater uncertainty surrounds the choice of the

variance ratio. Table $ displays estimates fair a range of a values in

T89
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the interval (0,1). The dramatic drop in the estimates fur very small

variance ratios makes choice of an appropriate structural model estimate

difficult if the variance ratio is belioved to be small, an assumption

which is supported by figure Z0. If one again calculates the estimates

under uniform and beta assumptions on X, the variance ratio estimates

are .271 and .091, respectively, corresponding to structural model slope

estimates of .222 and .909.

5. Concluding Remarks

linear structural models acknowledge the presence of measurement

error in both the response variable and the predictor variable, t^nereby

allowing a more resiistic representation of the relationship between

ground observations and satellite estimates than least squares esti-

oration of the parameters of linear regression models. In this paper

the potential far application of linear structural models to the

estimation of agricultural and vegetation charactexistics is investi-

gated. Assuming normal probability distributions for the unobservable

predictor variable and the two measurement errors necessitates same

knowledge of the error variances in order to estimate the model pars--

meters. The focus of this study is an the assumption that the ratio of

-L'

c:.,

y^

rq

_^	 q

-;,

-::^

The asymptotic properties presented in Section 2 demonstrate that
^^

	_, #	 when an incorrect variance ratio is used the structural model estimator 	 ;:

is biased and lass a larger variance than the corresponc€ing estimator 	 ^-
â.

which uses the correct variance ratio. The simulations in Section 3	 `J
.	 1

	

'	 show that samples as small as 50 or so allow acceptable estimation of 	 ^^^	 ^

	

^_i,	 ^ ,

	^'	 the slope parameter when the variance ratio is known. Samples as large	 ^^
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t
as 2U0 or mare are necessary for asymptotic variance formulae to provide

gaud measures of the variability of the estimator. b31{swiss, assumed

values of the error variance ratio in a narrow interval around the true

value are necessary both far accurate estimation of the Rlope parameter

and for acceptable estimation of the estimator variability.

The structural model estimator was applied to two data seta on crop

proportion estimation in Section A. In one of the data sets the precise

selection of the variance rat^.o was not found to he critical to the

obtaining of suitable parameter estimates because the structural model

estimator changed relatively little over a wide range of values of the

variance ratio. In the second examp^.e choice of the variance ratio the

estimator mflre, leaving greater uncertainty surrounding the appropriate

value to use.

Many opportunit^.es exist for improving the application of struc—

tural model estimators to the estimation of agricultural anc^ vegetation

characteristics. When the three predictor variable X is normally

distributed estimation of the slope parameter can be accomplished with

repl^.cation or with the use of instrumental variables. The applicatia3i

of structural estimation 3n these two situations wi11 be detailed in

future reports.

Theoretically the estimation problems de€^cribed in this paper are

not encountered if the unobservable predictor variable is nannormally

distributed. ^stimatea of the variance rat3.n far both of the examples

in Section 4 were obtained under z:asumptions of uniform and beta

distributions on X. Nonn^:^mal assumptions for X present challenging

theoretical and computational problems which will also be documented in

a future report.
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Table 1. Ratio of S^.mulated and Asymptotic L^xpectations of Structural
Model Slo a Estimators

Assumed ?L^'

True ?► 0.2 0.5 1.0 2.0 4.0 10.0
(a)- n = 20

0.2 I,16 1.04 ^3^^1.89 0.77 0.62
1.0 1.21 1.13 0.92 0. 99 0.81 0.66
2.0 1,40 1.29 1.15 1.09 0.90 0.69

10.0 2.49 2.08 1.93 2.30 2.26 1.1Q

(b) n = 50
0.2 1.02 0.99 0.94 0.86 0.74 0,62
1.0 1.11. 1.09 1.02 0.93 0.81 0.64
2.0 1.23 1.19 1.14 1.02 0.$7 0.67

10.0 2.27 2.19 2.13 1.98 1.62 1.04

(C} n a 100
0.2 i.01 0.98 0.93 0.85 0.74 O.bl
1.0 1.10 1.07 1.01 0.92 0.79 0.64
2.0 1.22 1.17 1.12 1.02 0.87 0.67

10.0 2.16 2.12 2.03 1.85 1.56 1.03

Tabls 2. Ratio of Simulated and Asymptotic Mean Sc3uared Errars of
Structural Model Saone Rstl.matars

Assumed ^'^

True Jl 0.2 0.5 1.0 2.0 4.0 10.0

(a) n^20
0.2 108.11 2.69 .31 2.48 3.23
1.0 9.91 3.32 550.84 3..99 1.66 2.68
2.0 35.78 10.48 80.04 3.42 2.38 2,24

10.0 4553.13 946.18 3087.32 357.29 1563.05 25.27

(b} n 50

p .2 1.27 1.15 1.20 1.86 3.81 7.40
1.0 2.21 1.92 1..53 1.25 2.25 5.70
2.0 3.79 3.08 2.35 1.29 1.44 4.7.8
i0.0 35.15 30.44 30.84 26.79 18.65 1.69

(ca n s 100
0.2 1.19 0.99 1.37 3.07 b.89 14.69
1.0 2.27 1.63 1.15 1.44 4.28 11.00
2.0 5,07 3.69 2.29 1.15 2.06 7.98
10.0 48.73 46.22 3$.95 27.20 12.54 1.29

c
,,	 ^_ -	 .^a	 .- -.	 _- .	 r,ts	 -	 v _	 .^

as_^_.4^__..^._ ^.._„ .._,... ^, _sae,ex^e.,.r......ew,.r^s^e...wa,r ►.........._.^_.:-. ^..__ .-_._, ...... 	 _	 -. .:-_.
_.._	 k.Y
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Table 3. Ratio of Simulated and Asymptotic Mean Sgnaxed Erxars of
Structural. Model Slope Estimator: n ^ 200, Y ^ 0.1

Assumed 1l^
i

True ^ 0.2 0.5 1.0 2.0 4.0 10 .0 .^
{a)	 a0.1

0.2 1.10 1.23 1.44 1.38 1.57 1.52
1.0 9.31 1.40 1,10 0.97 1.08 1.06
2.0 118.04 3.44 7..38 0.98 0.97 0.94

10.0 304b167.58 2823896.24 67.51.68 3.85 7..55 0.98

(b) $^1.0
0.2 1.08 1.b5 3.49 6.35 9.13 12.11 ^.,
1.0 5.45 2.30 1.06 1.88 4.13 5.45
2.0 16.43 7.97 2.90 1.07 1.98 3.87 ^^
10.0 137.29 95,94 53.27. 3.8,68 4.15 1.06

,-,

0.2 1.03 1.Ob 1.03 1.04 1.07 1.03
1.0 1.06 3..03 1.03 1.04 1.06 1.15
2.0 1.07 1.07 1.09 1.02 1,07 1.15
10.0 1.26 1.22 1.23 1.22 1.16 1.10 `^`

Table 4. Ratio of Simulated and Asymptotac Mean Squared Errors of
Structural Model Slope Estimator; n 200, y ^ I.0 ^	 r"{

L` S

Assumed 7►*
r^

True 7t	 0.2 0.5 1.0 2.0 4.0 10.0 `^'
(.a)	 S = 0.1

0.2 1.08 0.99 1.18 1.33 1.40 1.42 r^
1.0 1.57 31592.99 1.08 0.56 0.51 0.50 ^^^
2.Q 11789245.73 238241.92 57182.60 1.10 0.51 0.39
10.0 38414594.50 4864779.56 22932:2.56	 703991.66 89744.73 1.12

(b) S	 1.0
4u

0.2 1.03 5.62 15.38 24.15 29.89 33.34 ^r
1.0 39.90 11.69 1.17 5.10 10.61 14.54 ,I
2.0 128.86 72.34 19.83 1.19 3.97 7.46 '3
10.0 12090.97 11811.55 33704.10 837.30 227.65 1.12

^^
0.2 1.01 1.09 1.05 1.02 1.20 2.28
1.0 1.13 1.13 3.10 1.06 1.17 2.21 "^
2.0 1.25 1.21 1.07 1.11 1.15 1.91 4^
30.0 2.67 2.83 2.76 2.48 1.91 1.11 ^



Table 5.	 Badhwar Estimates of Carn Prcport^.ons_

Ground Satellite Ground Satellite
Truth Estimate Truth Estimate

.312 .314 .426 .546

.494 .479 .323 .372

.311 .357 .392 .387

.241 .240 .324 .353

.393 .200 .524 .529

.162 .181 .270 .409

.129 .220 .349 .323
,087 .215 .492 .427
.056 .154 .294 .278
.070 .142 .282 .329
.172 .263 .452 .413
.083 .173 .331 .381
.065 .068 .446 ,430
.244 .308 .435 .398
.485 .531 .429 .375
.277 .353 .296 .352
.256 .308 .468 .397
,532 .458 .482 .480
.505 .579 .537 .573
.431 .306 .485 .580
.217 .215

i95



I	 ^

.	 i	 X96	 .. ^	 ^

"3:able fi. Structural Model Slope Estimates: Badhwar Data ,f

Var^.ance Slope Variance

r-ry

Slope	 ,

33at3.o Estimate Ratio Estimate

0.0 1.241 1.D 1.155	
r-,	

^,

0.1 1.27{3 2.0 l.lDa
0.2 ].251 3.0 1.07?
0.3 1.234 4.0 1.D62	 ^,
D.4 1..219 5.0 1.051
0.5 1.2Dfi fi.0 1.D44	 -^	 ^:
D. 6 1.].94 7.0 1.038	 r,	 ^^
0.7 1.183 8.D 1.033
0.8 1.173 4.0 1.030	 °-1
q .4 l.lfi5 10.0 1.028

w 1.001	 r^
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Table 7.	 Weibu^.l !dD Est^.snates a^ Gorn Proportions

Ground Satellite Ground Satel^.ite Ground Satelliee
Truth Estimate Truth Estimate Truth Estimate

.42 .38 .48 .32 .45 .47

.45 .63 .45 .5D .5p .53

.44 .52 .k7 .47 .43 .b3

.4^ .61 .47 .47 .48 .57

.39 .44 .42 .46 ,43 .74

.42 .61 .49 .5$ .53 .63

.49 .53 .43 .46 ,46 .6D

.47 .58 .42 .51 .4b .48

.5D .50 .51 .67 .52 .56

.5D .58 .46 ,47 .43 .44

.48 .6D .48 .61 .46 .5D

.44 .56 .46 .54 .49 .67

.45 .59 .51 .55 .43 .54

.48 .4b .49 .69 .47 ,39

.5D .5D .49 .66 .44 .b5

.48 .45 .4D .56 .45 .6D

.42 .57 .51 .63 .4fi .6D

.46 .6D .52 .58 .43 .56

.4D .64 .44 .40 .46 .56

.48 .59 .56 .69 .47 .bD

.4D .55

^_ _.	 .,T	 _.	 _	 _ ---_	 ^.-	 ^.^	 ^ .
^^,
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^abl.e 8 . Sxructural. Moc3e^. S1at^e Estimates : We3bull ^ Mi] estimates

VBrianCe S1o^,e 1T8riance Slope
Ratio ^st3mate Ratio Estimate

O.o 1.717 0.6 .136
0.1 .836 0.7 .129

0.2 .327 0.8 .125
0.3 .202 0.9 .121

0.4 .163 1.0 .119
0.^ .146 co .100
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ABSTRACT

Calibration and i tiverse regression estimators of crop proportions
are investigated where the auxiliary variable is obtained from binary
classification of multivariate Landsat data. !fie argue that the appro-
priate mode? relating classifier proportions and ground observed pro-
portions for a given crap type is the calibration model. we then show,
however, that under this model the inverse regression estimator is
superior to the calibration estimator ire estimating the crop acreage or
proportion for a region of Interest.

^i
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1. INTRODUCTION	 ^

The Statistical Reporting Service of the United States Department

of Agriculture (USDA} applies probability sample survey methodology to

obtain crop acreage estimates. Each year, a survey, known as the June

Enumerative Survey (JES), is conducted in the united States to collect

land use and crap acreage data. These data are collected for randomly 	 ^

selected area segments. The sampling error at the national level is

believed to be about Z percent. At the state and lower levels, the

sampling error is considerably larger. Sigman et al. (^I proposed using	 ''

a regression estimation approach, based on Landsat data in conjunction

with the sample survey data, to decrease the sampling error at these

lower levels.

Basically, the approach is to acquire Landsat data aver a stratum, 	 A'i

called an analysis district, containing a number of JES sample segments.	 ^3'
:^

The Landsat data are classified, using data from the sample segments for 	 {f
;^

training, and selected crop acreage or proportion estimates are obtained 	 ^

for each sample segment in the stratum as well as for the entire	 ^:^,^

stratum. The crap acreages for the san^ple segments observed in the JES

are regressed onto the corresponding estimates obtained from the

classification of the Landsat data and the resulting relationship is

used to obtain an estimate of crop acreage for the stratum from the

classifier estimate for the stratum.
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^ I	In general, this sample survey problem can be stated as follows.
..^^

	

► ^	 Consider a population made up of N ciusters. Assume that each cluster

	

r^j 	 contains a l arge number, M, of units. ( Tn the above context, a unit is
i

a pixel.) I.et C^ represent the class of interest and suppose a unit
r

either belongs to C1 yr its complement CC . Far duster i, let Y i be the

	

`	 proportion of units belonging to C^. Next, let Z be a p x 1 measurementi

vector observed for each unit in the population.

Suppose n clusters are randomly selected from the N ciusters and 	 '

their units are enumerated and correctly identified with respect to the

two classes C i and CC . The actual proportion of units in C 1 is then

known for each of the n sampled ciusters. The set of observations on Z 	 f,

far the units of the sampled clusters is used to obtain a discriminant

function and a classification ruse. Cash unit in the population is %^-ie^i
ti

classified bayed on their observations for the measurement vector Z.

Cet X i denote the proportion of units classified into CT for cluster i.

The problem is to estimate the population mean

N

P = ^Yi /N
1

	

^'	 Far the n sampled ciusters, suppose yT , y^, ...	 yn are the actual
x

proportions of units in C^ and x^, x^, •••, x n are the corresponding

.^^estimates obtained from c1assif^cation of um ts. ^.et

N

R =^Xi/N1

r

-	 ^ ^
^:	 _	 -
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be the average proportion obtained from classification of units in the P,

clusters making up the population.

The estimator of ^' considered in Sigman et al. [8] is the standard

regression estimator (Cochran [^j) which is based on the regression of

the y i onto the x i for the sampled clusters. This is an inverse

regression since the Y i are independent variables, that is, variables

that take on values that can be observed but not controlled, and the Xi

are dependent variables, variables whose values depend on changes in the

independent variables. The actual relationship between the X i and the

Y i depends upon the overlap between the class distributions of the mea-

surement vector Z far C^ and CQ , and the classification procedure.

Since the X i are dependent on the independent variables Y i , another

estimator of P can be obtained using calibration, which is based on the

direct regression of the x i an the yi for the sampled clusters. in

1.957, Krutchkaff [ 5] advocated the use of inverse regression based on

the results of extensive simulation studies. Since then, the contro-

versy over the properties and hence the utility of these two estimators

L ^	 have been extensively discussed in the literature { twin and f^aritz [6]).

^.
	 However, the studies in the literature assume a random sample (x i , yi),

i = 1, •••, n, from an infinite population with the goal of estimating

an individual y i for a given value x i . Moreover, none of the previous

studies address the problem of classification. Hence, the present study

is navel.

^.
^:
^i
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As in previous studies, assume that the following linear model

holds true:

{1.1},	 Xi = Y } &Y i ^ ^i
where Y and dare unknown parameters and the n i are random errors (inde-

pendent of the Y i ) having mean zero and finite variance. If the n i are

normally distributed, Shukla r7] has shown that the calibration esti-

mator of Y i for a given X i is constant but has infinite variance, where-

as the inverse regression estimator is biased but has finite variance.

Without assuming normal distribution for the n i , Lwin and Moritz (5]

have shown that the inverse regression estimator has lower mean squared

error than the calibration estimator in estimating Y i for a given X i , if

the Y i lies in the range of the sample y l , •••, yn . This i s very likely

to be the case in the present study where an estimate of 4 is desired,

since y^, •••, yn are a random sample from the finite population whose

mean is Y.

The calibration and inverse regression estimators of 4 are

described in section 2. In section 3, we discuss the classification of

s^'	 units based on the measurement vector Z and investigate the two models
^.:

^.	 relating the Y i and the X i . It is shown that the calibration model

given by (]..I) is linear when the X i are obtained using the maximum

likelihood classification rule, but not the reverse model. A simulation

study was conducted to compare the calibration and inverse regression
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a

'i
a

^i

^,

^^_:	
^^ F.

estimators of Y. A description of the simulation study and the results

are presented in section 4. The results are summarized in section 5.

2, THE ESTIMATORS

For measurement units, define the random variable

1, u e C ^
(2.1)	 n(Z) _

"'	 O,ueCO

where Z is the observation vector of unit u. Suppose units in the pop-
^	 ^

ulatian are stratified using a classification rule and C^ and C O are the

strata corresponding to classes C^ and CO , respectively. Define another

random variable

1, u e C^

r	 0, u s C^

The pair of random variables (n(Z), ^{Z}) characterizes the two-way

classification of units - actual vs. classified. If ^{Z)=^,{Z} for all

units, the classification is perfect9 otherwise, it is fa11ib7e.

Assume that the cluster size is large and far a cluster, Y=E[,^{Z)]

and K=E^^(Z}]. Considering the relative frequencies of units in C 1 and

C^ approximated by the expected values of the random variables r^(Z) and

^,(Z), one can write Y and X as probabilities,

	

^	 ^ ^^

	

_	 .._	 _	 _ _. ..
. _r--	

,_ ,..
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^^

(2.3} ,i

^:

Similarly, the two classification error rates are approximated 6y the

conditional probabilities$

^^^	 =P[^► Z=a	 nZ =Z]^	 {_}	 ^	 (W}

1	 _	 _
^.

where ao is called the omission error and e i is called the commission

error.	 From (2.3} and (2.4}, it follows that r^^

1

k.^ `6

UU

Thus, for a cluster, X is a linear function of Y, Upon considering the

{^.

4

^..^
^

:}
variability in e l and e© across clusters, suppose the regression func- ^-, ^^

Lion of X onto Y is of linear farm, say

_	 ^	 ^
r-^

k^

r^, ^

._.^

Suppose n clusters are randomly selected and the (xi, yi } ° r,,}

i=I,2,•••,rt, are the pairs of observations for the random variables X •:

and Y.	 Then by regressing x i on y i , a regression estimator of the

population mean 4 ^^;Y i /N is given by
3
e

t..J E	

^aa

ad
3

r^

' ^J

^-R

ti ^i

T___^^ ^_ __— _ _

.
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^-. w #

^W^ where

a
^.

R = ^ X i JN,
L

N	 n
^,

iL 1	 I

^	 ^1	 1r ^`^

i
In	 (2.7},	 R is assumed to be known and the subscript C stands for

^,

^:
calibration. 1•his estimator will be called the calibration estimator. ..

II
an the other hand, Y can be written in terms of X for a cluster by ,y

r

inverting (2.5} as follows: ^	 ^'_

LL .^ T	 ^	 ^r

I	

pp

^	 f

(Z.8) Y ^ - e^ /{1. -^e^- e L }	 ^- X/(l.we^^-eL}

^

'^

: k

where

^...
1

(2.9} ^^ _ --of/{].-oO-aL)

Z	 ^	 1

'

:j

i
^.

{..

;^:

I^
L':^

_.:._: _	 .___...m	 ..:...	 ^.
_.

w	 ......	 _.._.. _

•.^,....^.^._..e.^ i[._._ ^iJY_.__art+[zm.wr_w!ewawWa^rt.
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Again ^0 and ^^ would vary across clusters and thus one may consider the

inverse regression function for Y an X given by

J

I

^	 it

(^.la)	 F(Y^x=xJ 	= « ^ sx.

Then by regressing y i on x i , a regression estimator of Y is given by

^:-,

(2.11}	 YIR = y + s(k-x) _ ^	 ^^

I	 `^̂.

where

.	 _.

^-,
f

1	 1

The estimator in {2.11) will be called the inverse regression estimator. ^.,
,:

^'.;
I

In the next 5ect10n, we d iSCU55 the cluster proportion X resulting
^^

from the classification of units based on their observed data an Z and

investigate the two regression models corresponding to {z.6) and {2.10}.

^,

L

^-,

3.	 REGRESSION MOQELS "'

^-;,

3.1	 determination of X

Suppose that Z is a p x 1 random vector distributed normally with

^,

f

^--

mean vectors ^^ and u 0 for classes C 1 and CO , respectively, and common ^^

f
"^

6:e

i

ra

..
"—"

t

..

•-
^_.v:>

.W^^--
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covariance matrix E. 8y a set of linear transformations, the class

structures can be expressed in the canonical form:

(3.^}	 z w

where

^^a	
When o is known, the. discriminant function based on the lag likelihood	 .^

s	 ratio is linear and the maximum likelihood classification rule is to 	 ^	 a^^

classify a measurement unit in C 1 if Z^ ^ 0, and in CO otherwise, where	 ^`^

Z^ is the first component of measurement vector Z. In terms of random
II^LLII^ 	

variable ^► defined in (2.2), we have	 ^:,	 ;3

^'	 -^
I,	 if Z^ ^ 0	 ^^	 ^

°t
(3.2)	 ^(Z} ^	 ^^

0, otherwise.	 _
5

Then the omission and commission error rates for C 1 are each equal	 4
;.

to ^(-a /2}, where ^ denotes the cdf for the standard normal distribu-

tion.

3

(j
L	 In the present context, one needs to evaluate the classification

error rates for individual clusters. Because the cluster size is

assumed large, the class distributions far each cluster can be approxi-
;i

mated by the normal. F 'or cluster i, let d i e and (^ i + e i } e be the mean	
4. !°

,#̂^

__._	 _	 ^:	 ^ ^_
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vectors of C 1 and CQ , respectively, and I is the common covariance 	
^-F

:_^

matrix. This distributional assumption allows variation in class dis-

tributions across clusters in the population. To have the population 	 _

means as assumed in {3.1}, we assume that the average value of 
^i across	 ^--^

clusters is -0/2 and that of (^ i + e i } is a/2. The actual classifi ea-	 ^`
r-

tion error rates 
g0i 

and e 1i and the classified proportion X i for cl us-
J

ter i, denoted by B i , are easily obtained as follows:	
G-

:. _

r.

{3.3)	 obi = P[Z 1 ^ O,n{Z} -0, B i ]	 i
..	 ^_^

and	 :^,

Xi = ^{e/2 - ^ i - e i } + j^ {e/2 - ^
i
}-^(e/2 - ^

i 
- ei)]^ i

^: a
F

The sam 1e analo ue of the linear discriminant function is obtained 	
^,

p	 9	 `,'
:_,

by replacing the parameters by their estimators and is given by
rZ

Is

^^

`^ 
1	

''yy	 q e] 1 'ry	 7	 7	
r-t

'._ :J

^^

I

where Z^ and ZB are the sample mean vectors for C^ and C C , respectively,	 ^^^^

and S is the common sample covariance matrix obtained from the training 	 °^'
M:1

samples Z ia and ZC^ of C1 and Cog respectively. Suppose a set of
r. n

clusters are randomly selected and the training samples consist of all	 `^
^_^

the units in the sampled clusters. Because the training sample size is 	 ,^^
'-f

f

L ^,

n^

-^

k ^

$Jib

f^

r

^i^;	 ..
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large, the statistics Z^, Z d and S are approximately equal to the class

parameters, therefore the classifier and the error rates discussed above

will approximately hall true.

I

I

In practice, the parameters ^ i ,	 o i ,	 and Y i are unknown except far

^; the sampled clusters, and hence the error rates and X i cannot be

obtained far all clusters using {3.3).	 However, once the classification

of data is completed using a classifier, X• can be computed directly as

the proportion of units from B i that belong to C^.	 Accordingly, the

values of the two estimators of 4 described in section 2 can be

computed.

^.-.	 3.P CALIBRATILi^ MODEL

i,-
^fhen o is known, one can write from {2.5} far cluster i that

(3.4}

^	 where
_^

^^

!!f

^E

^^ r

u
', 	 '°	 with 

Q^i 
and oBi given in {3.3).

'1
:j
FE	

Thus, the regression function in (2.6) can be associated with the
^^	 ^,

N ^	 model

F.	

i

r

^^
`'

... _.^ ,a

	

^ r̂ 	 f.. __	 -- ^.,
^^

_	 ^

Xi = Y i + siYi

Yi r °li and 
s i = ^-oa i -o li .
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(^.5) Xi = Y + sYi + ei

where

(3.6)

Since the classification rule (3.2) is independent of the Y i for

known a, Y i and s i acre independent of Y i . Let

s -- E[si].

l'hen

E(ei^Yi] = 4

so that-the regression function in (2.6) holds and the model given in

(;^.5) is l inear.

In the case of a finite popu^atian of N clusters, one gay cons ider
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^iow, let us consider the more likely case for which parameters are

unknown. These parameters are estimated from the training samples

resulting in the classification rule given by (3.2) with 4 replaced by

the estimated boundary value. Then, corresponding to (3.3), we have

w	 w	 w	 ^

X i = o1i + (Z - °Ui - aLi )Yi .

where o bi and ooi denote the estimates of oli and obi , respectively,

Further, let

do0i r °Oi - a4i

doii = obi - oli

dX i = Xi - Xi

Again, the deviations do^ i , do^ i and dX i are independent of Yi.

Since X i = X i a- dX i , it follows Pram {3.5) that we now have the model

{3.8}	 Xi = Y + sY i + ni

where

{3.9)	 ni = ei + dXi

Ft^	 i^

^^	 with e i given by (3.6).
r	 ;	

5y

^,
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E {^ i ^Y i ) = E(e i ^Y i } + E(dXi^Yi)

goes to zero and the model { 3.8} is linear.

o^ = aY ^- YZa^ + 2Yi6Ys(3. l.p )

V i = 1!(ni ^Yi)

= a^ + Qa,

is non-constant.

mo w._- ,.,c ^;_	 .^^.	

_	 '._..
`	 i
^^ ^^^

{!

u ^'

The distributions of the deviations do^ i and doll are quite

complicated; however, asymptotically, that is as the training sample

site becomes large, their means go to zero (Efran [^^}. Thus, as the 	 ,u ^.

training sample size gets large, E(dX i ^Y i ) goes to zero. Eience, in the	 ,
F

case of large training samples,	 ^	 ^r

zzo

suppose a2 , o^ and o are the variances and covariance respect-
Y	 S	 YS	 ^ ^

ive1y of Yi and s i across clusters. Then the conditional error	 r,	 '`

variance, V{e i ^Y i } = Q i , is given by	 -^,

The conditional variance due

of order 1./m, where m is the

however, this variance is nee

large. Of course, the total

given by

to the training sample, U{dX i ^Y i ) W od, is

nu!^ber of units in the training sample.	 ^^^^^V

eligible when the training sample size is 	 ^f

	

^.	 ,

conditional error variance for model { 3, g },	 ^^'^

r, n

}
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`^' 3.3	 INVERSE REGRESSION MODEL

^^ One can express {3.4} inversely as

Y.	 11,:^ Yi - - ai -^ ai Xi

^°
^^

Let a i = -y i /8 i and s i = 1/d i 	 5o that

^a

Y i --	 a,^	 f	 Ri1(i.

Thus, the regre :^sion function in {2.1U) can-be conceptualized in terms

of the model

E,

L .a

(3.10) Yi - a + sk i * ^i

^

f,4

where

^^ (3.11) Ei	 =	 {a i .. a)	 +	 { s i	 -	 s)xi.

-	 M

In the case of training a classifier, the model hecbmes

J

{3.12} Yi ` °C ^' sK i 	 ^ ^i

^'
where

^	 IeJ

(3.1.3} ^i T e i	 s dK i	.

I
i

I

I
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^;	 ^

,,j	 Models (3.10) and (3.12) are not linear. This can be easily seen by	 ^`

^e	
showing that the covariance of X i and e i in {3.10) i s not necessarily	 ^,

r^	 zero. Hence, the regression function in {2, 1D) cannot be obtained from

^+	 models (3.10) and {3,12). One would therefore wonder about the basis caf

the inverse regression estimator of 4 given in {2.11) in section 2.

q':

In general, twin and Moritz [^] showed that the inverse regression

estimator is a compound estimator of the sample mean and the calibration 	 .

estimator obtained assuming that the model (3.8) holds. They assume a
^.

constant error variance whereas, in the present situation, the error 	 '^
^,,,

variance i5 non-constant. Their formulation does not require the in-

verse regression model as in (3.14) or {3.12} to be linear; hence the

inverse regression estimator of 4 put forth in section 2,D can be justi-	 ^	 ';

Pied without reference to this assumption as was done by Lwin and
4

.:L

Ma^ritz.
_ r^

^.: J	 i

presently, no further analytical investigation of the models and

^_	 the estimators is undertaken. Instead, a simulation fitudy was conducted

t.
to evaluate the models and compare tha two estimators. This simulation

-^
is described in the next section.

i

s+ S1	 '.

4. SIMULRTION STUDY

;:
f:	 ^

^,	 To investigate the linearity of the calibration and inverse regres- 	 ^.

^^	 lion models given by (3.Q) and (3.12), respectively, and to compare the 	 L^` '' '
t..	 ,

-;	 A ^	 ^

^^
^=
^^	 ^,

_-

.w
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performance of the two estimators of the population mean, the following

simulation study was conducted: A hypothetical population consisting of

H clusters was considered. The number of units per cluster is assumed

infinite, For a given population mean, q , the beta distribution (IMSI.

subroutine GGBTR) was used to generate the actual proportions, Y i , o.

the class of interest for each of the H clusters. For each Cluster, the

distribution of the auxiliary measurement variable Z^ for the class of

interest was assumed normal with mean ^ i = u i - e i ,l2 and variance is 1.

For the other class, the distribution was assumed normal with mean

^ i + e i = u i + o f /2 and a variance of 1. The normal distribution (IhfSL

subroutine GGHEH^} with mean {] and variance Q 2 was used to generate the

u i and the triangular distribution { I^lSL subroutine GGTRA) over the in-

terval (a-p, q+p), which has mean o and range 2p, was used to generate

the n i with a^ and p specified. To ensure n i >0, it was assumed that

©>p.

The indices of each of the variables far the N clusters were

randomly permutated (IMSL subroutine GGP^:R) and the first n indices were

selected as the sample far which the actual proportions were assumed

known.

The discriminant boundary parameter, say T, was then estimated by

n	 n
Y i { u i -o i /2 } ^ (^-Yi)tu i-^ of/^)

n
Y i 	 ^ ti-Yi)
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^'°;	 and the classification rule for all measurement units u in the popula-
^	 ^^

^ :'	 tion was taken as

w

a, otherwise

far the measurement vector ^. Wence, a unit is classified in C Z if

^1< T/2 and into CC otherwise. Note that we did not actually generate

the measurement vector x. These results correspond to having an infi-

nite number of measurement units for training, since we assumed the

number of units per cluster to be infinite. The actual errors of mis-

classification were computed for each of the N clusters from (3.3) as

oCi	 Prob ^zl >_ T/2 ^ ueC^, B i , ^^

w

T+Q •

and

obi ^ Prob [Z^ < T/2 ^ uECp, B i , T]

r-ni
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^^

	• I^^	 Likewise, using the relationships in sections 3,2 and 3.3, X i , Yi,
^^

	^ 1'	 ^i' a
i and a i were computed for each of the N clusters. 	 ;^

Phis process was replicated 500 times for each combination of

parameters considered in order to compute the bias, variance, and r^ean

Squared error for the calibration and inverse regres s ion estimator s of

q . One hundred replications were made to compute the model errors,

n i and g i , and their means and variances. 'fable ^-1 shows the values of

the parameters used in the simulation.

Figure 4-1(a} shows a histogram of the 500 actual proportions

generated from a beta distribution with mean .25. The actu,^1 mean and

variance of these 500 proportions are .2575 and .02366, respectively.

Figure ^-1{b) shows a corresponding histogram of one realization of the

classified proportions resulting from using n=10, Q^.1, Q=1.5, and p=1.

A scatterplot of the actual versus the classified proportions for this

realization is given in figure ^-1(c). In this case, the relationship

TABLE 4-1.- PARAMEI'Elt INPUT VALUES

^ = 500

(

n = 4, 10, 30

I - w 0 5 , . ^ , r G ^ , .

Q	 .01, .10, .50

'^ 1.a, 3.0

F=O, .5, 1
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is approximately linear and a linear regression model should hold

reasonably well,

A plot of the model errors, n i , for the calibration model {3.8),

versus the actual proportions, Y i , for all 60Q clusters for one realiza-

tion generated using v=.25, n=10, a=.3., n=1.5 and p=1 is given in

figure 4-2. Note that no obvious relationship exists between n i and Yi

supporting the linear model requiremerpt that E[n i ^Y i J = D. Also note

that the variance of the errors tends to decrease with increasing values

of Y i , that is, we have a non-constant conditional error variance.

Figure 4--3 contains a plot of the inverse regression model errors, ^i,

A

versus the classifier proportions, X i , for the same parameter values.

Note the linear dependence indicating E[^ i ^X i ] is non-zero and the

inverse regression model is not linear. ^'he variance of these errors is

also non-constant, tending to increase as the classifier proportion

increases.

Table ^-2 contains the means and average variances of the calibra-

tion and inverse regression model errors computed from 10Q replications

based on 4=.25, ^=.1, 0=1,5, p=1 and three sample sizes, n=4, 10 and 30.

The mean error is zeta for the calibration model and it is non-zero for

the inverse regression model as expected. Moreover, the error variance

is much larger in the case of the later model. Notice that the means

and average variances are about the same far all three sample sizes.

This is due to the fact that the number of units per cluster is infinite
,,

^^

^,

^'

__ .	 _. _ _	 _.	 _	 __	 _ -
,^	 .^.

__
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far this simulation study, In the I^SDA problem which motivated this

study, the number of units per cluster is large; there are 600 or more

pixels per sample segment used for training. Results similar to those

in figures 4-2 and 4-3 and table ^-2 were obtained for the other

combinations of parameters presented in table 4-1. In summary, the

calibration model given by {3.8) was found to be the appropriate linear

model relating the classifier and the actual proportions in this

simulation.

The coefficients Y , s in model (3.8) and oc, a in model {3.12) were

computed directly as averages of Y i , ^ i and a i , s i , respectively, for

the 500 segments for each replication. Then their averages were

obtained from the 500 replications. Also, the corresponding least

square fits were obtained in each case and these coefficients were

TABLE 4-2.- MODEL ERROR STATI5TIC5 BASED ON 100 REPLICATIONS

227

Average for lO0 Replications

n

4	 10	 30

0	 O	 O

22.5 X 10-^ 22.6 X 10-4 22.6 X 10_4

,0184	 .0185	 .0185

93.7 X 10' 4 94.0 X 1O^4 93.9 X 10-4

Error
Model	 statistic

Calibration Mean

Variance

Inverse
regression	 Mean

Variance

*Y = .25, Q = .1, q = 1.5, and p = 1.

L
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estimated for each of the 500 replications. The results for the average

computed (actual) and estimated values are given in table 4-3.

The results in table 4-3 show that the coefficients Y , s in the

calibration model 43.8) are unbiasedly estimated by the least square

estimates obtained from regressing X i on Y i , whereas, the coefficients

a, s in the inverse regression model (3.12) are biasedly estimated when

regressing Y i on X i . This again shows that the model (3-8) is linear,

but model (3.12} iS not.

The summary results for the calibration and inverse regression

estimators of the population mean 4 for 500 replications for the

parametric case, i.e., P = .25, n = 1©, a = .1Q, e = 3,.5 and p = 1, are

presented in table 4-4. The two estimators were truncated at 4 and 1

for estimates outside this range before computing the Summary statis-

tics. Truncation was actually needed only for the calibration

TABLE 4-3.- ACTUAL AND ESTIMATED VALUES OF REGfi^ESSION COEFFICIENTS

Model Coefficient Actual Estimate

Calibration Y .237 .235

s .528 .534

Inverse a -.515 -.261.
Regression

a 2.024 1.383

*Averaged from 500 replications.

f,
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	i ;^	 estimator. The MSE ratio in table ^-4 is the ratio of the mean squared
^.

'^	 error for an estimator to the mean squared error using the sample mean

	

`^ ^n	 of the n sampled actual proportions. This, of course, is an estimate of

	

^,	 the relative efficiency of the sample mean relative to the estimator.

^.
The bias is negligible far each estimator, though it is statisfied

'^^ :>

	`^ M	 significant in the case of the inverse regression estimator. The MSE

	

}^ ^^	 ratio of .342 for the inverse regression estimator is much smaller than
4

	^-	 the calibration estimator, which performs rather poorly as its h1SE ratio

	

^^ ^-	 is greater than 1.

^._
The summary results far various combinations of parameter values

it

	tI.	 showed that the i^SE ratio for the inverse regression estimator was

_. always less than or equal to that of the calibration estimator. The

	

tr '	 class separabilit;/ and sample site influenced the performance of the

	

^^^	 estimators the mast. The calibration estimator performed very poorly
F	 ^ .^

;^. for n=4. The inverse regression estimator tended to have significant,

	

^1 ^^	 yet negligible, bias for n=10 unless o =.5 in which case it was not

	

^fA	
TABf.E 4--4.-- SIiMMARY 5TATI5TTC5 FOR 500 REPLICATIO^lS*

Estimator Bias Variance M5E M5E Ratio t-Statistic

Sample Mean .0020 .0021 .0021 1.000 .97

Inverse Regression -.0033 .0007 .0007 .342 -2.77

Calibration .0002 .0023 .0023 1.OB$ .12

*Y = .25, n = 10, a = .1, e = 1.5, and p = 1.0

f

^"

_.
._	 ^..
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necessarily negligible. Note that an increase in ^ value leads to an
;^

increase in variability of the means for the class of interest across

clusters and, hence, an increase in the variability of the classified 	 ,:

proportions.

J

The relationship between the actual and classified proportions is

greatly influenced by the class separability parameters o , p, and Q.

When the mean separability o is large and the variability in class

separability and their mean locations across clusters (that is, p and ^)

is small, the relationship is fairly linear, resulting in a high car- 	
:^

nn

relation coefficient between the actual and classified proportions for

the clusters in the population. The population correlation coefficient

decreases as o decreases and/or either of the other two parameters p and

a increases.
`^	 _.

i

,^,

Tn each sim^!lation run, the square of the correlation coefficient	 :̀ j'
^::,	 ^

was computed for both the population and the sample. Variation in the

population correlation coefficient arises due to the decision rule for 	 _G

the maximum likelihood classifier varying from sample to sample far the 	 ^n
^,-

5^l^ replications. Three scatterplots of the sample R 2 versus the popu--	
.^1

lotion R^ corresponding to three sample sizes are presented in figure
1^4

4-4 showing the values obtained for the combinations of parameter values m ^,

in table 4-2. The scatterplot has a fairly high population R2 showing	 ^.:f

very small variation regardless of sample size; whereas, the sample R^ 	 ^;,

is highly variable with its variability decreasing as the sample size 	 `^
^^ r

increases. These scatterplots show the potential hazard in using the 	 -
LAJ

v^4u'

i

^-!{

^• rte_	 ^-°r,^y^	 ..	 ^	 .<
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3^i

sample R2 as an indicator of the actual linear relationship far the

L..
population.

' Figures 4-5, 4-6, 4-7, and 4-8 summarize the ^9SE ratios far the twa^,
^^

,'	 ^. estimators for all combinations of parameter values given in table 4-1.

!`^' Figures 4-5 and 4-6 contain scatterplots of the MSE ratio versus the
'^,	 ^ :,

mean population R2 for P=.S and a values of 3 and 1.5, respectively.,,

'	 ^ Figures 4-7 and 4-8 show the MSE ratio far P=.25. 	 The symbol	 '^'	 inE	 ^_

^^
each scatterplot represents the inverse regression estimator and the^-

^	 ^
u^ symbol	 '+' is far the calibration estimator.	 MSE ratios for the

^T
calibration estimator were truncated at 1.6 to provide uniform plats.

'^ Figures 4-5 and 4-7 indicate that when the separability is large

_ across clusters and the sample size is large, the two estimators have

^^ similar MSE ratios, which significantly improve the efficiency relative 	 ^
e

to the sample mean.	 When the sample size is reduced, both estimators
u.

are affected.	 The calibration estimator is significantly degraded_

{, yielding MSE ratios much larger than 1 far n=4. 	 The inverse regression

^. estimators performs well overall wi^:n a modest decrease in efficiency

when n=4.

When the separability between classes is reduced, as is the case in

figures 4-6 and 4-8, there is a tremendous effect an the mean population

R2 , which is reflACted in the performance of the two estimators. For

a=3, R2 ranged from . 75 to I . D. ^teducing a to 1.5, it ranged from .23

to I.O. Wote that the inverse regression estimator is still superior,

^.
_	 _^_	 -	 _	 -_ _..

._ _
_^	 .^„ ..
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;^'^	 except when n=4, in which case both estimators perform worse than the
F

^.
	 sample mean corresponding to low values tf R2.

i
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^^

Tn the present study the individual random values for Z for the

within cluster measurement units were not simulated and the current

results were obtained by generating the parametric values directly for

the clusters. As mentioned previously, this is equivalent to having an

infinite number of units per cluster. However, the introduction of the

range in class separability {i.e., parameter p) and the variability in

the two class means ^i and ^ i +e i , i^I,Z, •••, N, across clusters allowed

a realistic simu lation of the data structure likely to arise at the

cluster level in the context of the problem of crop acreage estimation

described in section 1. further study is underway to generate the

random values for Z and to investigate the inverse regression and other

estimators of crop acreages using results from classification of the

W	 individual units within clusters.
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Scatterplots of Model errors versus actual proportions far the

calibration model and model errors versus classifier proportions for the

inverse regression model were made for ai1^50D clusters for various par-

ametric cases. These plots indicated that tt^e assumption of linearity

i

for the calibration model holds true; however, the model error has a

on-c t nt	 lance when the se ar bilit of the two class distribu-n	 ons a var	 p a	 y

j
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C`^'
^,,

tions for the population vary highly across clusters.	 The inverse

^,

r,
^

regression model is not linear.
i..

L.^'

r-, Comparisons of the two estimators of the population mean 4 indi-
1^^,

^-- sated the inverse regression estimator to be bett`,er than the calibration

estimator,	 The calibration estimator is unreliable unless the popula-
r:
;;,

tion R2 between the actual and classifier proportions is high (.8 or
^_

#^ larger).	 The inverse regression is significantly biased in some cases;^.

^^'
however, in each of these cases the bias was negligible. 	 The bias was

4ry
statistically significant due to the variance of the inverse regression

'^
estimator being quite small.
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Figure 4-1.- N^stagra;ms and scatterplot of class proportions when
q = . 2 5 , a = .1, a = 1.5 , p = 1, a n d n = 10 .
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s3$'F1_ ẑ BiTc=1B

H
S
e

R
A
F
I
0

M
5
E

R
A
T
I
0



,rear rw.-vt^. ^+y^^^'	 -' -^'

r-,
I	 s	 sI^-.a	 243

^=-^	 1.4
'^	 ' +
^;	 n !.2	 .^

s 1.
Era	 8,	 ^

j;'	 R
L^:	 R B.	 •	 i.

S B. A	 +8
O

^^-	
6.2	 ^	 f

'	 u.-	 B.

9.B	 0.2	 8.4	 6.6	 0.8	 I.8
r

'	 ; ^	 ME6t1 pOfilATI^PI R--9^
-.:	 v:

n'a

.	 sP3'EiE SI2ic»LB

-	 1.	 i^	 ^

r^	 !.

1iV ::	 1.2
_	 pt	 #

'	 s I..»	 E	 ^^4	 , I	 ^.r_' --	 R
C -_ -	 y a,	

A B.	 ijd
^.: ^ .	 T	

9
_	 I 6.4

^_.	 '^	 °	 ^

	

^.	 'p
;`w

^^	 E.0	 6.2	 6.4	 0.6	 6.8	 1.0

U_, 	NF.FI'i F53FtLATIC3H R-5^,^
^'-	 i , r
[[[^	 ^^	 , i

`^

u a	 `3

	

F 5!'2E=^	 3

r̂ "" ^ ^	 1.	 ^-b^	 i _.

^	 }^:^	
!.4

i'	 1.2	 i^	 ,.

r;	 ^^	 E	 l^
ii	 8.	 •^
ita	 ^

r	 A ^.

T
E`	 I 8.4	 {

4
i	 i	 P

i.	 ^:^	 6.2	 '^ .F

	

B.	 ^ 4
(r-'

I^	 B.B	 8.2	 @.4	 0.6	 B.8	 1.8

`--'	 PEAtl Pf^lLRTIOH a

^^	 Figure 4-8.- Scatterplots of the MSE ratio versus the mean	 ;:j
l'.:'

.	 ^	 population ^^ for the inverse regression
estimator{^} and the calibration estimator ^-^^ 	 `

^`'	 -for e = .25 and e = 1.5.^.
^.,

.:	 (,-'

z . ^,	 ;^,

iI^,V^

^ ^{^?



.^ ^"

24 ^1 ^X85 16261
Evidence Accumulation i_or Spatial Reasoning

Takashi. Matsuyama
^1'9.ncent Shang--Shauq Hwang

and
Larry S. Davis

for Autanation Research
versity o^ Maryland
lege Park, NID ?0742

^^

'. ^

	

_	 ^_- -

rt r:^.^.
^ ^a^ ba.

	

a'^^	 ^-

SioU^ ^a'^a^

)T ^TLi:^D

..
.	 — -	 ^.^^°gin	 ^`	 ^	 ^.^s	

; r &`.	 .

_,	 -.	 .^

"^^=

t
t
t



^^

r.

246-'	 k

This paper describes the evidence accumulation process of an image	 _ '`

understanding system first described in [II, which enables the system to

perform tomdawn (goa3.-oriented) picture processing as well as bottom-up

verification of consistent spatial relations armng objects.
:-%
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^^

^., Introduction

In a previous report[lj, we described the organization of an

aerial. image analysis system. There are three levels of representa-

tion and control. in that system: A High Level Expert(FII,E) that util-

izes asymbolic hierarchical model for the possible spatial. organiza-

tion of objects in the image to build partial., Zocal interpretations

of the image and to determine where to further analyze the image and

what analyses ^ perform; a N^odel Selection Expert {MSE) that deter-

mines, on the basis of contextual information provided ]^y the Fff1E,

the most promi.sinq ap+?earance descriptions to use i.n seaxching for
)^
^tU	 objects and structures in the image; and a Lote1 Level. V'isi.on

:. Expert(GL^TE) that finds pictorial entities that satisfy these appear-

"^'	 ance descric^tions by selecting image processing methods to find the

appropriate entities.

Our attphasis has been on the High Level. Expert, which xs based

LL on a general method oaf "evidence accumulation`1 to ^?erform flexible

i	 spatial. reasoning. 't'his pa^^er contains a detailed description of our

evidence accumulation process and its associated consistency checking
^.

process.

.^

^.

^:
^^

.^.

^^

}

^^.



z

^^

..	 I

a

t .-	 .. ,..:	 ..	 ,

! •,^

	

} ; `	 248
j

4

^'

2. motivation

.	 fi
In general, two different types of informati on can be used to

	^,	 interpret a pictoria3. entity: its intrinsic properties{si^E, shape,
i

color etc.} and its relations to other entities. Our primary

	

f-^,	 interest is the representation of geometric relations among objects

and their utilization for image interpretation. This is espeeial3y

important in recognition of man-made objects. Moreoverr although

shape can often be regards as an intrinsic ob3ect property, a cd^tplex

shape is often described struaturaily in termts of c^eo gnetric relations

among its cx^nponents. Thus shape recognition often requires spatial

analysis,

et REL, {oZ, c72} denote a binary gec^metz' is relation between twn_ . - ---

classes of objects, Ol and OZ. This relation can he used as a cone

straint to recognize objects from these two classes by first extract

ing pictorial pattities which satisfy the intrinsic properties of OL

and 02, and tr^en checking that the geometric relation is satisfied by

these candidate objects{Figure 1}. In this bottan-u^ recognition

scheme, analysis based on geometric relations cannot be }serformed

until pictorial entities corresponding ^ oh7ects are extracted.

zn general, ha^rever, some of the correct pictorial entities

often fail to be extracted by the initial. image segmentation. So one

must, additionally, incorporate top-do^+m control to find pictorial

entities missed by fhe initial segmentation. Sttich top-dawn processes

use gecntetric relations to predict the lo^:ations of missing objects,

	

',	 as fn the system described by Se3.fridc^e[2] .
,:..°

	

;{	 .	 .

t^

^`
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Tt is, of course, generally accepted that image understandirsa^

systems shou^.d incorporate both tx^tta^-up and tai-r^own analyses. As

noted above, the use of geometric relations is very different in the

^ analysis processes*Wonsisteney verification in hotto^n-up analysis

and hypothesis generation in tap-dawn analysis. An ampnrtant charac-

teristic of nur evidence accumulation method is that it anahles the

syster to integrate both bottom-up and top-davn processes into a si.n-

gle flexible spatial. reasoning process. ^s will be described later,

the system first establishes local envirarn^nts. '`Chen, either

batter-up or top-dawn processes are activated depending on the nature

of the local environment. The following sections describe the con-

cepts and characteristics of this process.

i	 a^.	 ^	 i,
^:	 ^	 ^t ^,	 ^

to s
x^

^ ^"
,^

_._	 _ ..	
P
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3. presentation of Ge^tetric Relations and F^vpnthesis Formation 	 r

.^

3.^.. Functional Representation o^ Rel,ations
^:

	

A relation i^(0^., 42) (©7, and 02 are object classes) is	 ^'

represented using two functional expressions:

0^. = f (02) and 02 = g (O1} .

Given an instance of 02, say r, function f maps it into a description 	 `

s^f an instance of Ol., f(r), which satisfies the geometric relation, 	 ,

Imo, with r. The analogous interpretation holds for the other func•-

tivn q.	 _^

	In our system, knowledge about a class of objects is zenresentea 	 _ '

by a frame[31, and a slot in that frame is used to store a function	 r

such as f or g. 'the function is represented by a ^nputational

procec'iuze(which produces the description of the related instance} and 	 '^ i

a set ci corx^itions to specify when fiat function can be activated.	 "^
a^	 ^,

Whenever an instance of an object is created, and the conditions are
.^

satisfied, the function is applied to the instance to generate a 	 '
^ J

^^hesis (expectation) far another object which would, if Found, 	 ,r̂

satisfy the geometric relation with the origi^^al instance. The func-- 	 ;'-=

tion can use any properties of the instance to create the hypothesis.

A hypothesis is associated with a prediction area whexe the
r

related object instance may he located (Figure 2}. In addition to this 	 ^-

area specification, a set of constraints on the target instance is 	 `
-_,

associated with the hypothesis. Figure 3 shows the description of a

road hypothesis. A7.1 hypotheses and instances are stored in a	 n	
r-,

r^

^j!

^^
^.

wL

;^

-^
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database (the ionic database) where accu^rulation of evidence (i.e.,

recognition of averlap^aing sets of consistent hypotheses and

instances) is performxl. Sim^.lar ideas have been proposed to solve

spatial lavaut problems [4] and to answer queries about map informa-

tion[5] .

k^'	 3.2. S^tia1 ReZa^ions, Part hole Relations, and A-Kind-df Rela-
- --	 -	 --

`^	 tions

t,

	

	 Twb types of geometric relations are used in our system: "spa-

tial relation" (SP) and "part-c^Jhole relation" (Fu+T) . These two types of

G,::
relations are used differently by the system. The PW relations

,^	 specify AND/oR hierarchies which represent objects with cc^,alex
^^

internal structure. Tk^e SP re^.ations represent geometric and topo-

^^ .	 logical relations between objects. 	 ^n addition, "A-ki.nr3^-of

fir • 	 relations"(AKO) are used to construct object specialization hierar-^
^^

""	 dries.

There are several restrictions on the usage of these types of

relations. A hierarchy defined by fine ^nT relation must be a tree
^f
^^

	

	 structure. Although SP relations can be established across objects

in different PI'^T hierarchies, an abject cannot have an SP relation
L'

with another object in the sage 1^fnT hierarchy, nor can it establish

^4	 multiple SP relations to any other PW hierarchy. These restrictions

were adopted to avoid redun3ant generation of hypotheses.

^^'	 Cansi	 e	 r	 ntat' s sh	 in Fi ures 4 a andder th knowledge eprese	 ion ^	 g	 ( )

^^	 (b). If object A hack an SP relation to object B in the same part-

..

	

._	 .:- ,._.	 ._
.,.	 .^,_.	 ...,

..	 _.. _
	 ------^
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whole hierarchy (Figure 4{a}), there k^uld be two paths from object A

to generate a hypothesis of object B: one ^y the s^ relatxon and the

other bX the PW relation. '%'his means that if an instance o£ object A

were constructed, two hypotheses for object 8 would be generated from
.:,

the same instance. The same argument holc?s in the case shoran in Fig-

ure 4 {h). Figure 4 {c) shaves a circular path consisting of SP rela-

^,	 Lions between objects A, B, and C. This is allowed since no redundant	 .-

hypotheses are formed.	
F

Hypothesis generation by an SP relatxon is done as explained ^^
^^

above, i,e., when an object is instantiated and the set of conditions

needed to generate a hypothesis are satisfied, then the function

	

associated with the SE relation is activ^teci t4i ^zedu^^e an expects-	 y

Lion ar?a and an associated set o£ constraints fora target object.
::^

Although, syntactically, SP relations represent binar'^ relations, it
^.^

	is possible to use them to represent n-cry relations. For example, a	 L,^

	

left eye can create a hypothesis for a nose, and can use the known	 ^^

location of a potential right eye to generate the nose hypothesis. 	
^•=1

^.

The system uses PinT relations both to group parts into a whole

	

and to predict missing parts. Zf an instantiated object corresponds	 ,,,,

to a leaf node in the ^^ hierarchy, then it can directly instantiate

^}

	

	 (again, if prespecified conditions hold) its parent node through the

PW relation (Figure ^).

	objects at the leaves of PW hierarchies are instantiated first, 	 ^-^

	

since they earrespond direct^.y to low-level image structures, The	 "^

	

presence of a higher level object is represented by an instantiated	 ^`'
^^,

^.
:::1

r.:l

f`J	 '

F;,

..^
._.	 ^
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PW hierarchy. The parent may then h othesi^e the preserve o^ other

missing object ruts. For computational simp^.icity, there are no

m	 hypotheses generated between siblings in the PW hierarchy.

•^,
_	 ,

i

i

_.
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I	
G

4 . ^.. 3'he ^ntert3xetation Cyc3.e of the High Levu. Expert--

Figure 6 shows the organization of the entire system. The High

	

-^	 Level Expert iterates the following steps.

	

.^^	 (1} Each instance of an object generates hypotheses aYcaut related

objects using functions stored in the object model (frame).

	

• ^	 (2) Al.^. pieces of evidence (both instances and hypotheses) are stored

in a ccetmon database(iconic database). They are represented using an

iconic data structure which associates highly structured symbolic

ciescrintions of the instances and hypotheses with regions in a two-

dimensional array.

(3) Pieces of evidence are combined to establish situations.. A

situation consists of consistent pieces of evidence.

(^) Focus of attention :since there are many situations, the mast

reliable situation is selected.

(5) The selected situation is resolved, which results either in

verification of predictions on the basis of previously

detected/constructed image structures or in tap-down image processing

to detect missing objects.

The system also has two additional processes:

(1) Ir►stantiation of objects at the very beginnincs of internretati.on

This process is performed by the Model. Selection Expert which

searches for object models that have simple appearances, and directs

the Law t,evel vision Exiaert to detect pictorial entities which

satisfy the appearances. The instances constructed ^ this process

_	 T_
.z	 ...«	 ^,.

r-	 F

.^ Ll

^}R

r

^:
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are seeds for reasoning try the High Levu. Ex^►ert.

(2} Selection of the maximum consistent interpretation

During the analysis by the High Level Experrt, inconsistent pieces of

evidence may !ae constructed. The High Level Expert maintains a17. pos-

Bible interpretations throughout the search process until no further

changes are made in the iconic, database. A final internretation then

sc^Zects the maximal consistent interpretation.

The follaaing subsections prc7vide detailed discussion of the

operation of the High Level Expert.

^.2. Overview

Given a set of instances of objects, each of these activates

functions to generate hypotheses about related objects. Each

instance and hypothesis is represented as a region in the iconic data

structure. Suppose instance s creates hypothesis f(s}(Ex^sed on rela

five R) for object class Ol, which over^.aps with an instance of OZ,

t(Figure 7(a)}. If the set of constraints associated with f(s) is

satisfied by t, these two pieces of evidence are combinEd to form

what use call a situation. The mote pieces of evidence that are c^

tined, the more reliable the situation becomes. The High Le'veZ Expert

unifies f(s) and t, and establishes the relation R from s to t as the
^-

^^	 result of resoZ^=^ n^c the situation.

On the other hand, a situation may consist of overlapping

hypotheses , if thrsir constraints are consistent {Figure '1 (b}) . Then

their unification leads the expert to search far an instance of the
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required object in the image, 'fhe High Taevel Expert asks the Model

Selection Expert to defeat the instance, which in turn activates the

Low Level Vision Expert. ^f the instance is detected, it is inserted

into the database. Hypothesis generation by the newl y detected

instance is performed at the next interpre#ation cycle.

4.3. Handling ^ relations

Additiona]. car^lications arise from resolving situations 3.nvol y-

ing instances generated via PW relations. Suppose s is an instance

of an object corresponding to a leaf node in a PW hierarchy (Figure

8{a)). As riescribed above, it may instantiate its parent object. Let

p denote this instance. Then p generates a hypothesis for a missing

part, f(p), If there is already an instance carrespanciing to the

missing part, say t, f_ {p} and t wi11 be unified, anti a part-who3.e

relation wi17. he established between p and t. However, since t is

also an instance, it may also have instantiated its Faarent object.

Let u denote this instance. As the resu3.t of the unification,

instance t has two parent instances, n and u. 'Phis leads the High

Level Reasoning Expert to another unification. The expert examines p

and u, and i.f they are consistent, it uni r`ies them (Figure 8 {b)) .'?'his

unification may trigger still another unification for higher level.

instances in the hierarchy. Note that after the unification,

instance P can use properties of r and t to generate hypotheses for

other part cbjects whose geometric properties could not previous'Ly be

specified due to a 7.ack of sufficient information.

^^	 j

^	 ^
^	 ;^:

__-
,,
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^'
'	 zf the two parent instances (p and u) were found not to be con-

I
sistent, the expert records such mutuallq conflicting interpreta-

	

^'	 tions, and will perform reasoning independently based on each
^.^

intemretation. The process of reasoning with alternative interpre-^
^'

	^°	 tations, is not described in detail in this paper,
i	 L-

'fhere can be a still mere c^licated situation created by a Fi^T

relation. As shown in Figure 9(a), suppose the grandparent object

has also been instantiated by an instance of a ^.eaf object, r. Let p

and q denote instances of the parent and grandparent objects, respec-

tively; a as well as p generates hypotheses for its missing parts,

say f {q) . ^u^pose that f {q) itse3.f has parts and one of therm has

already been instantiated. Let s denote that instance. Then, if

instances r and s are really parts of the same object, regions of

f{q) ands =,gill overlap with each other and will be consistent.{A

detailed discussion of consistency will be given in the next subsec-

tion.) zn this case, the system first constructs a situation based on

the intersection of f(q) and s, even if their description levels in

the t7W hierarchy are different, and then unifies £(q) and t(the

parent instance of s}. Note that instance t cannot intersect with

f(q) directly since na iconic region is associated with t in the

	

^~	 database. As a result, r, Pr q, s, and t are organized into one

hierarchical structure (Figure 9 (b}) . ^f, as shown in Figure 9 (c) ,

the levels of f(q} and t in the hierarchy are different{in Figure
1	

^;	 ^

^',
9(b), they are at the same level}, a series of parent objects are

	

k ^	 instantiated from instance s.

a`

f	 :

_.._	 _.
fi r.-_::.	 _ .^._	 _	 __	 --,^ .^-	 ^ , . y	 _..	

^ ^
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4.^. Forming Consistent Situations

Consistent pieces of evidence from different sources are com-

bined into situations. The consistency among pieces of evidence is

rased on:

(1) prediction areas of hypotheses

(2} abject categories of evidence

(3)constraints impa5ed on properties of hypotheses and instances

(4)relations amnnq sources of evidence

These criteria are discussed in the next four subsections.

4.x.1. Intersections of Prediction Areas

Figure ^.^(a) shotas all intersections formed from pieces of evi-

dence El, E2, F3, and E4. A partial ordering on intersections can be

constructed On the basi.5 of region contairur^nt. Intersection OPl is

less than OP2 if region OP1 is contained in region OP2. Figure ZO(b)

shows the lattice representing the intersection in Figure 10(a}. Each

intersections consists of some set of hypotheses and instance. Situa-

tions are only formed among intersecting pieces of evidence.

4.4.2. Object Cat^cor^.es of Evidence	 `"^'
^.

In our domain, some pairs of objects cannot occupy the same
-R

^,	 location in an image. For instance, a region cannot be interpreted as 	 L,?;

both house and road at the same time(althaxgh it could be inter- 	 ^,,

	

f	 prated both as road and shadow). Pains of frames representing object	 `^,

	

^^	 classes which cannot occupy the same region are ].inked with an irr

	

. ^	 —	 ^^

	^!	 conflict with relation,
^,	 k	 . n

^^

y
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Let OP be the intersection arising Pram evidence {El, E2^ and

let OB^71 and OB3 '2 denote the object categories of El and E^, rest^ec•-

tively. If OB^71 and 03'2 are linked by an in-confZ^.ct wa.th re^.ation,

then El and E2 are said to be conflicting, and DP is removed frcm the

lattice. The removal of 4P is propagated through the lattice, and any

intersections contained in OP are also removed, since they must also

nave arisen from canflicting evidence. To find all conflicting

intersections, it is clearly sufficient to examine alZ intersections

containing only a pair of pieces of evidence and then to propagate

the results through the lattice.

In the above case, if both E1 anc^ F?_ are instances, the High

Level. Reasoning Expert records them as conflicting and use that fact

to establish the incons^.stency of situations containing hypotheses

Generated by conflicting instances. (see section 4.4.4.)

A shartcaminc^ of our approach to evidence accumulation is that

negative sources of evidence are not considered in assessing the

strength of a situation. For example, in meclicaZ diagnosis, sane

measurements are used to deny the passibility of certain classes of

diseases. Incorporation of sources of negative evidence is an imr^or-

tant issue for future research.

4.4.3. Constraint Consistency

After eliminating all conflicting intersections, the remaining

intersec.'cions are checked ^ determine if their associated sets of

constraints are consistent. Let E1 and E2 denate the non-conflicting

,.

F

-	 ,._	
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^p

evidence under consideration. One of the following conditions must

hold:

^_

I
r

2^0

(^.) The object categories of El and E2 are the same,

{2) there is a path between the two categories consisting of ^T

relations,

or

(3) one piece of evidence is a subcategory of the other, according

^ the sped.alization/general.izatS.on hierarchy.

In the second case, since the names of. the attributes used in

the constraints associated with El and E2 may be different, they can-

not, in general, be directly compared. Suppose the object category

of E1 is at a higher level in the hierarchy than that of E2. The con-

straints associated with E2 are translated into those for the ob �ect

category of E1 by using taart-whole/a-kind--of relations. 'Phan the

translated constraints are ^mpared with those associated with El.

Figure 11 illustrates the trans^,ation of constraints using PW

relations. constraint C1 on a road piece object is translated into

constraint C2 on a road object. Currently, this translation is ?one

simply by rewriting the attributes{slot names) of Cl into appropriate

attributes {s^.ot names) of C2 using a "slot name translation table'=

for the ^ relation {Figure 11.h) .

The properties and/vr constraints associated with both pieces of

evidence must Ue consistent. Both constraints associated with a

hypothesis and properties associated with an instance are represented

`^

I

G^

k,	 i

._^

^;

f:U

^n
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u^
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by	 sets of Linear inequalities in one variable. 	 A simple constraint

manipulation system is used to check the consistency between the sets 	 r

of	 inequalities by generating the solution space (also represented by

inequalities} to the intersection of sets. Tf this so^.ution space	 i.s

^:: empty,	 then	 the	 eanstraints	 are	 inconsistent. If Ci are the con- 	 '^

straints for El, C2 for E2, and C for 0, the object category to which

^'• both F1 and E2 belong, then we must check that
^
â

(c lnc 2 ) and c^^

"f we do this by first co^rtputinq G3 = C^. ^ C2, and if this is non-empty,
+„̂_

finally cxxnputi.nq C3 and C.

4.4.4.	 Relations Between ^cxarces of Evidence

^^
s The sources, of accumulater3 evidence about a situation must 	 not }

bE:	 conf7. ictinq.	 T^et Sl and S2 denote the source evidence of Et and

^- E'2, respectively. Zf a piece of evidence is a hypothesis, its 	 source	 ^^

evidence	 is the instance which generated the hypothesis, An instance

is the source evidence for itself. It is taossibie that S1 and 52	 are

mutually	 oanfZicting(Figure	 12),	 but that Fl and F2 themselves are 	 ^

^-- consistent.	 Tn such a case, we do not 	 cambYne	 E^.	 and	 E2	 into	 a

^• situation; ana^ .ysis based on such conflicting interpretations is ner-

jr? formed independently.

4.5. Focus of Attention

After examining the consistency attronq evidence, we next evaluate

the re^.iability of each consistent situation by su^inq numerical

reliability measures for each piece of evidence, and select the most

=gym..	 ^:_ ::_	 ..	 __,; ..	 _	 ..	 ___...	 _	 ^	 ...	 _	 . _...._	 _._....	 _
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reliahle one f'r^r further analysis. This is the focus of attention

^fM	 êhh^̂p
q	 ;.

I11G^ihl^n^. 7/11.	 i

J

xecal7. that there are two different t",rpes o^ evidence in our	 '^

system: instances and hypotheses. It is possible to control the 	 -

^7irection of the interpretation arocess by assigning different relia-
,^,

bilities to them.

If a higher reliability is assigned to an instance than to a
^^-^

hy^aathesis, a situation incJ.uding an instance tends to be selected as

the most reliable one rather than one consisting only of hypotheses. :.^
E

Therefore the system fixst builds partial. intemretations by estab--
.-Ii

l,ishing relations amq^ instances before truing to perform top-dawn 	 `' ^ },

^^
picture processing.	 ^	 ^

x.5,3. Controlling the Intermediate Intertaretation Process
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^^
5. Reso].vinc^ a Situati.an

^s described in Section 4.2, one of two actions is taken. in

order to resolve a situations confXrm relations hetSaeen instances or

activate top-dawn analysis.

Haa a situation is resolved depends on the nature of its consti-

tuent evidence, Tf the pieces of evidence are a1.3. hypotheses, then a

ca^osite hypothesis iG constructed for transmittal to the MSE, and

any instance extracted from the image is then examined by the source

instances of those hypotheses. Tf a situation includes both

hypotheses and instances, then the instances are, in turn, examined

by the sources of the hypotheses, and if none satisf y the hypotheses,

then a cxariposite hypothesis can, in turn, be transmittc-d to the MSE.

5.1, Resolution Process

The system provides a description of its proposed resolution to

a situation to all instances involved in that situation. Each

instance then evaluates the proposed solution according to its

specific expectations.

Tn what follows, the process of resolving a situation is illus-

trated by the example shown in Figure l3. Sup^^e the consistency

reasoner selected the overlapping region between two hypotheses qen-

erated frestt two road-piece instances RPl and RP2 {Figure ^.3^(a)) . Tn

the symbolic rata structure, RPl and RPZ are linked to their parent

goad instances RDl and RD2 !^ PW relations, respectively. The

hypotheses for adjacent road pieces have been generated by these

F '	 4
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parent instances.	 -

Since this situation vansists only of hypotheses, the system

activates top-down analysis to find a road piece in the czverlappinq

region. This request i.s issued to the Msx^el Selection Expert 	 ,^

together with the sut^portinq ev2dence ( i.e. 1^1 and R^2) , sa that the	 -^	 ``

expzrt can use any available contextual information. 	 `^'
,_^

Assume that a new read-piece instance, RP3, is creates] {Figure	 ;^

].3{b)). Then, the system p^^ovides this result to the instances 	 .^

involved in the situation, na^'^ely RDI. and RD2. r-,

t.a

Suppose Rt]l is the first to k^e informed cf the proposed resole-

tion. RDZ examines whether or not RP3 satisfies all constraints 	 ^°:;.,

rec^,aired to establish relation Rl. In this case, however, RP3	 fails, ^^

i	

j ^	 !	 ..

l 1Ihecause	 RP3 is not adjacent to RPI .'T'his failure activates an exce

tiQn handler, which issues atop-dar^m request to	 £ir^d	 a roa^3^piece r^	 ^-

hetween RPl and RP3{see Figure 13{c)). 1

^`,

^sume	 that another	 new	 road-piece instance, RP4,	 is

detected (Figure 73 {d)) . Since ^4 is adjacent to Rpl, Fc^)7 estahlishes
^,	

#^:^:	 ^

a PW rPlatian to RP4, and then to RF3.
^,

Figure l3 {e) shows the data organizat^,on after the same analvsi.s s ^:

is performed by RI72. In this rase, however, when RD2 establishes a Fed
^,

relation fo RP3, an exception hand3,er in RP3 is triggered, he^:ause

RP3 has tw+o different parents. More st^.cifically, after RD2 estab-

lishea a ^7 relation to RP3, RD2 asks RP3 to check its reverse re^.a-
f

tion from RP3. An exception handler is activated as a result of this

"^	 .

-- ---------- -- ---__^....W^^^,.,...^.^_W^.. ^ti ._. ..._ .
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checking process. This handler issues a request to the system to
I

exaQt^ine the consistency 4aetween two paren^.:s, If they are consistent,
^p

the system merges the two FW hierarchies bela y them into one (Figure
^:

^.3{f)). An exception handler of this kind is associated with each PW

I ^,y	relation in order to construct a canp^ .ete PG+T hierarchy by merging a

^..	 pair of partial hierarchies.

There are several stages in the above example where the top-^r3chm

^u
request might have failed. xn general, the Model Selection Expert has

„^	 the ability to deal with suciz failures, Figure 74 shows a partial,

knowledge structure for suh^.^rban scenes. '^'he Model Selection Expert

'^	 ana^ .yzes the request to find RP3 {rigure l3 {a)) by firs4 asscuning theh

road piece to he detected is a v^ .sible road, and issues a request to

the Law Level Vision Expert, If this reques#: fails, the Model. Selec-
w..

^-_
tion Expert switches to the+ ocher appearance of a road piece, i.e. an

`^^	 occluded road. The selection between overpass and shadowed road is

f-	 done based on the cause of the. failure. For ¢.xaznple, if the cause of

the failure is that the gray level in the overlapping region is too

dark canrpared to the expected gray .level., then the expert will

hypothesize a shaclawed road. If all efforts by the model Selection

Expert fail., this is reported to the High Level Expert. Then the sys-

tem reports this to RDZ and R^2, which trigger their relevant excecr-

tion handlers. Since different new hypotheses may be generated by

such exception handlers, no immediate further analysis is activated.

A	 Instead, these hypotheses are canbined in the next interpretation	 ^̂ .

^^	 cycle. In the case of Figure 13, RD1 and Ri7Z would Moth generate	 ^.

±^

^^_-	 - _	 ..	 _ ...	 _..__	 _ _ ._ _	 ..:	 -	 ..	 m	 _.	 _ ..	 _^... __ . ^	 ^...
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hypotheses for a road terminator.

	

if a trop-down request, issued try an instance fai^.s, the instance 	 ^-,

activates another exception handier, if anv. if ail trials fail, the

	

instance reports _his to the system. '['hen the system activates 	 `^'
J

another instance involved in the focused situation. The initial.

	

failure is rx^t taken into account in anv way by the system, this is a	 .'^

shortcoming of the present system.

5.2. Me.^ a Pair of Partial }^T Hierarchies 	 '!

	

If « part instance is shared by two parent instances, the part 	 ^^	 ^

,^
	issues a request to check the "similarity„ ^tween the parents. Tf	 ,,

:^

they are similar, the system merges them into one. 	 F'^
r-^	

S

Similarity examination involves checking whether or not the two

	

parent instances denote (perhaps different pieces of) the same abject. 	 `^ ^ ^'
:M ^	 E	 4

For example, ^l and FtI}2 in Figure 13 (e) should be merged into one

road, although they do not denote the same (portion of) road.
^''

Knou^ledge about the continuity of roads is crucial in this example. 	 ^,

T	 liable of the two instances to he mer ed checks 	 `^`^_he mare re	 9

whether or not the ^ instances of the ot^ser instance are con-

sistent with that more reliable parent. '!^,e ire reiiahle parent may
°^	 ^

	decide to merge with the other parent, that such a merge is not(and 	 ,:^

	

will never Ire) ►^ossihie (which places them in tYonflict) or that suffi-	 ^^
:^

cient information is not available to make a decision.
M x

	Figure 15 illustrates an example of the third case. `? she defini-	 ^^

	

flop of a house group is a group of regularly arranged houses which 	 .^

^.. ,_ ^^
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face the san'^e side of the same road. As shown in Figure L5, if two

hose grceup instances share a house instance, the similarity examina-

{^;	 tion is performed. if both house group instances face the wane side

^	 of the same road instance, then they are similar and are merged into

^''	 one. On the other hand, if one of them has not established such a

"facing" relation, then it is not possible to verify the similarity
^^

bet-vreen thejn. Moreover, even if the twa house group instances have
^^
^^ established "facing„ relat^.ons to different road instances, it is

still r^ossihle for thc-m to be similar, because those road instances

may be merged later. 'nhe house group instances can be regarded as

^'	 conflicting on.?.y if their facing road instances are in conflict.

^f the result of the similarity examination is "inconclusive",

^• the system records the carries of the fai'Lure and ius^ends the action

of establishing a new PW relation from a parent instance to the

shared part instance. In the case shown in Figure 15, the relation

between H^Z and H3 is suspended. The system records all suspended

actions together with their causes. The suspended action can he

^`	 reactivated if its cause i.s resolved by analyzing other situations.
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f ^.	 Experimental Results
i

The image used in our experiment i.s a 32Q by 16fl portion 	 of	 an '^

aerial	 photograph(Figure	 16}	 with intensities in the ^:ange of Q to

r^
,
a

53. The scene contains houses, roads, road intersections, trees, 	 and

driv^ays. t,

..
^,

The appearance models are a subset of the possible models	 for ;,

suburban	 housing	 de^relopments. currently, we deal. only with houses,
i

road pieces, road intersections,	 and	 the	 spatial	 relations	 among ':

` there. Figure 14 shows the suburban housing deve^.opment model used. ^n
^^

^ this section, we r^escrihe how our system proceeds to construct aroad -':^

network interpretation from thz image.
_-

^:^	 s

The system's analysis starts with a segmentation of	 the	 image. nr
r

Since the houses and road piaccs are moc3e^ ,ec^ by compact and elongated `"

^ rectangles, such rectangles Fyrr? first extracted	 from	 the	 image.	 A ^^
.^

simple	 blob finder and ribb^^ finder are rzsed to find blobs and riYr

^'
Q

bons in the image.

Elongated rsctangl.es [se extracted and instantiated as rc7ad
L^

piece instances. These instances constitute the initial entries in
a;:

the iconic database. Figures l6 shows the initial road-piece
..

instances extracted from the image. As can b2 seen, roads are broken 	 n^
,,

into pieces.

^n the first cycle of the interpretation cycles, the system	 ^^
v^

checks each instance and, for each relatir^n, creates a hypothesis(for

an SP relation or a top--down usage of a PW relation} or an

..	
^	 y;^

b
_	 — --- ---^-----.._	 -.	 _____^..,^	 x_	 ^,
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instance (for a battan-up usage o^ a PW relation), if possible, and

^: inserts it into the database, Since score of the relations may depend

on yet undetermined values stared in game slots, not all relations

ma be h thesized t this intY	 Y}ao	 a	 po •

Zn the second cycle, the system's Locus of attention mechanism

^.. selects the most promising situation. After a situation is selected,

the system resolves it by first prataasinq a solution to it and then

broadcasting messages to the source instances. Each source instance

chec3cs the proposed solution and requests the RISE to do top-down

analysis if necessary. Also, the system may reorganize the

datal^ase(e,q,, unification of instances} during the resolution pro-

cess.

In the current experiment, the M5E is simulated by a human. The

descriptions of the action and the situat^.on are displayed on the

screen. The description of the result is entered from the terminal

and is instantiated as an object instance and returned to the system.

Figures 17 - 2;3 show how the system proceeds to select a situa-

tion, resolve the selected situation, and reorganize the database as

the result of resolving . that situation. Figures 17 and ^.^ show twn

toad-piece instances RPI, RP2, their parent instances RDI, RD2, and

the hypotheses that RDI and RD2 generate. During the hypothesis

creation cycle, instances Ri.]1 and RH2 create hvpotheses H1, ... , H8.

Hypotheses H4 and RP2 overJ.ap(Figure 19,a) . '1'he system picks this

5ituation(Ha and RP2 are consistent) and proceeds to resolve it

i

^1;



Let C ^ the summarized constraints derived from the constraints

	

of H4 and RP2. Since RP2 satisfies the car^straint C, the system uses 	
.^

.^
it as a proposed answer	 k^l checks the pro^ac ►sed solution, RP2, for

^.

adjacency. However, RP2 is not adjacent to HD^.. RD1 issues a top

	

dawn request to the M5E to find a road piece instance to connect RDl	 `?;

	

and RP2. Currer^;ly, such a request is displayed on the screen and	 c-..
r

^' ,
the result is entered from the terminal. The result can either be

^w

success, in which the descriptool: of the instance{object type and

region description} is entered, or fai^.ure,

	

?`he description of a road piece instance{RP3} is entered from 	 -^

the terminal. M5`E instantiates the instc^t►ce and inserts it into the

database. MSE reports RP3 to RDI. 1^1 checks if RP3 is adjacent to

	

RDI. Since RP3 is adjacent to RDI, ^tDl pstah3.ishes a i^nT link to	 ^:..

RP3{Figure 20.b}. Finally, RDl Checks MSt'rA again and succeeds (since

^.J

RD1 ocntains Rpl and RP3. } A PU3 l.inl is astahlished between RP2 and
r_^

RDl{Figure 20.c}. As a resui.t, RP2 k^el^ gs to two parents. The system
^.^

tries to unify them by checking if RDl and RI]2 are simila_. 	 this

case, they are similar. The system unifies RD1 anal RD2 into a	 _ngle	 ^.

	

instance {say RD' .) After the unification, road instance i^17' has three	 ^ ^r

	

parts{RPI, RP2, and RP3}. Figure 2l shaves the road instance RD' and	 ^`-'
w=n

its three parts. Figure 22 shows all the road instances after the
^_

se3.ected situation is resolved.
-F̂;

^J
During the unification process, several. instances are merged

^P
	into a single instance, The hypotheses generated by the merged 	 ^'

^A^

instances are removed Pram the database. A new set of hypotheses is
np

^.
L-J

r..q
':

/^	

.ts^	 ^_

	

^.	 ys^i^ TAP'"°̂ 	,;:,
-`^...--,.__^,^a	 ..	 _	 it-^eerxrcey^ w+ewrvr^-e..^.e.,^^...,.....f. _ _ 	 ... «.... -	 ^.	 ......	 .. _ .. _	 __.._ .__ : ......	 _-_ __-.. - 	 _:...
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z^,

generated in the next hirpothesis creation cycle. Figure 23 shchas the

new hypotheses generated by RDA . Note that the origins]. hypotheses

Hl, ... , H8 generated by R^S^, and RI]2 have been removed from the

database.

Figure 24 shaves a case where alternate hypctheses are generated.

A road can either be extended continuaisly, or stop at a road termi-

nator. one way to c:ondvct the search is to J.00k for the adjacent road

piece first. Zf that search fails, then the search fora road termi-

nator can start. 5vch a strategy is illustrated in Figure 2^.a.

Figure 24.b shows a road instance and the alternate hypotheses it

generates durinc} the process.

Figure ?,5.a shows the final result of constructing the road new

work interpretations by the system. The interpretation graphs are

shoran in Figure 25.h. Each node represents an instance. There are 29

	

^'	 road piece instances, 10 road instances, and. 5 road terminator^.

• ^.-	 instances. Figure 2fi shows the road joint instance Jl and all road

..^ _ instances meeting there. Figure 27 shwas road instance R2, the road
u.:

	

:	 terminator instances adjacent to it, and its part objects
^-

`^

	

:+	 .
,^.

	

z	
^o

f

i ^

``
I^

1i	 ,^

^.	
^ A
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^^	 Check the ^• alidity of REL(01, 02) for a pair of pictorial entities
#	 L^:

which may be instances of 01 and 02.
_	 i

1^

^	 I ,	 ^

^.

	

	 RE^^(Oi, O^) ?	 ^^	 ,

I^^

,'	 ^	 •'^

^	 ^.
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.^
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picture data	 0̂
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^^	 Fig. 7 Using a relation as a constraint.
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Fig. Z, Hypothesis generation based on functional

representation of a relation
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^:

Frame name	 Road piece t,
51ot name	 Length

Width
r' Direction ,
^^ Coordinate o£ the local. coordinate system

Father

^" ^'

^..

(1) The description of the road piece frame '-

!.i

^:.:

-	 ^^Frame name	 Road
slot name	 Total-length

Average-direction :Y
Left-adjacent-road-piece
Right-adjacent-road-piece
Left-connecting-road-terminator .;
Right-connecting -road-terminator

r_Left-neighboring-house-group °:	
P

Right-neighboring-house-gzaup ^.

The description	 the road frame(2)	 of ^	 )̂

^:

"= Figure 3 :	 (a) xhe description o£ the road frame and the

^,

road piece fra;ne.
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I

(^,} Iconic description of hypothesis H	 ^;
` ^,
,,J

(AND {EQUAI, OH,7ECT-TYPE ROAD }
{AND {I,ESSP TOTAL-LENGTH l44}	 r^

{GREATERY TOTAL-LENGTH 54}}	 :^.
LAND {LESSP AVERAGE--WIDTH l5)

{GREATERP AVERAGE--WIDTH 14) )
(AND {LESSP AVERAGE--DIRECTION 50)

{GREATERP AVERAGE-DIRECTION 30)}}	
LJ ^ .

I	 }:

{2) Symbolic description of hypothesis H 	 ^=^ ^ p
^;	 ^	 ^

.:?^	 }

Figure 3	 (b) The description of a road hypothesis H.
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y^? 	PW relation	 PW	 re3.^:tian

i^.:.^

Fi ^+

1,PW relatia	 PW relation

^+

8P re?_anon
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^	 SP relatia f.

^^

PW relatia	 PW relation

I,	 ^	 A
^..

i
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'^	 SP relation	 PW relation	 PW re^.ation

i
Y
i
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{AND (EQUAL OBJECT-TXPE ROAD-PIECE)
{AND (LESSP LENGTH 19)

(GREATERP LENGTH 14)}
(AND (LESSP DXR.ECTION 60)

(GREATERP bIRECTION 45)))

(a) The description of constraint Cl.

Slot name translation table

Slot name of
road-piece frame

Slot name of
road frame

Length Total-length

Width Average-width

Direction Average-direction

{b) 5).oti name translation table Eor the PW relation
between the road frame and the road piece Frame.

(AND (EQUAL OBJECT-'TYPE ROAD)
(AND (LESSP AVERAGE_LE'NGT`H i91

(GxtEATERP AVERAGE-LENGTH 14 } }
{AND (LESSP AVERAGE-DIRECTION 60)

(GREATERP AVERAGE-DIRECTION 45))}

(c) The description of constraints C1 after translation.

Figure 11 Translation of constraints.
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(a} A road instance RD1(bottom}, the neighboring house Qrou^
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(a} A road instance RD2(bottom), the neighboring house groan
hypotheses{H5, HS)(middle}, and the adjacent road pieta
hypotheses{H7, H8).
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?igure 21	 Resolving a situation. Road instance =^3'botto^i1
and its part objects{RP1, RP2, and R^3s(too1.

=figure 22	 All road instances after t:^e sit:s3tior.
is resolved.
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Figuca 23 Update of hypotheses road instance ^D?fbott3^^)
neighboring house group hypotheses { mic3d^el, a^sd
adjacent road niece tsyQotheses (too).
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^F POGR QURLITY.

Relation Precondition

Adjacent Alwa }'s

Road piece

Adjacent v^hen search for adjacent
load terminator road piece has failed

(a) Precondition for adjacent road piece and adjacent

(b) A road instance(bottom), ac;acent rose piece
hypotheses(rniddle), and adjacent road terrninater
hypothesis too).

zigure 24	 Change of hypotheses.
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{a) A11 road piece instances{bottom}, all road
instances(middLel. and all road terminator
instances{ton).

Figure 25	 r^inaL interpretation of the road net•^rork.
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POWER SPECTRAL DENSITY OF MARKOV T^TURE FIELDS

K. Sam Shanmugan and ,^. C. Holtzman

Telecommunications and Information Sciences Laboratory

i]epartment of Electrical Engineering

University of Kansas

Lawrence, Kansas 56045. U.S.A.

ABSTRACT

Texture is an important image characteristic, and a variety of

spatial damai.n techniques have been proposed for extracting and

utilizing textural features tar segmenting and classifying images.

^'or the most part, these spatial domain techniques are ad hoc in

nature. In this paper, we discuss a markov random field model for

image texture, and derive a frequency domain description of image

texture in terms of the power spectral density. This model can be

used for designing optimum frequency domain filters for enhancing,

restoring' and segmenting images ]cased on their textural properties.

^ • INTROD[]CTION

Image texture is made up of two components: a set of primitive

elements and a structural arrangement C'E, 2, 3, ^]. Far example, in

a photographic image of a residential area the primitive elements

are roads, houses, and trees, and the structural arrangement is the

lay out of the area. With an appropriate set of primitive elements
w	 and statistical models far the structure, it i.s possible to describe

!! z
	

image texture as a markov random process, and derive a frequency

This work was supported by a NASA grant (NASA 5- 16664?.
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domain model in the dorm of power spectral densities. The power

spectral densities can be used to derive Frequency domain algorithms

for processing texture information,
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Far purposes of illustrating the modeling approach that can be

used, consider the one dimensional textural pattern shown in Figure

1. This texture is made up of two primitive elements, rectangular

and triangular in shape with the heights representing tonal

variations. The location of the primitive elements is given by the

sequence {ti}^ We can model this class of textural patterns as

W
X I t) _ ^, Ai pm ( t - ti )	 (1 ?

-m	 ^

where

}Ai } = Amplitude sequence,

{ t, } : Location of the i-th primitive,
z

p1 , p2' • • • , pN are N primitive elements, and

{mi }	 m i E [1, 2, •••, N] indicates which one

of the N primitives is present at the i-th location.

The complexity of the textural patterns and their models depend on

the nature of ^ti }, }Ai } f }Mi } and {pi } and the following assump-

tions can be made about these sequences:

1.a. {ti} - uniformly distributed locations or

1.b. {ti} - Poisson sequence with an exponential

distribution fnr inter-location distance

2.a.	 }A.}	 Constant
z

2.b,	 ^A.}	 i.i.d. sequence of random variables, or
i
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^,

^^'E

2.c.	 ^{Ai ^	 Correlated sequence
..

. 3.a,	 p^ , g2 ,	 • •+, p^; deterministi.c shapes,	 or

3,b.	 p^, p^,	 •••, pN : random processes

`^^ 4.a.	 {mi} : Independence sequence. or

^-_ {m,} : Homogeneous markov sequence
i

^:

F'	 ^, 2.	 POWER SPECTRAL DENSTTX OF t•1ARKOVTAt1 TEXTURE FTF^DS

^	 I.

^' ;	 ^ Tf we assume that

r'o

'^^ { ti }	 uniformly distributed

,^^

^
{A,}	 Constant

^:

^:: p^, p2 ,	 •••, pU : deterministic

p	 ^. ^m.}	 markov
(
` 3

^'	 _
P{occurrence of pk } - rk

^-,
•	 :	 ^.

P(occurrence of pi followed by p' after n locatz,ons? = pig

;^
E	 , 	 L'1

then the texture can be described by the markov random field

'^' (process)

m

EJ °m	 i

r, where

.	 ^, Ts =average spacing between elements

;^'
^S

Tt can be shown C5, 6] that the power spectral density of X(t?

`--s is given by
:,

^.,

y
F	 ^ ^ ^ ^

a

I^

-	 ^ •	 ^ ^a^r— y ^
3T	 ,

.a•

^.
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^^c^}-- ' 2	E	 ^ ^ n.stT}12scf —^}
Ts n=-m j=1 a c s	 s

N

-^ 
T1	

^	 rrj I ^S j ' (f} ^2
s j^1

^' T^ Re ^ G	 ^ rj 
Sj ^ :̂ (f) Sk '(f} Qjk(f}^

s	 j-1 k=1

^^
	

3^J6
:^

^.

where

skt^} = F{pkct)}

M
Sk ' If) ^ F {pkct} - E ^rjp j it} }

j =1

and

Qjk (f} = ^ pjk ( n } exp(-i 2 ^t n f'^s}
n=1

Ey letting t = (x, y}, f ^ (fx , fy ), ^?(t) = p(x, y}, S(f}

S(fx, fy), the model can be extended to the two dimensional case.

It can also Ue generalized to the cases where {ti}, {Ai } and

{pi} satisfy the assumptions mentioned in the previous section.

3. F^1SCf3SS^ON

A generalized markov mode. for image texture can be derived

using the formulation given in this paper. Frequency domain

properties of textural patterns can he obtained from the model and

., ^..

sY..r...	 ..	 ..	 _.	 _,_ ._	 .. _ .. .__ _. _....____. _.._.
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e
'	 the power spectral density can be used to develop fregt^^ncy domain

algorithms far extracting and processing textural information.
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ABSTRACT

. ^	
^^

Rectification of single and overlapping multiple scanner frames is carried out using a

newly developed comprehensive parametric model. Tests with both simulated and real 	 ^_.
^i

image data have proven. that this model in general is superior to the widely used poly-

nomial model; and that the simultaneous rectification of overlapping frames using least 	 =-;
^,

squares techniques yields a higher accuracy than single frame rectification due to the

inclusion of tie points between the image frames. Used as control, edges or lines, which	 ^"
rr,

are much more likely to be found in images, can replace conventional control points

and can easily be impler;iented into the least squares approach. An efficient algorithm	 ^ .
n:

for finding corresponding paints in image pairs has been developed which can be used 	 rr	 '

for determining tie points between image frames and thus increase the economy of the

^4hole rectification procedure.	 '`°

j	
: ^	 ^^
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i. I1VT^O^UCTION

I.i General

Imaging, using scanners as sensors, yields the sensed data about the object in the

form of pixels. Knowledge of the relative and/or absolute locations of these pixels in

the object space is necessary far mapping, classification, and change detection or moni-

toring. Of primary interest is scanner imagery of the surface of the earth. The process

of finding the location of pixels on the ground for this type of imagery is called

rectification. If the reference is another image, the process is known as registration.

This research covers rectification and registration of scanner imagery produced by

satellite-borne scanners such as LANDSAT MSS imagery. An important element of

this research concerns correspondence between two images or between an image and a

repre,entation of the terrain (i.e. a map).

If the position of the sensor platform {i.e. satellite) and the attitude of the sensor at

the moment of sampling a given pixel is known, and if the interior geometry of the
^s

scanner at the same instant can be reconstructed, then the ground position of a pixel

I

can be derived with some assumptions regarding the shape of the terrain. The satellite

II ,}	 ]t:
r	 ^^	 position can be derived from satellite traelsing data. The sensor attitude can be sup- ),
^:	 ^^

^^	 plied by attitude sensors onMboard the satellite. The geometry of the sensor is recon-
1!

^_

^^L^
1

_	 .,

-.	 _
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^^

1^
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.^,
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strt,cted using calibration data and the imagery. Unfortunately, the accuracy of the

satellite position and sensor attitude measurements is not sufficient to produce sub-

pi.Xel rectification accuracy.

An alternative method far rectifying satellite scanner imagery is through the use of

control information. Control can be in the form of points or edges with known ground

and image locations. Tn this method, given a suitable mathematical model, the parame-

tens needed for relating the image positions of pixels to their ground positions are first

computed using control paints and applying an appropriate adjustment procedure.

Then the ground positions of pixels are computed using the same model and the

derived parameters. The same method, with slight modifications, can also utilize edges

as contra! instead of points.

The above method cau be further subdivided into two approaches. The first is the

interpolative or the surface fitting approach. This approach uses a mathematical series

(e.g., polynomial, harmonic) tv approximate the true mathe^aatical model relating the

image position of pixels to their corresponding ground position. This approach requires

an excessive number of control points for uniform rectif cation accuracy.

The second approach is commonly called "parametric". fn this approach, the

mathematical model used is based on the geometry of the imaging process. Because of

this, it is possible to develop highly accurate models. However, usually simplifying

^YY

^^

^J

^i
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assumptions are made to make the resulting model tractable, since the geometry of the

satellite scanner image is very weak. In this approach, it is possible to exploit a priori

knowledge of the satellite position and sensor attitude, effectively combining the two

main methods discussed above.

Both methods mentioned are normally used for rectifying single frames of satellite

scanner imagery. This requires that some assumptions be made regarding the shape of 	 ti^^

the terrain covered by one image frame. Improvement in accuracy can be gained if

overlapping frames of imagery are rectified simultaneously in a procedure commonly 	 ^`

known as block adjustment, 	 ' ,,;

^,

1.21^eview of the Literature	 ^

d^

The earliest approach to rectification utilized interpolative or surface fitting models

such as polynomials. This model is easy to implement and gives results comparable to
k
t

most early forms of the parametric model far satellite imagery (Forrest [1sj, Trinder

[42^, Bahr [lj, Dowman [lOj).

The parametric model based on the geometry of the scanner imaging process has 	 ^ ,
I

many variations depending on the simplifying assumptions made. The simplest model, 	 ^

^^which is re^.11y designed for aircraft scanner data, assumes that the satellite orbit is a 	 ^,
e	 ^.

straight Iine and that the earth is projected onto a mapping plane (Kratky [23j, 	 {

,..	 _._	 _.	 _ ._...n.._.^_	 _ .
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1

	n	 Konecny (21], Dowman [laj}. The orbit of the satellite has been assumed to be a circle 	 ^^r;

	

j	 1

	

- i	 (Forrest [12], Levine [26j, Synder [41]) or an ellipse (Bahr [2j, Sawada [39]). The earth	
..,

,i

has been assumed to be a sphere (Caron and Simon [9j, Bahr [2], Sawada (39]} or an 	 ^"

	

C __#	
4

	f	 ellipsoid of revolution (Puccinelli [36], Forrest [12], Levine [26], Synder (41]).
^^
r	 a

	

-	 The satellite orbit and position can be defined simultaneously in terms of the sate!- 	 o_	 ^'

	

^^	 lite position and velocity vectors (Caron and Simon [9], Puccinelli [36]). The position of
t'

a satellite along an assumed orbit can be defined in terms of time varying orbital
^°

	

'	 ^;

	

- ^	 parameters (Bahr [2]). Alternatively, the orbital parameters can be assumed constant

	

^	 :^ u +.

	

^-	
S

which results in an ideal orbit. Small deviations of the actual satellite position from
^•

	

^.	
LI1	 i,

the ideal' are then modeled as arbitrary functions of time, usually a polynomial series 	 :t.-,

	

^_	
^

(Levine [26J, Mikhail and Paderes [32]}.

	

^.
	 ^	 r^

,^^.

	s• '	 The sensor, without the scanni^zg action, is nominally pointed along the vertical.	 -VJ
^'

Small deviations of the sensor attitude with respect to the vertical are modeled as poly- 	 `.^

r
	^^	 nomiai functions of time. Bridging of long strips with control at each end. only is feasi- 	 M1^
k	

._
^•̂.

=	 ble through the effective use of a priori attitude information (Friedmann [I6]).
.^
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	;E "^	 In the early phase of this research, we derived a comprehensive model considering

f

that the earth is an ellipsoid of revolution and the orbit of the satellite is an ellipse
f

	^'	 (I^likhail and Paderes X32]). All three components of the deviation of the satellite posi-

t.ion from t he ideas and the three components of the deviation of the sensor attitude
a	 ^::.

from the nominal are incorporated into ±he model.
ro
y1^

^`:

	

1^.
	 Using this model, we developed a system for simulating scanner image data both in

	

^ u^	 the direct and inverse modes. In the direct mode, given the parameters defining the
R

	^ ^	 orbit, time, satellite position deviation, sensor attitude and internal sensor geometry, 	 ^,

^	 -

	

^ ',^	 and given the ground coordinate of paints of interest, the corresponding image raw and 	 ^	 i

	

^..	 a

column numbers are derived. In the inverse mode, the ground planimetric coordinates
if!	 u.

of points are computed given the corresponding image row and column numbers, the
',	

E

parameters mentioned above, and the shape of the terrain.
z

r,-

	

. -•	 This model has been extensively tested using simulated data and reported on in last

f--

! sir	 year's Symposium (Mikhail and Paderes X32]). Five different sets of experiments were^a

	{^,	 performed to study the following factors: (1) the e$'ect of error in parameter estimates	 {11

	

Ls	 E^on rectification accuracy; (2) the relative performance between our extensive model,	 +t,^
^^

^^

three special cases with simplifying assumptions, and the po i_ynomial model; (3) the i

	^^	 effect of different control densities an rectification accuracy; (4) the effect of errors in

.^ ^.

-^---	 -_	 -	 .^-	 :^w
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derived image position on rectification accuracy; and (5) the effect of errors in meas-

used ground position of control points on rectification accuracy.

In Chapter 2 of this report, additional tests of this model using two frames of real

data and the corresponding frames of simulated data employing the same characterizing

garan^eters as the real data are included. Previous conclusions using purely synthetic

data were generally confirmed.

With the comprehensive model fully developed and tested for the rectification of

single images, effort was directed to the implementation of an extensive block adjust-

ment program. It is based on the same mathematical model and is designed to accom-

modate data from overlapping satellite scanner imageries. Block adjustment reduces

the required amount of control needed to meet a specified Level of rectification accu-

racy. Synthetic data was used to ^. •erify the algorithm and the results are included in

this report.

From the experience gained by analyzing both synthetic as well as real data, accept-

able rectification results require from 20 to 34 control points. Securing this number of

points is often dil^.cult and costly because well identifiable "point" features are not

abundant. Furthermore, high image and ground positional accuracy for control points

is difficult to achieve. Therefore, the research effort was next directed toward an alter-

native type control. In Chapter 3 of this report, the novel concept of "edge point" is

^^
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' ^^	 developed anti tested and found to be quite promising. The idea is rather simple in
^	 ^:

l^	 that a control point can be equivalently thought of as a pair of perpendicular edges.
^^

Therefore, one edgL, which may be considerably easier to find and locate accurately,

	

-,	 can be used as control. A point on an edge, which we shall term " edge point", will

	

^^ ^	 have 2x2 covariance matrix which is almost singular. This is because such a point pro
^.

^^

f
vides precise information only in the direction normal to the edge.

^,

	;^,	 Having generalized somewhat the approach to control by introducing the edge

	

;^	 points, effort is then directed to the overall problem of correspondence. Chapter 4 ^"

	

C:`.^	

S ^

	

M	 reviews the general problem of correspondence and develops an algorithm for locating

corresponding objects in image pairs. Th.e algorithm is based on a robust estimation 	 ^ ''

procedure for the parameters of an affine transformation. It has been tested on real
Q

	N ,	 image data with simulated distortions, and this early result is given.
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'The comprehensive model we derived (Tviikhail and Paderes ^32^} can be used for

t

simulating data both in tine direct and inverse modes and for rectification. This model

has the fol^otving form:

^	
X ^

(t)	 y = a M Y—Y9
Z	 Z—Zs

where:	 r.

u it

x, y, z	 are the coordinates of a gig en point in the	 `,. 1
image space. These coordinates are functions	 ^ ^	 F
of image row and column numbers and the 	 ^`
internal sensor geometry; :_^

X, Y, Z	 are the corresponding ground ^.00rdinates of 	 °°
the given point;	 --

;^ YS, Z$ are the ground coordinates of the satellite
position when the pixel containing the given point
is sampled. These coordinates are the sum of the
idea! or predicted satellite position and the	 =°
deviation of the actual satellite position from	 =4
the predicted one. The ideal position is a 	 ^	 i
function of orbital parameters and time (t) while 	 ^	 ^^
the deviations are functions of time (t^ only; 	 ^ ^	 ?

^^

is time which is a function of pixel row and column 	 ^_^
numbers and the internal sensor geometry;

^:^

^^

r^
^.^

-	 __ ,_
._ .

	

.	 : _. L s	 ,.^	 ^,
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t	 ^	 ,

NI

	

	 is an orthogonal rotation matrix which brings the
ground coordinate system into the sensor coordinate
system. This is a function of time, sensor attitude,
deviation of the satellite position from the ideal,
orbital parameters and earth geometry';

a

	

	 is a proportional constant which varies from pixel
to pixel {i.e. a scale factor).

In this model, small deviations of the satellite position from the ideal {3 com-

ponents) and the small sensor attitude deviations from nominal {3 components) are

modeled as third degree polynomial functions of time. Usually, ^+, which is a nuisance

parameter, is eliminated resulting in:

fl _ ^ _ mll {X psi + m12 {Y^^S^+ m is EZ—^s) = Q

	

z	 mat {^—^) ^" ma2 {Y—YS} ^" msa {Z_ZS^

(2)

m21 {X ^s} + m22 {^^Ys} + m23 {^—^'s}
r ^—	 r	 r	 =0

	

f- r Z	 m31 lX ^s) + m32 {Y^^s} -E- m33 t^—^s)

These two equations, which are now in a form suitable for rectification, are then

linearized with respect to four groups of variables: {1) the row and column numbers of

a given point; (2} the parameters de&Wing time and satellite orbit; {3} the parameters

defining the satellite position deviation from the ideal and the sensor attitude; anal {4)

the ground coordinate of the corresponding point. Other variables defining the internal
r:7	 , ;ca

^!^	 georrmetry of the sensor and the geometry of the earth's shape are held constant. Vari- 	 ;^''

,-,
}	 ^ ables in the first and fourth groups vary from point to point, while variables in the
ui

^^

W	

i.
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t second agd third groups are constant throughout a whole frame. The linearized equa
;.

Lion has the following general form:
.}

^ 3)	 A v + B^02 + B303 + BL1 ^ f

	

^ ^	 _. i

where:

	

,^	 ,^

}

v	 is a 2 element vector of residuals for the first group

i^
of variables ( i.e. observed raw and column numbers for 	 ^^

	

p	 a given point;

^. ^

	j	 A	 is a 2x2 matrix of partial derivatives with respect to 	 -

	

^	 the first group of variables; 	 ^^

	

^.::	 1

	

^^ ^	 4

	:^	 D2	 is an 8 element vector of corrections to the
approximations for the second group of variables; 	 '-'°

	

^.,	 l-J

Bz	 is a 2x8 matrix of partial derivatives with respect	 '{
to the second group of variables;	 _

r

^_ 33	 is a 24 element vector of corrections to the	 -'^

approximations for the third group of variables; 	 t:1	 -3

	

^I^	 1

	^.^ ^	 B3	 is a 2x2 matrix of partial derivatives with respect 	 i^

	

^	 to the third group of variables; 	 ^
.": 6

Y

^	 is a 3 element vector of corrections to the approximations 	 ^-^•
for the fourth group of variables (i.e., ground coordiaatssj; 	 rt p

i„,

	

-	 B	 is a 2x3 matrix of partial derivatives with respect to

	

^	 the fourth group of variables;	 'm
ji

	

_ k	 ^_ya

	

• a i l;	 R

	^	 f	 is a 2 element vector of constants resulting from the
linearization.	 ^ r̂p

4tl	 ^'-

	

^^	 The first and fourth group of variables in the linearization are known because they 	 ^ n
^` °I

	

:^	 ^_^

	-^	 are supplied by ground control points. In rectification, the values of the unknown

^^
^ ;
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parameters in the second and third group of variables are recovered in an ad;ustment

procedure using control points and the linearized model shown in equation (3).

Because of weak satellite scanner image geometry, not all the unknown parameters

can be solved for simultaneously. Instead, unknown parameters in the second group of

variables a.re first recovered under the assumption that all parameters in the third

group are zero. This is reasonable since the model is designed such that the parameters

in the third group axe as close to uero as pussible. Then, using the same set of control

points and the computed values of the parameters in the second group, estimates of the

parameters in the third group are derived. Once estimates of all unknown parameters

s,re available, the ground coordinates of any other image point can be solved for with

some assumptions regarding the shape of the terrain.

^.^ Experiments With Rea! S^ngxe Fraans Data

Two MSS frames taken by LAI^IDS.^T 2 are used in this experiment. The first

frame covers I{ansas State which is relatively hilly. It has X53 uniformly distributed

control points. The second frame principally covers the state of Louisiana which is Ilat.

1lbout 1/3 of this frame on the south-east corner is over the sea. It has 192 well distri-

^'
::	 ^^,	 buted control paints, although not as uniformly as in the Kansas frame. 	 ^'

^'

.^ }i 4.a

^^: € ^^-_.,	 J #̂,

L

^^

. .ti	 ..^	 r	 Y•	
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'Fen cases were run for each frame corresponding to two types of model (collinearity

and polyp. c?mial} and five control configurations. I^'or each case, withheld control points

were used as check points. Table 1 shows the results. The co[lineari^y model is supe-

riot to the polynomial model when the control points are few especially in hilly terrain

such as the ltansas frame. Also, increasing the number• of control points beyond 25 has

only a marginal e$'ect on rectification accuracy. This confirms in general our previous

results using simulated data (Mikhail and Paderes (32]). Two additional cases for each

frame were also run where all the control points were exercised in the adjustment. The

R;LiS of the residuals on control points for the Kansas frame were 58.8 and 57.8 m for

the collinearity and polynomial models, respectively. The corresponding values for the

Louisiana frame were 61.2 and 60.i m. These values are the upper bounds of the qua!-

ity of the data. They are used in the second experiment to determine the precision of

the image measurements input into the simulation.

,2.^ experiments With Sin^Ie Frame Synthetic Data

Using our extensive simulation progeam, the characteristics of the two real image

frames were used to produce simulated images which reproduce as closely as possible

the real images with respect to control configuration and accuracy. Simulation was

done in the inverse mode, where perfect ground coordinates are calculated from the
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Table 1 RMS Error on Checic Points in Meters Using Real Data

Number
of

Control

Kansas Louisiana

Collinearity Polynomial Collinearity iolynomial
Points

10* 68.8 117.1 90.4 96.6
15* 67.9 73.6 72.3 71.7

c5 67.6 70.4 69.3 67.3
40 67.9 69.5 66.0 65.4

81/70** 63.8 65.5 68.4 68.4

%` [dhen the number of control points is low, the number of
parameters in the model is reduced to avoid convergence
problems.

** R1 control points for Kansas frame and 70 for Louisiana
frame.
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given image coordinates aad derived rectification parameters. Then the calculated

ground position of control points for both frames were perturbed using normal distribu-

tion with 15 m standard deviation in each of the three coordinates. The image posi-

tions were perturbed using a combination of normal and uniform distribution. The ctni-

form distribution used for perturbing both frames has a range of -0.5 to +0.5 pixel,

and is used to account for round off errors. The normal distribution used for perturb-

ing the TCansas frame has standard deviations of 0.44 pixel in row and 0 .40 pixel in

column direction. These are the values which when used in the simulation program

produced the RMS values given at the end of the preceding section for the full-control

case. The corresponding standard deviations for the Louisiana frame were 0.40 pixel in

raw and 0 . 64 pixel in column direction. Several sets of simulated data with the

described perturbations but with different "seeds" in the random number generator

were produced and rectified. Table 2 shows the results of rectification using a represen-

tative simulated data set. Comparing Tables t and 2, it can be seen that the trends in

Table 1 which resulted from rectification of real data are a^^p'^.:; ^.ted in Table 2.

Simulated data using the control configuration of the two real data frames but

without perturbations were produced { i.e. perfect data sets). The rectification results

using this perfect data set are shown in Table 3. From this table, two significant

^ ^`-	 results can be seen. First, it is possible to recover the correct set of exterior orientation
1` -
	 ^;
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Table 2 RMS Frror on Check Points in Meters Using Simulated
Data

Number
of

Control

Kansas Louisiana

Collinearity Polynomial Collinearity Polynomial
Points

10* $4.0 134.4 80.9 89.9

I5* 76.9 82.0 78.7 79.6
25 75.4 74.8 72.5 73.8
40 64.6 64.6 65.0 64.8

81/70** 61.9 62.9 60.5 61.D

* When the number of control points is low, the number of
parameters in the model ,i5 reduced to avoid convergence
problems.

** 81 control points for Kansas frame and 70 for Louisiana
frame.

,.

Table 3 RMS Frror in Check Points in Meters Using Perfect Data

r

Number
of

Control

Kansas Louisiana

Collinearity Polynomial Collinearity Polynomial
Points

10* 11.8 102.5 10.9 15.4
1,5* 0.6 13.2 0.3 1I.2
25 0.5 1D.8 fl.3 9.6
40 0.5 10.4 0.3 9.6

8I/70** 0.5 9.9 0.3 9.8

* When the number of control points is low, the number of
parameters in the model is reduced to avoid. convergence
problems.

** Sl control points far Kansas frame and 70 for Louisiana
frame.
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elements using the collinearity model if the data is perfect. Second, and more impor-

tartly, it shows that the systematic error inherent in the polynomial model is about 10

meters.

,2.^ Theory of $lack adjustment

Given overlapping strips of scanner imagery, instead of performing rectification

frame by frame, all frames can be rectified simultaneously in one block adjustment

The main advantage of this approach is that conventional points and edge paints com-

Eton to many frames, even those with unknown ground coordinates, can be exploited to

i^zcrease rectification accuracy. These paints are known as tie points. Another advan-

tape in using this method is that nosaicking of large areas is facilitated.

We implemented a block adjustment procedure for satellite scanner imagery utiliz-

ing the same mathematical model used for simple frame rectification. In block adjust-

ment, each paint appearing in any frame results in a pair of equations similar to equa

tiara (3). This is the linearized form of the mathematical model used for single frame

rectification.

Using the method of least squares adjustment (Mikhail [34]), the resulting system of

normal equation is of the form:

rte-	 _ ____ _ _ 	 ,^	 ^,^ ^-,-^ --. .^	 _,	 ^^,	
----	 -- .	 . _...^...,..^.q._.,_.-.......-.,,^.,a..^,^_........,..._.^__.^ .._- - . .....
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	 (^	 N iV ^ — ^,^	 ^
NT N ©	 t	 ;

^^	 where:
`j.,

E

^^	 ^

s •	 L^

'^	 N, N, :V	 are submatrices of the normal equatia^ns 	 '`
coefficient matrix;

l,.:i
u

<< _	 d	 is a vector of corrections to the approximations
,^	 far the unknown parameters in all frames (i.e.,	 `^;	

DZ and tl^);^,

J	 ^^ .
^=^.	 ;^	 is a vector of corrections to the approximations

for the ground coordinates of all points; 	 '^;

..
t and t	 are the resulting constant vectors.	 rt

^^	 1. rA.s an example, consider the block of overlapping imagery shown in Figure I. There

^^
' E ^^	 are 5 image strips overlapping by approximately 80%. Every strip has 4 frames of 	 F
^^	 u _	 '

imagery and every frame has 9 paints in it. The frames are numbered consecutively in
;-	 .
^..:	 ..

^;	 the vertical direction along the direction of the strips. The detailed form of the normal
'^' E

k^ ^^ ^	 equations coefficient matrix is shown in Figure 2.
^i
i I	 1j

^` ^.:	 The contribution to the normal equations of the coordinates of ground paints (^) 	
F

;^E^^

	

	
are usually elimi?^ated first, resulting in a set of reduced normal equations, which has

the form:
^	

;

_^^^	 L' dl	 _	 ^.,

ri	 l ^ ^	 N^ '^ t	 ^	 14

;r

03 ^	 '^
{	 ^^

^^
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Fj^ ^
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F^gure 1 A Block of 5 Strips With 4 Frames Fer Strip.

NOTE: (1) the number in circles are the frame numbers
(2) the dot: represent common points and the numbers	

^.

below them are the point numbers
(3) strips are in the vertical direction

0



^	 '^329

Figure Z detailed Form of the Narmal Equations Coefficient Matrix.

s^
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^--
^.. .

where:
^:

i

N — N —1\iiV`^NT	
r

t =	 t — Nib^ fi t	 ..

The reduced normal equations can be formed directly without having to form the total

normal equation. Proper numL- ering of frames results in a banded structure for the 	 r'
,;

reduced normal equation caeff^cient matrix N. For the block shown in Figure 1, the	 rJ,
I

detailed structure of the reduced normal coefficient matrix N is shown in Figure 3.
,^--f	

s

Each off diagonal sub-block in Figure 3 is due to points common to a given frame pair. 	 _

The existence of these subblocks is the rr:^*.son why block adjustment is more efficient 	 ^^ f ^;
^	 #,

than single frame rectification. As a matter of fact, block adjustment without tie 	 M1
.:^	 ^

points is equivalent to multiple single frame rectification. Efficient algorithms exist to 	 '^^
;:	 r

solti• e for ^ in equation (5).	 .^ ^ .
'	 i

_;,	 f^.
;^^,	 r

rr	 ^

,^. 5 ^xperimenta T^lrith A Block of 4z^erlapping Synthetic Image Data

R,,
r1 block of a total of 9 frames, composed of 3 adjacent strips and 3 frames per strip

::

tivere simulated. The center of the block is approximately at 58.fi°N latitude. The 	 r.s
^	 ^^, u	 f

frames have about 60 o sidelap between strips and 1:5°^ overlap along each strip. 	 i^^^

^,
There are 4^4 control paints at a grid interval of 2a km, and 453 check points also at a 	 `^^	 ±.

^,°^

grid interval of 20 Itm. The check point grid is displaced by IO km in b: th Easting and	 ,^

^ ^
. ^	 _.w

..	 . ,_ ._..,.^.^..,,,..,..^^..^P............^_.__.,,._^ . _, 	 .....	 -
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Figure 3 Detailed Fnrm of the Reduced Normal Equations Cozfficient Matrix.
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^F:

Northing with the result that +sack control point is surrounded by ^ check points and

vice versa. The ground position of both sets of points were perturbed by 15 m Stan- i

dard de^-iation in each of the three coordinate directions using the normal distribution. 	 `

The image position of both sets were also perturbed using a combination of uniform ^,

and normal distribution. The uniform distribution has a range of -4.1.5 to ^r4.5 pixel.

The normal distribution has a standard deviation of 4.5 pixel in both row and column	 ,ti

direction. Five cases of block adjustment were run with different control configuration,	 ^^:: ^,

'Fable 4 shows the number of control and check points for each frame and for the whale
.^

block for each of the 5 cases. It also shows the number of tie points in the block for all

cases. A tie point is any point common to two or more image frames which has known 	 ^`
i ^.

image positions but unknown ground position and is included in the block adjustment. 	 ^	 °^
;^

In this experiment, the ground elevation of tie points were constrained to its a.-priori 	 F'	 ^
li-^	 ,.

value. This is necessary because it was previously shown that elevations cannot be
_.

recovered with sufficient aceut^acy using block adjustment techniques for aircraft 	 '
i

scanner data (McGlone and Mikhail (34j) and aircraft scanner imagery has a much

^	 stronger geometry compared to satellite scanner imagery. 	 ..^ y	 ,

"^

Table 5 shows a relative comparison of RMS errors on check points on a frame by 	 .: ^

frame basis betweAn block adjustment and single frame rectification for all five cases.
^- .

The case where the parameters are perfectly known is included as a reference. It 	 µ

4

.,^.	
X
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Table 4 Number of Cantrol, 'fie, and Check Points Cfsed in
81ock Adjustment Experiments

Cases

Frames

^Cvmber of Control Paints Number
of

Chack^. 2 3 4 5 Pvif^ts

1 ll 15 27 45 91. 90
2 9 13 24 39 91 89
3 9 l3 2b 41 S8 87
4 ll l5 25 45 89 Sb
5 ll 15 26 42 $9 86
6 1p l4 2b 41 9D 86
7 lQ i4 25 42 88 88
8 1D 15 26 44 89 87
9 l? 16 26 42 S5 88

C3l.ack ^ 42/ 224 66/21"_ 125/18D 214/134 454/0 453

* Contrvl paints/tie points.

Table 5 A Comparison of Check Point RM5 Ez^rar Between Block
Adjustment (aBA ) and Single Frame Rectification (^5F)'

Cases

Frames

The Ratio CF	 /c7	 in Meters
BA	 5F

^	 Perfect
Parameters

1^ 2 m 3 4 5*^

l 93/-^ 79/92 66/7ti 67/7D 66/66 65
2 77/- 76/- 68/79 74/80 69/69 62
3 117/- ZDD/- 73/8l 8D/79 79179 68
4 87/- 77/98 65/73 67/6b 65/65 63
5 761- 74/l42 67/73 7D/72 68/6$ 64
6 79/- 74/142 63/69 69/7D 63/63 62
7 ll3/^ 7DJ85 65/72 65/68 65/65 59
8 92/- 971- 64/81 69/76 6$/68 60
9 83/- 72/$2 65/78 67/b9 b8/68 b2

Ave. 9q.8/- 79.9/- 66.2/75.8 69.8/72.2 67.9/67.9 62.8

x Single frame rectification did not converge because of few control
points (nv model parameter raducta.on is exercised in this case).

*^ Block adjustment for case 5 is the same as single frame rectifica-
tian because there are no tie points.

_	 '. ,.	 ^..
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clearly shows that tie points, which are much more readily available (and less exnen- ^.

siveJ than control points, have a beneficial effect on rectification accuracy especially

when control paints are few. This improvement in accuracy is essentially due to tie
^^:

points because black adjustment without tie points is equivalent to single frame

rectification.	 J ^,i
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.__._._..__._... __ _ _i,._ w ...,	 .....	 .,. Â9	 .... -_._.. _._._	 __ __... _...__^__.__^_..._.<.^.-r..^---ate^.____
	 _ _



,^ 33^.t..	 ..

77

(
f ^ ^ ^I^

f^^,̂

^

^.

`	 ^

r-.

335

L-
I^

`'

`^
r^

9. EDGES AS CONTRDL
^;

^:.

^.1 Edge Sainte
E 4 .'

r ^.
For a typical image frame, the necessary number of control points with the desired

^. distribution	 and	 accuracy is difiiicult and sometimes impossible to secure because
.

^
^,

^^

features that can serve as contras points are few. 	 By comparison, edges and lines occur

_ ^' more often and i;^ combination with paints, the necessary amount of control can more

^^ ^ easily be satisfied if a method is devised that can utilize lines and edges as control. ^	 G
^;.

^s .^ straight edge car line can be represented by a single point on that edge, preferably
i

` ^ near the middle, and a direction. lie call that point an edge point.	 Edge points on the
,^

^	 :^
i
'^

^- ground, or maps representing the ground, can be identified and transferred ^ into the ^`
r
r:	 _ ^ ^ ^ ;

corresponding image manually. 	 The position of edge paints on the image can then be
j'

" measured in a direction perpendicular to the edge with an accuracy comparable to can-
k,

±y ventional points or even better. 	 The covariance matrix for the position of the edge

^`n
^=

point in the (l,p) coordinate system is

^^ UP ^ 2 	Q ^	 F

L°^
^^^	 0	 6p

i^

r,^^.
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then be computed using (Forstner [^^#^):
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i^

where:	 ^..
t	 ;,

r	 1	 is parallel t.o the line	
^,

^^
_^	 p	 is perpendicular to the line

r

^„

6	 is the standard deviation of edge point position
P

_^	 perpendicular to the edge
^	 i^.

^ ;, ^^

	

	 is the standard deviation of edge point position 	 ;,
along the edge

€.

x	 is equal to Ql^^p and is assigned a very large	 ^ ^

__,
value	 -'

,, The direction of the edge, 8, can also be measured on the image. The covariance

;:
matrix of the edge point in the ( r,c) coordinate system is

^^

^ ''	 (7)	 Erc - Rg ^''lp R^	 ^(

	

^. ^	 ^.
where:
r	 is the row direction in the image 	

^^

,.	 . ^^

s	 —

^	 c	 is the column direction in the image 	 ^,
iL L

Ro is the rotation matrix with argument 0
^, ,

" '	 Another method of finding the edge point on the image is through the use of digital 	 ^ u	 '-
^•..

correlation. First a window centered on the edge point on the map is digitized approxi- 	 T^.

mately in the row-column direction of the image. This window is then correlated with
,...

the image, with or without image pre-processing such as edge detection, resulting in 	 ':^

	

^^	 t

^^
image position of the edge point. The corresponding position covariance matrix can 	 ,^
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-- 2 E (a^/ar)2 E (agl ar) (agl ac) -^
($ ) ^-'rc ^" ^n	 sym.	 L (r7g/t7C }2

where:

Qn	is the standard deviation of image noise

g	 is the density of the image inside a window
cont^.ining the edge point

r, c	 are the r^^^v and column numbers

r7g/car, 8g/ac	 are the partial derivatives of g with respect
to r and c.

Before the location of edge points are transferred into the image, their locations are

first defined in the map or ground, hence edge points can be treated as ordinary points

as far as their ground positions are concerned. Once their image portions are defined,

edge points can be easily incorporated into existing rectification programs.

in theory a single edge point is enough to represent a straight edge segment, but in

practice more than one point may be necessary, especially if the segment is not really

strsight.

3.,^ Experirraenfs 1<Vttli Edge Points as L"'onlrol

ire Single Frame Recttftcae*i4^

In our experiments using edges as control for rectification, we ran ten cases with

!,^

b>
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	different edge distributions. Figure 4 shows a schematic representation of all tea cases. 	 `'^	 ,
^;

	In case (l.), edge point pairs have the same coordinates and are positioned at a regular 	 ;

grid. The angle between the edges in an edge pair is fixed at 90°. Case {2) is the same

as case (1), except that the acute angle between the edges in an edge pair varies ran-

	

domly within the range BO° to 90°. Case (3) is the same as ease {2), except that the 	 J
;-

	

range for this case is from 30° to 90°. Case {4) is the same as the previous cases except 	 ^^'

	

that the direction of edges in this case is totally arbitrary. Cases (5) to {8) are the 	 I
'U

same as in cases (1) to (4), respectively, except that the position of one edge point in an

	

edge pair is randomly perturbed within the range -Z00 to + 100 pixel. Case (9) is the	 `'

,_J	 ..
	same as in case (I) except that the position of each edge pair is now randomly distri- 	 ° #;

^^

	bated over the whole image frame. Case {IO) is the most general case. In this case 	 '°^
-.^

both the position of the edge paints and the direction of edges are totally arbitrary. L:':l

	

The amount of contamination a lied to all ten cases to simulate random errors was	 r ^. I ^pp	 t_J	 ,y

the same. In the image, the ideal coordinates of edge points were perturbed using a
^a

mixture of uniform and normal distribution along the edge direction and perpendicular ^^

to it. The uniform distribution has a range of -0.5 to +0.5 pixel in both directions
r^

	representing the discretization errors. The norms! distribution has a standard deviation 	 ^-
rn.,	 ',

	of 0.5 pi:.el perpendicular to the edge and 25 pixels along the edge representing the 	 L'

	

identification errors. The ground position of edge points were perturbed using the nor- 	 r
IF

^_^	 ^

^.^ .	 _
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^;	 u' figure 4	 Aistribution of Edges for Different Cases of Rectification
- [Jith Edges as Control.

^f	
^, NOTE:	 {1) Pairs of edge points, having the same coordinates, are ^^

positioned at regular grid. The angle between the edges
;^" is	 90° . '
E (2) Same as (1), except that the angle is at least b0°.

(3) Same as (l), except that the angle is at least 30°.
(4) Same as (1), except that the angle is arbitrary.

!^^ {5)-{8) Same as (1)--(^+)	 respectively, except that the
'	 ^^' coordinates of edge points randomly deviate from

regular grid up to I00 pixel.
ra (9) Same as (].}, except that the position of a pair of f^

.	 '!^ edge points is totally random. 1̂
(la} Both the position of an edge paint and the direction i,

r	 ^^ of the corresponding edge are arbitrary. i
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mal distribution with standard deviation of 15 meters is each of the three coordinate

v

_
^,

directions. The number of edge pairs for all cases varied from ^5 to I45.
..^

Check points were used to measure the accuracy of rectification.	 There were I44

check points situated on a uniform grid. 	 For comparison purposes, the same check

' paints were used for all cases. 	 The image position of check points were perturbed in
_	 ,^.

the same ma,aaer as edge points, except that the perturbations were applzed in the row
^.:,	

^^

and column direction instead of along the edge and perpendicular to it and that the ._

standard deviation for the normal component for the row and column direction were

;,,
d_ .

^^

j^
I both 0.5 pixel.	 Tlie ground position of check points were perturbed in exactly the same $

i^.

manner as those for edge points. `^
..^

E Each case in Figure 4 is replicated ten times using independent perturbations, r1.

.	 ",	 ^-

F

tabulation of the average rectification accuracy and the corresponding standard devia- `

flan are shown in Tahle 6. 	 The average rectification accuracy for all cases are also

shown in Figures 5 to 8. 	 In these figures, the abscissa is the number of edge pairs and ti

l

the ordinate is the average rectification accuracy of the ten replicates in meters.	 Each -

t

4 curve corresponds to the case number as annotated in the figures.
sr	

^	 x

n^	 ^^'
1

Figure 5 shows the results from cases {^) to {4). 	 The only difference between these
^; a
	

^

f^

cases is the angle between the edges in an edge pair. 	 It can be seen from the figure
k^

`'	
!	 ,

^^

that decreasing the angle between edge pairs results in a corresponding decrease in
i

,^^

^_,,

,^i._>
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Table 6 Mean and Standard Deviation in Meters of the RM5 Errors at Check Paints Using Edge Points as
Control

(Each Case Consists of Ten Replicates)

Case 1 Case 2 Case 3 Case 4 Case 5

?^'o. of Line Pairs Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. t4ean Std. Dev. Mean Std. Dev.

25 73,17 1.13 79.85 2.22 77.92 1.78 105.66 8.86 69.92 0.74
41 64.24 0.67 75.24 2.38 74.51 1.21 85.76 2.82 67.94 0.56
$1 65.81 0.'^0 69.26 1.22 70.42 0.76 75.22 1.46 65.63 0.52

145 64.59 0.71 - - - -- 69.29 1,08 - -

Case 6 Case 7 Case 8 Case 9 Case i0

No. o^ Line Fairs Mean Std. Dev. t4ean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

25 77.23 2.32 8fl.41 2.39 95.35 4.57 154.34 27.06 211.57 29.27
41 72.33 1.50 7b.69 1.79 81.52 3.06 72.71 2.30 94.14 5.15
81 66.70 1.27 71.75 1.35 70.47 1.21 66.49 1.41 73.29 1.5b

145 - - -- - 67.61 0.83 64.30 1.53 68.83 1.14
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Figure 5 Plot of Rectification Results for Cases (1} to (!^)

NOTE: Case ( l): Pairs of edge points, having the same coordinates, are positioned
at regular grid. The angle between the edges is 90°.

Case (2}: Same as ( 1), except that the angle is at least bfl°.
Case (3): ^'3me as ( 1), except that the angle is at least 30°.
Case (4): Same as (1), except that the angle is arbitrary.
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Figure 6 Plot of Rectification Results for Cases (S) to {8).

i^OTE: Case (5): Edge points in an edge pair deviate randomly frc;m regular grid up to
LOO pixel. The angle between edges is 90°.

Case (6}: Same as (5), except that the angle is at least 60°.
Case (7): Same as (5), except that the angle is at least 30°.
Case {8): Same as (5}, except that the angle is arbitrary.
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Figure 7 Plot of Rectification Results for Cases {1), (5), and {9).

NOTE: Case (1}; Pairs of edge points, having the same coordinates, are positioned at
regular grid. The angle between edges is 90°.

Case (5): Same as (1), except that the coordinates of edge points randomly
deviate from regular grid up to x00 pixex.

Case (9): Same as (I), except that the position of a pair of edge points is
totally random.
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NOTE: Case (4):	 Pairs of edge paints have the same coordinates and are positioned at	 a
.' regular grid.	 The angle between edges is arbiCrary.

^`^Mi
Case ($):	 Same as {4), except Chat the coordinates of edge poinCS randomly

deviate from regular grid ug to 14t] pixel.
Case (14): The position of edge points and the direction of edges are totally

arbitrary.	 w
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rectification accuracy. This result is essentially repeated in Figure ^i, because the only

difference between these two figures is that the distance between edge points in an edge

pair in all cases shown in Figure 5 is fi^► ed at 0 while that for Figure 6 ranges up to 20Q

pixels. Comparing cases (1} and (^}, or {5} and {8} in Figures 5 and 6 shows ,that about

'? times more edge pairs are necessary to achieve the same accuracy as with conven-

tional control points alone.

The effect of the distance between edge points in an edge pair is shown in Figures 7

and 8. Figure 7 shows cases {i^, (5}, and {9) where the angle between edges in an edge

pair is fixed as fia°. Figure S shows cases {4), {$), and {i0) where the angle is totally

arbitrary. Separating the edges in edge pairs is beneficial up to a certain point. Total
E,

',
random distribution of edges over the whole image frame is inferior to other distribu-

tion when control edges are few.

Figure 9 is a comparison between cases {9) an(^ (IU}. In case {S}, where edge points

in an edge pair have the same image coordinates and the pair of edges intersect at 9a°,

an edge pair is equivalent to a single control point. Case {IO), where edges have totally

arbitrary direction and distribution over the whole image frame, is the most extreme of

all the ten eases studied. It can be seen from tlxe figure that in order to achieve

r ^i	

;

w^

^,
;.

-u

e: -ss

rectification accuracy when using edges comparable to that achieved when using eon-
—^^

r
F

-tl
^^ ^

1

ventional points, the number of edge pairs should be approximately 3 times the number 	 ^-
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Figure 9 Plot of Rectification Results far Cases (}} and (10).

NOTE: Case (9}: Pairs of edge points, having the same coordinakes, are randomly diskributed
over the whole image frame. ^'}ie angle between edges is 90 °.

Case (l0}: The position of edge points and the direction of edges are tokally arbitrary.
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of control points. Thus it is worthwhile to attempt selecting well distributed control
^.

features.	 `

Summarising the results of this approach, it has been shown that edge points can 	 ^^

efficiently replace conventional control points. As they are much mare likely to be 	 ^ ,

found in an image and can be measured with at least the same precis,on as conven- 	 W
.R	 ,,

tional points, one can expect that the overall rectification accuracy may even be 	 -	 '

improved.

.^

For a practical implementation, especially tc, ^^p^cease the requirements on the skill

of the operator, one should provide automatic algorithms for finding corresponding con-
.:J

trol features, for both conventional and edge points. This addresses the problem of 	 r,
1

..	
^.scene matching. The next section is devoted to this problem and presents an algorithm,

which is developed first for finding corresponding tie points in overlapping image 	 `^
^,

frames.	 a.
„y	 ^

..,	
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^'	 4. ROBUST ESTIMATION FOR CORRESPONDENCE

^.,

^-•	 !.1 A Hierarchical Approach to Correspondence
Ei

L':

^^	 Scene matching is a basic requisite for different tasks which use the geometric pro-
„^,

„^
perties of images, such as terrain classification, the derivation of digital height models

`^

""	 or, Wrap production. It is also the first step in appiications where images are used for

!;;	 determining individual paints in three dimensions as in photogrammetric triangulation.

y{^	 In all these cases either cane image is related t^ anoti^ac ik^age ( i ^t'^. rAgislr^,t.inn} car to a.
^.

topnbraphic map, (i.e. rectification).
^l ^s

Obviously there is no simple way to accomplish this task in one step. One rather

has to pass several levels in a hierarchical way, where the results of one are the approx-

f
imations for the next level. This is similar to the way the human visual system is

^.:'^;^..	 believed to behave (Ivlarr [28^). If ane starts with a satellite image with a relative reso-

lution cif, say, t(}^'4 , i.e. 1Q4 pixels per line, one could imagine a 4 step procedure, where
:^
i

each step increases the precision of rectification by about one order of magnitude:

I. A global image match ti p:?rich defines the position and the orientation to an accu-

racy of 2-10 0, i.e. 2t}Q-1Q00 pixels, and Y--S°. This task is usually done by an

aerator but ma use the ver efFicient al orithm b Lambird et.al. 25 see alsoP	 Y	 Y	 g	 Y	 [

r	 Stockmann, et.al . [44j).
[	 j

^'

!	 l'~
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2, In order to approximately compensate for unknown sensor position and attitude,

and for relief displacements due to undulations of the terrain, one might continue

	

with the matching of image patches. The number of these patches will depend on	 =	 „
F	 ^:

,^,

the roughness of the terrain in comparison to the flying height, and range from a

	

few, say 5 or IO to a hundred. The size of the image patches will be chosen in a 	 "h
;i,

	

way that the expected displacement will be less than half the linear patch size, 	 H '

thus between ^ and 20 0 of the side of the image. In order to li.eep the amount of

	

data in a reasonable range ane will use a reduced resolution, say between I^:: and 	 '^ `
i

z
1^8, leading to linear patch sizes of 50.20U pixels. The algorithm should be able

5

	to com ensat.e for at least linear, i.e. aff'ine distortions, and should lead to accura- 	 = `'P	 ;'
.:.,

	

eies of 2-10 pixels, referring to the original image. Since high accuracy is not 	 .̂-

	

required, one might efl'ectively use methods of structural pattern recognition to 	 TIPA
^' 1J

	advantage by extracting scene features. One of the most promising algorithms	 :,
s

^- d

for this step is the one by (Barnard and 'Thompson [4]).

	

3. Since fine correlation using differential methods requires approximate values 	 ^	 ^'

	

wl-frch are within I.5 pixels of the final match (Forstner [I4]), an intermediate step	 --°

	

is necessary. Here, all correlation-based methods can efficiently be used as the 	 , ^	 j
,.

	

search area is very small. The window size will range beween I6 and 3^ pixels 	 "r
^ y	^^

	(Iinear^. The aim in this step is to choose a fast, robust, and reliable algorithm. 	 ^_,
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Passible candidates for this task are sequential algorithms {Borneo and ^i!verman

[5^), the phase correlation technique (liuglin and Hines [2^]} or binary correlation.

But of course the algorithm of step 2 could be used Mere too.

4. 1^'ine correlation in the last step may yield subpixel accuracy, if the texture in the

image allows and if it is required for the &nal product. Here, differential algo-

ritlims (Cafforio and Rocca [S], cf. Ftirstner [I4]} are most efficient. The window

sire, depending on the texture, will range between S and 32 pixels. If the pixel

si?e is adapted to the spatial} spectrum of the images, accuracies of 0.2 pixels or

better can be reacted under production conditions (Bernstein ]7], McGillem and

Svedlow [29], Forstner [15]}.

This sequenee of steps teas of course to take the special boundary conditions of the pra-

ductioa into account, and may be varied accordingly. The main steps, however, will

have to use similar algorithms. The concept is quite different from those used for the

rectification of aerial images far orthohoto production, e.g. using the Gestalt Phota

141apper or the approach by Panton [35]. These systems do not have to cope with the

weak geometry of satellite imagery, thus need only few control points. They can there-

fore use the internal geometry of the stereo pair far recursively updating the approxi-

motions for the fine correlation. Unlike these procedures, the above described hierarchi-

cal set up allows a great deal of parallelism in steps 2-4.

_	 _- - _	 .. ._	 ....	 ..	 :^,	 ,	 .,^, ^	 ._,

{̂ ^
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^-	 From the above mentioned algorithms the one by Barnard and Thompson needs 	 _^	 ^^'

fort-her discussion. Its general fine of thought can also be found in the approach by
L'

Lambird et.al . [25] and in the procedure by Marr, Paggio and Crimson (Harr j?8)

Crimson j1^J, cf. Itak ^`?0)) .

With respect to its application in registration and rectification, the generality of
^^

	Barnard and Thompson's geometric model turns out to be a disadvantage due to the	
^.^

^,

	resulting high numerical effort. Since the second step in the hierarchical procedure for	 ,..

registration and rectification is decisive for its reliability, this step has to be designed
J

such that the actual data structure is taken into account, and it must also be flexible.

Therefore a new algorithm has been developed, which can be used for registration and
rn

	

^^	 1

in particular for selecting tie points for rectifying overlapping image frames. 	 `^ '

rj:

	

We will C^rst formulate the problem of matching image patches of moderate sizes in 	 `^^
^;

	subsection 4.3, discuss two of the algorithms and sketch the new one. Subsection 4.3 	 „^,

	

then describes fihe concept of the algorithm in detail. Subsection 4.4 is devoted to the 	 ^^^,
<;'i

actual implementation and subsection 4.5 contains an example, to demonstrate the per-

formance.
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.¢.^ The Problem of Correspondence
_;

a	 Let two images, or image patches, t and ^' be given. Points i^ and i ' in images I'

!	 ► 	 r	 r .^	 rr	 rr	 ► r ^+	 r	 rr

.^,
and ]' may gave the coordinates z = {x ,y) and z = {x ,y ) , thus, z and z are ;,

,a vectors, where T stands for transposed.

!	 It is assumed that if i' and i' are corresponding points, their coordinates can be 	 ,

related by

where:
t

	

	 is an arbitrary mapping function; it might
reflect the knowledge about the geometric
relation between the images 1' and I' and

i	
;

p	 is a vector of unknown parameters p F , ... , Pu	 i

It may be viewed as a severe restriction, that the mapping function must have an
i
1

analytical form. But one should keep ^n mind that also a stochastic and^or segment- ^.

wise continuous function can be brought into the form of eq. {9). Eq. {9) will cause no	 ,

rF	 difficulties, articularl in small scale ima erP	 Y	 g Y

.,	 . ► ,
Far an arbitrary pair of points {z , z )there are two states of interest:

•r	 •rrA. i and i are corresponding points

•,	 ^"	 ^^	 ^'S. i and F are not corresponding points

r

_.	 --- . ._ _	 ^^	 ^

	

.	 _	 -	 -
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^J^

The problem of correspondence now simply consists of: 1) finding the corresponding

points; and 2) determining the parameter vector, p, of the mapping function. Theoreti-

cally the solutions to 1) and 2) are equivalent, as I) implies 2) if applied to all pixels,

say in 1' . But this is neither feasible nor necessary, as the mapping function can rea

sonably be assumed to be smooth, i.e. roughly speaking bandlimited, and only a small

number of corresponding points is sufficient to describe the mapping function. Whereas

these pairs of corresponding paints might replace the parameters p, the mapping func-

Lion is necessary, if interpolation is required.

The known approaches actually use only a very limited number of points and expli-

citly or implicitly a mapping function of the type in eq. (9). In order to reduce the

numerical effort and at the same time increase the reliability, objects a and o r` are

used in Both images with feature vectors f and f' r in addition to the coorditzates z ` and

zrr attached to it:

lo^	 O' = O^^Zr ;f) and O
rr = O r^Zrr'^r)

The procedures typically consist of three steps:

a. selection of appropriate objects a and o' r ;

b. determining the similarity between all objects or in image T' and all objects orr in

image f' r , yielding possible candidates for corresponding objects

i
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c. using some context information to find the pairs (o ,o") of corresponding objects.

.¢.w.l ?'he LNG%1'l^ethod (Lambird et. al. (WSJ, Stockmann et. al. l^QI1

a. Using edge detection procedures, this method selects objects which are either

points or point pairs. Points belong to 4 classes. Pairs of such points are called

abstract edges, abstract because the connecting line need not be a real edge in the

image. Far simplicity, we restrict the discussion to the point objects. Thus, an
	 :^

abject o! , say, in image 11 is represented by its coordinates z^ and its class 1' = w^

b. Among all possible points (0',0' 1 ) of objects, only those which belong to the same

classes are selected as possible candidates. Thus, if w' = w" the objects

o and o ' are said to be similar.

c. The aim of the procedure is to determine the unitnawn parameters of the

geometric transformation, which in this case consist of the two shifts in x- and y-

directions. Each pair of similar objects leads to an equation t(z',p) = z -p which

can he solved for p. The estimate p for the true shift p is taken Pram the hista-

gram of all p ^ z --z'^ by searching for the peak-value representing the most

probable shift. At the same time one obtains a classification of the object pairs

1 ^,

^'
..`^	 ^	 ,^
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^j cc

u

Lj

i

i
1

S

. into the two classes:	 wA of corresponding points and wg of non-corresponding ,^	 ;:

points.

-_ The approach is a direct solution, where no iterations are necessary. A further advan- '^^
^ ^J

tage is the sharp peak in the histogram, which guarantees a reliable solution even if the --^n

-^ numbers of objects is large, i.e. 	 even when the background na15e 1S considerable.	 On ^^
,,,,

^^ the other hand,	 the method requires that eq. (9) in an extended form (z ' ,f ') .,,	 -{1

.^

`^ ^ ` f	 is solvable for	 Thus if more than two	 arameters have to be estimated the '

^.^^^^, object has to contain additional geometric features such as length and orientation;, in 1'
,.
-m

^igg
E+.,

-.=u

and	 #^', thus,	 requiring more complex	 objects,	 such	 as Tines,	 triangles,	 etc., to be ^-^;
^'

k

LL ,^

^; extracted from the image.	 This might not only increase the number of combinations '
r

-;	 ^

but also requires an additional dimension of the histogram far each additional unknown `^'
^.

parameter.	 Nevertheless, a primary advantage is the absence of requirements for E.
!IL' J

^I

approximate values. 	 Thus, with say 4 parameters, the images might nave any relative ^^	 ^^

.-
orientation and scale. 	 This method is therefore highly recommended for step i in the ,^	 '^

°;

,^

k
s

t
:f

hierarchical scene matching procedure.

E.	 I

1
,^

I.^.,^ The Barnard-Thompson Algoritlam j^^ n,.	 ^
^	 :.

`^

' a.	 This algorithm starts from objects which are represented by the gray level matrix
`"

^}
:^,

g , say, centered at distinct paints:	 o'{z',g ).	 The selection uses the interest
--'

^;^",	 ^^

operator by Moravec, namely the minimum variance of the gray level differences
i..

`"

,-

^;
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^^

in the four main directions. This guarantees that no points on edges are selected,

which are not discernible from neighbouring points o.n the same edge.

b. The similarity measure uses the coordinates and the gray level differences under

^
'

	

	 consideration, deriving an initial probability that two objects o {zr ,g) and
^:

^^	 o'r(zr',glr) earrespond, i.e. (or ,orr ) belongs to the class wA of corresponding points:

^^"	 r	 rr	 r	 rr	 r	 rr	 r	 rr 2	 r	 rr
P((o ,o } ^ wA) = f(z —z ,g -g ) ^ ].^^ g -g ^ if the shift ^ z --z ^ is less than a

threshold and P((or ,o r ) E wA) = o elsewhere.

c. The model of the geometric transformation is a differential one. They assume

that the scene is regionwise smooth: z"-z' = t(z') with the derivative r^tJaz`

	being bounded, except for the borders of the regions. The bound for ^t f Csz' 	 ^
ŷ

	(being 1 pixel for ®z'^^.5 pixels) is used to update the initial probabilities using 	 ^'

a relaxation scheme (Rosenfeld et.al . [38]).

^.
	The model is extremely flexible, due to the randomness of the derivative ^vithin the 	 ^

admissible bound. The method can further be generalized by using more complex

objects, e.g. the abstract edges of the LNK method and thus can be an excellent solu-

Lion far step 2 in the hierarchy. The numerical efl'ort and the quality of the result,

however, are highly scene dependent. In particular, tie gzumber and distribution of the

selected objects are critical for the reliability of the result. ^1so the complexity of the

geometrical model might not be necessary for satellite or aerial ira^agery of ^soderate

,.
^.^

., .,
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scale say, ^1:^U,OOD), thus questioning whether the uuz^erical effort resulting from the

relaxation process, cannot be reduced, if one takes the simpler geometry of "far-range" w

imagery into account.

'hough both procedures follow the same general concept, their techniques are essen-

Bally di^'erent. 	 The simple geometric anodel on which the L'^-Pvlethod is based, `
;;.

allows a f^Ily consistent line of thought. 	 This makes a statistical evaluation of the

..

`'
S^

result feasible, e.g. using the broadness of the peals in the histogram, 	 On the other ^^

hand, though the procedure of Barnard and Thompson is excellently motivated, it F5 .•
^,

heuristic. This prevents a thorough evaluation of its results.

^.^.^ Dutline of the l+^ew ^'racedure ^:'.1	 ;^

'^'he new solution far the correspondence problem essentially aims at a maximum-
_	 ^

_^	 ^^

likelihood estltnat lRII of the unknown parameters p of the geometrical transformation. `?`
^^,^

It follows the same three steps of the procedures described above. ^n attempt has been ° ^	 ^

made to derive the three steps on a common theoretical basis, and at the same time

.	 make it amenable to generalizations for rectihcation: `^ G

a.	 The same objects are used as in the f3arnard-Thompson algorithms, namely points '°	 ^.

with their gray level matrix.	 '^'he selection is guided by the theoretical precision

.:.,a	
^

^_d

expected from cross-correlation.	 ft turns out, that this selection principle is I

r: ^^	 I

closely related to li^laravec's interest operator. °

^	 ,
u...	 ^y

..,:
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,^

b. The similarity of pairs of objects is also based on the theoretical precision. In

addition to the gray level difference between tb;e two objects, the texture is taken

into account, namely the variance of the gradient. Moreover, the formulation
	

l
allows the introduction of correlation measures from any feature vectors, possibly

including structural features. Thus, very general similarity measures can be used

without losing the relation to the geometrical model.

c. The maximum likelihood estimation far the parameters p of the mapping function

requires the knowledge of the probability density function of the observations.
L

F.

;; .	 -;

,k

^:.

#¢
#	 .

^	 ^.

Observations in this case are the coordinate differences ^z from the'modifed form

^z - z!!—z = t(z ; p) of eq, (^). The coordinate differences of corresponding

points can reasonably be assumed to be normally distributed, whereas the coordi-

^^	 Hate differences of non-corresponding points are approximately equally distributed

between -d and +d where d is the dimension of the image pn,tch. These observa-
^.

1̂ ;--	 lions therefore can be interpreted as outliers or bIumders with respect to the
^_	 '

i^

model eq. (9). As the redundancy of the system is rather high, robust estimation

Ie
procedures should work effiiciently in this +case. The high percentage of outliers,

^'

i.e. non-correspondence is compensated by the non-similarity of the objects, which

^t	 lead to a low initial weight of these observations.
t"; "

^^^.,

-.x-

f ^

__	 ^ ..



interest operator used far the paint selection.

^.J.1 li^apping Functions

j

This section provides the mathematical model far the correspondence algorithm.

We will start with the mapping functions and the robust estimation procedure for the	 ^'

determination of the unknown parameters. The similarity measure then leads u^ to the 	 mt

The relation between two image segments of a satellite or aerial image can be 	 =,,	 .'^

approximated by a low degree polynomial:

Shift only

(Stochastical variables are underscored.)

Arne transformation

(12 a,b)	 ^' = a+B.^ or .©.^. =a+Bz'

Second order polynomial

(13 a,b) z" =a+Bz' +Cz'^z' or Liz=a+Bz +Cz'^z'

^^ ^^ .:. _.,^
_ .. ^,.^..wi.wwr^w....^...,...__.....^. r._... _. -..._.^ 	 _.. ._.
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rl ^	

,^l

L	 By introducing conditions on the parameters p i, one may restrict the mapping func-

;^	 bons to conformal ones. For example, the conditions p 3 = ps and pg = -p5 in eq. (12)
L' •^

leac^l to a similarit transformation with shifts scale, and rotation onl	 The tra,nsfor-;^^^	 Y	 Y•

^_,	 mation parameters only occur linearly in the mapping function, thus could be solved in
r	 5
s	 ^^

one step using the least squares technique.
n^

i

L:

I	 ^.^3.N Robust Estimation

^,

^^
The least squares technique starts from the linear (or linearized) model

1

'^^	 (1^,)	 ^1 = lax = E aT x; DI =C =rr2+Q^--^	 ^	 ^-}	 Il	 a	 IL
^,	 i=1

^s

,--,	 where the nx 3 vector 1 contains the observations, in our case the coordinate di$'erences
:^.
^^

.^z, with their covariance matrix CII . It is usually split into the unknown variance fac-

for Qp and the known coefficient matrix Q . The nxu design matrix A, having rows a•,

^'	

li	 i

`^	 is supposed to be known. x are the unknown parameters.

,,

^^^ .
-	 -^
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If the observations can be assumed to be uncorrelated, then one uses the weights wi

or the weight matrix W w diag (w;) =diag (^/q;;) to advantage, to solve the minimum

problem

{ 15)	 E (a; x — 1;}2 w, — E v_? w; —► min.

It is knotivn that the estimated parameters X are sensitive to errors in the model eq. (9),

especially gross errors or outliers, in the observations. This is due to the fact that the

solution to eq. (15) is also the maximum likelihood estimator for ^, if the observations

are normally distributed. Observations with outliers, however, can be viewed to belong

to longer tailed distributions. Examples are the Laplace-Distribution f(x) = c e^}" ^ and

the Cauchy-Distribution f(x) = c/(}.+x2).

In order to eliminate the effect of outliers on the result one can use maximum-

likelihood type estimators. Then, instead of the sum of the squares of the residuals v;

the sum of a less increasing function p(v;) is minimized (^Iuber ^I.9]):

(16)	 E P^ a':T x _ ^) "' E 
Pt^i) —^ min

i	 i

Discussion:

i. Choosing p{v) = v2/2 gives the least sgztares estimator

^,	 h
---	 -^-



9I^

^^^

2. Choosing p[v} -= P ^ v^ R yields the estimator minimizing the Lp norm. A special

case is obtained for p = I: Minimizing p(v} _ ^ v ^ is the well known least sum

method, being the ML-estimate for the Laplace-Distribution. ^t is the mul-

tiparameter version of the median. Barnea and Silverman [5^ used it for cross

correlation.

3. The choice of p can be guided by the evaluation of the "influence-Curve" IC{v)

[Hampel [18]) being proportional to the derivative ^i(v) -^ r7p/av of the minimum

function. IC{v) or z^[v) give an indication of how strong is the influence of au

outlier on the estimate x.

4. The solution of eq. [16} can use existing programs for least squares solution, by

either modifying the residuals, v ` _ ^ or by modifying the weights:

p(vi) vie	 v2
(17)	 .^ p{v i} = E	 /	 ^ — ^ w(vi) ^ --r min.

v2 2

using the weight function

p{yi)
V' 2/ ^ -E- C

In an iterative solution the weights of all observations are updated depending on

their residuals from the previous iteration:

^w^

r,.	
vow- `'^;^"^.' ^ :.	 ^-	 _.	 ^^ F

^...	 . ^„_	 _	 _	 ..
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r

5.	 if the function p(v) is convex, thus ^(v) non-decreasing, and the model is linear,

then convergence is guaranteed under broad conditions.

: I^^inimizing the % I-norm thus seems to be optimal, as it is robust, and convergence is
-.i

guaranteed. This method however has two disadvantages: •-^

1.	 p(v) has no derivative at 0, thus, the influence curve is not contia^uous, which does `,,.
.
-^, not guarantee a unique solution.

^^^	 ^.

-- „ L

-^'

2.	 The influence curve ^(v) = sign(v) is not zero for large values, thus large outliers '^

-- have stiff) an influence onto the result, which is not desirable. °

1^Ye therefore propose to use the following weight functions.
ti^r	 ,r

^

,.

' ^'	 i

i.	 In order to ascertain convet^ once we slightly modify the minimum function of the ^	 ^^
^^

^'^
^;.

Lx-norm (cf. Figure i0).
_

^.

(20 a)	 P^(v) = 2 (	 1-1-v2^2 ^ 1)

_

-	 l

^.^
k '	 'c ^.	 j;

rl it

F ^

(ZO b)	 v'ity) _	 4 (	 1-l-v^J2 — I)

i

°	 ;

^F	 ^
.^

vz ^,
r. f!

.'^^

i

=...^

^

-	 V

I -f-v^^2

^	

^

!	 j:

p l (v) is strictly convex with decreasing curvature for Iarge v.
:,
^	 I`

-
"^

^'
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^7

,^,	 ^
w (v?

'!	 wo	 ^;

' „	 web	 Wza

i
'^	 1	 2	 3 ^

^	 tl,
^"'	 Figure 10 Minimum, Influence, and Weight Functions p(v), IC(v)-^(v), 	 ^,I
i^	 and w(v}.

f	
FINO2'E: 0: least squares, non robus!' (^{v} nor bounded}

1: I. 1-Norm, robust, convergence guaranteed
{^	 !

2: redescending IC,
a: ML-estimator for Cauchy--Distribution
b: exponential weight-function (Krarup [222)
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^^
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^^ I '.6 -.	 .. ' A.. . _ _.	 .. ...

j	 ^!

r^

:'^	 ^^^
s;

^^i
^.

;.

2. After having reached convergence, ane can assume to have good approximate

values for the parameters. ^n order to eliminate the influence ^f large outliers one

could take ane of the following two minimum functions:

pia leads to maximum-likelihood estimators starting from aCauchy-Distribution

(2l. a)	 P2a^Vj = ln(1 +v2I2)

(21 b)	 w2a^vj - 
2 In I +v2 2

V2

(21 c)	
`YZa1V^ ^	

V

No convergence is guaranteed in th y• general case. Also, as ^ is descending for

large v, ao unique solution is guaranteed if arbitrary ap^rol: Wte values are

allowed. ''his is meaningful as the Cauchy-Distribution has r_ _^:^er mean nor

variance.

The following minimum function is proposed by Krarup et.al . [22) which consid-

erably reduces the weights of false observations due to its exponential farm:

__
^. ^ M =. ^. _ _	 _	 . - ---- -.
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I^ U'	 v^ _V2I+Z	 i;

{22 a)	 P2bEv^ ^ ^ e
r^

i.

L1
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^I	 i

^!	
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ric	 ^	 r

2i	 ,

a
,a.

::

	This weight function fulfills practically all requireme[^ts for a will behaved weight 	 ^'
nn

	`^'	 function. (Hampel [i$], Vl^erner [43]). The functions are shaven in Figure IO
Y

	L; ;	 together with the minimum weight and influence function of the least squares,	 ,^

	

,_	

Pa^v^ " v2^^ •	 ^

	

ti.:	 ^	 :^

/a:y

	

; ,	 ^.^.3 Similarity A^easure

	

^,	 ^

	^4j	 The estimation procedure requires initial weights for the observations which in our 	 !

	

case are the coordipate differences dz of ob ect or oint airs which neAd not	 ^^

	

^`	 J	 p	 P
t^

t	 ^

	^^	 correspond. ^dence, the majority of the observations are outliers and assuming equal
,,

weight would prevent the solution from getting started. 	 ,j

	

jL	 ^
E.

}
i

^^.



lowing two requirements:
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Reasonable weights can be obtained from the covariance matrix of the estimated

shifts ®z, if we would apply crass correlation to all pairs of paints. It is given by

(^"orstuer (i^])
-1

(23)	 '^ ► 	
x►► --x ► 	' 2 	^'gx F+ ^x^y	 2

V(Z —Z ^ = CoV	 r ► 	 ► = 0'p	 2	 = UQ Q
y 

_ 
y	 ^ EgygX EgY	

g

where:

g	 is the gray level function of the object, restored from g► and ^ ,,
ves	the estimated variance of the gray level differences, and 	

o^

gX ,gy	are the gradients of g in x- and y-directions respectively. 	 ,.

:,

The covariance matrix fully describes the precision of the match between the gray level

r,	 I

function g and g^ ► of the two objects or and o►► . This precision depends on:
	 Lu ^

^s

1< The nur^iber of pixels used.

2. The noise variance. 	 i_ J

f
F

3. The texture of the object, namely the edge business. It can be shown that this 	 '^ ^	 ' ,
^^

measure is directly related to the bandwidth of the signal and the curvature of 	 ;;:

the cross correlation function (Forstner [Y4]).
:_^̂̀

The covariance matrix can be visualized by an error ellipse (cf. Mikhail [3^4]}, giving the 	 ^'
C= c

f

precision of the match for all directions. A good match therefore . must fulfill the. fol-	 ^,	 ^;Y
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G1:	 The error ellipse should be close to a circle, otherwise the

match is not well determined in one direction, e. g. at an edge.

C2:	 The error ellipse should be sanall.

Both criteria will be used for the measure of similarity between two objects and the

selection of interesting points.

If the ellipse is close ^o a circle the weight can be directly derived from the trace of

;^

'^
_ 1 _	 1w	

tr rV^1	 0'Og tr ^^^

the covariance matrix

{24)

;'
^	 ^^Observe, that the trace is invariant to rotations. Taking the gray Ievel differences

directly to estimate Boa has the disadvantage of being biased if the two images have

different brightness and contrast. The correlation coefficient is known to be a better

measure. Now, if one for simplicity assumes the images g ` and g ! to be related to the

true image g by g — a! (g-1-ri^) + ^^ and gr' _ ^ r (g`^n' J ) ^" b", wtth Qn = Qn' = 6n

where a and b r^_present contrast and brightness, the signal to noise ratio

S^R2 = Q^^v^ is functionally related to the correlation coefFieient by:

__

._ _.



ryq
ryq

'	 ^	 1..^1^^^

^.

f^

Q^ ^^ ,
^g +dn	 SNR2 -f- i

or ^^

2

^n	
1~ 

P
r'c

r,

By using the approximations

;^

r u g""

(z 7)	 tr Q =	 tr Q'	 tr Q+,

° ^

,

.:^

1	 4

^

^
^

and

^,

.^ ^

f

^

(28)	 des — 2 Qn
.^.

4 :1

^:

(.

+

F	 ''

we obtain the fallowing relation for the weight of the observation L1z:
n F^ '

i	 i r	 _ ].	 ^ J^	 ^.
(29)	 w(o o

Discussion;	 ^

n

{<-

1.	 The weight depends on two terms.	 The first term re$ects the similarity :;^: ^ '^
i^

between.: the two objects and needs to be calculated for all object pairs. 	 The ^_

c	 1

{

{'^second term depends on values obtained separately from both images. ^^
.	 ,
u1

t

^

f-

^,

-	 . '	 ..	 ^.	 -	 -	 u-^.__.
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L,

2. The traces tr Qr and tr Q" measure the distinctness or the locatability of the 	 3
.,	 r^

^:'	 objects and are critical for the selection of appropriate points. The reason is,
.^	 ._ .

	'^ 'T'	 the noise level Qpg can be realistically assumed to be constant in both images.
Pe	 Li•_

3. The weight is a generalization of the one used by Barnard and Thompson. It
^.

_	 sr	 differs in two ways. I{'irst, it is independent of brightness and contrast, as we
,;

t	 ^^:	 ^'•
-"	 are only interested in the weight ratios. Second, it takes the texture of the

`°

^_^
	^^	 object into account.

_	 ''^ _ ^a

_^
	^^	 4. A simple and reasonable criterion to reject object pairs based on the correla

	

^,	 tion coefficient is p ? 2 . This is equivalent to requiring the SNR to be larger
,^

^	 ^^^

	^}	 than 1.	 ^

	

^..	 t

^-

U•: S. The main advantage of the separation of the different terms in ^q. (29) lies in

z	
''^	 its ability to include other measures for similarity. The correlation coei^cient

#.

	

^^	 r

	,^	 need not be derived from the gray levels but may use other features f and f ' 	 !

L. J

of the objects, e.g.:
r-7

U
a. One could use rotation and scale invarant features, as the moments pro-

	

m	 ^^

	^^-^	 posed by Wong and Ball [44J.

	

^^	 I.

.	 ^.

:^r ^^ ^J

^a ..^



losing the information about the geometric distinctness of the object.

^.^.^ Interest OpeTatur

ranking of the different pixels.

^ ^
,c	 ..	 ..	 ..	 !	 ^	 i

^,	 ^
;^	 _	 ,

n	 ^,	
t

• ^^	 372
^:	 ^
,^

^^: ,

^	 b. Qne could use a small set of features just to decrease the computation 	 ^,
r.

i
time, e.g. the low frequency terms of a cosine transform.

r	 i

.: F	 c. One could use structural information, the result of a classification or a
^^

linguistic description in combination with statistical measures. The only
F

^..	 .,' C,

	rer^uirement for the rtFeasure is to have the properties of a correlation 	 ,;
^ :	 ^	 '`'I^

^	 coefficient.

	The separation of the correlation coefficient from the variance and the texture of 	 -^

the gray level function, allows one to generalize the weight determination without

	eve have assumed that the error ellipse representing the covariance matrix of the	 ti?^ I "^

coordinate difference is close to a circle. Moreover, we require that the paint can be
r.,	 ^

well located. Measures of both requirements should, in a simple way, be derivable from

	

the gray Ievel function of the image patch, as they have to be determined for all pixels.	 q

	

They should also be invariant to rotation; a scale factor will not change too much the 	 `"	 ,^



(31 b)

^^:'	 r
^3

s^^

As the eigenvalues of the covariance matrix are invariant to rotations, and the trace

equals the sum of the eigenvalues, we will use them also for determining the closeness

of the error ellipse to a circle. Moreover, the eigenvalues of the coefF^cient matrix, say

Q^, and those of its inverse N' = (Q^ )^' i are related by 3 ►;(Q') = Y/a;{l^l' ). Thus, let ai

and ^+^ be the eigenvalues of N' , then the Patio

(30)	 q 
_ ^ det N' =	

4 aia2	
— 1. — { ^^ — ^^ )2W 

{tr lit )2	 (^1 + X 2 )2	 ^i -E- ^2

is an adequate measure for the closeness of the error ellipse to a circle. If q = 0 (and

not both a i and a^ are zero), then det N' is zero and the matrix is singular. This

means that gx and gy are linearly dependent thus the point may lie on an edge. The

case g = 1 is reached, only if the eigenvalues are equal (a i^-^ 2 = 0) thus representing a

circular error ellipse. The calculation of q need not use the eigenvalues, but rather the

determinant and the trace of 1V'

{31 a)	 uet N' = E(gx)2 . E( gy)2 — (Egxgy)2

i

F

F.

.^
^n

The sums can be readily derived from the squared and multiplied gradient images by

convolution.

i

^'	

^

i__. 	
_-_--	 -	 -	 __
	 _...	 ....^^:`r

•	 _	 u.	 f.x	 '^:	 -	 --^-.^.-	 ----	 - --
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f

i

i	 ..

Similarly, one can derive an expression for tr Q':

	

(32)	 tr Q^ - 
tr IV`	`

det N'

,:
Thus the selection of interesting points can be accomplished for both images separately

in the following steps:

	

....	 ,,

1. Determination of Egx, Egx gy, and Egy;

2. Determination of tr Q and ^{ using eq. {30) - (32); 	 ^^

3. Determination of the interest value, being a preliminary weight, 	 .Ae

I _ det N
for q > threshold	 '

trQ ^ trN
(3 3 ?	 w -=	

0	 otherwise	 ^

	

^^	 ^

for each pixel;

4. Suppressing all non-maxima in the function w{i,j); 	 r r	 ^

	

,^	 r

5. All values w^i,j) give rise to an object o.

^. ^^

I	 f
-^

.,n i

1i
m	 I^

	

e^ ^	 fY
^:_

7

^:
1

a-.

c^

^^^	 _..__...__._.	 _. ^.. ___^..___. ....... 	
^	 ,^_,r, .^ _	 w	 --_...._—^-_^_.— ^	 ^^'"'
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^.^ Algori^hmic Solution

^^	
^{^

^.^.1 7"he Selection aj Objects of Interest

The interest oprator eq. (3^) to (33) requires the variance and covariance of the gra-

dient image at each pixel. The used window size should be adaptable to the texture of

the image patch. If one uses a square (in general, a rectangle) vrindaw the number of

operations p^^r pixel needed for the interest operator can be made independent of the

window sire. This is due to the fact, that the array I(EgK ), say, containing the sums

^	 2	 2^gx can be derived from gx by convolution with a separable window of s2ze n sl x nSM,

W(i,j) = 1 with w = e Z e2 and eT = (11...1) containing n$i elements 1. A.s the convolu-
i

tion with e, or eT , needs only 2 additions, if done recursively, only 4 additions per pixel

are necessary for the determination of the array I(EgX) independent of the window size.
i

The gradients gx and gy are calculated with the Roberts operator.

Now two thresholds qmi,,. and wm ;n, are necessary to check the form and the size of

the ellipse:

C1:	 qi ^ gmin. (form)

G2:	 wi ^ wmin. (size

^:

If both conditions are ftxlftIled, the interest value of that pixel is set to the preliminary ^;

i

!	 weight w - l^tr Q, otherwise it is zero.

-	 -

,^^.

i
i,
,^
^.
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^^V

The threshold qm;^, is scale independent, a value of qm ;^, = Q.25 turned out to be

reasonable. The condition C2 should also be independent of scale. Therefore, we used

wain. = f ' Ew;/n, relating the preliminary weights w; to their mean value. A value f =

1.5 was chosen far all tests performed.

From the resulting interest values, w or Q, the relative maximum within a certain

window nm x nm are extracted. The window size n^, for this non-maximum suppression

is independent from the one used for the sums. If the window size n m is larger than 3

the non-maximum suppression is accomplished in two steps, the first using a 3x3 win-

dow and the second performing the comparisons in a spiral manner in the large window

to keep the number of comparisons independent of the window size nm. The selected

ob3ects are then stored in a list, containing the coordinates and the preliminary weight

w = 1. f tr{Q). They are needed far the similarity measure.

I..^..^ The Selection of Object Pairs

The initial weight w from eq. {29j in addition to tr Q' and tr Q" , requires the stan-

Bard deviations ag and 
erg, 

and the correlation coefF^cient p = crg ^ ^ f {Q^ ug^^) where:

{ 34 a}	 ^^ ^ E^ (^` ^2f n
n-1

(34 b)
n -^ 1

i- .._	 --	 _____.___ ^..—.._

^r}JrV

L

L`

^^

t: ^,
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^!

and

n-1

The sums Wig', Eg', ^' ( g')2, and ^(g"j2 are calculated for each object. The mixed sum

Eg'g ^ is only calculated for pairs of objects with a distance ^ z'-z'^ ^ less than a given

threshold d m^ , , which reflects the maximum expected distances between corresponding

oL- jests. .ill pairs of objects for which the correlaion coefficient p is greater than 0.5 are

collected in a list, ronta ,ining their coordinates z' and z'^ and their weights.

^.^.3 ?'he Selection of Corresponding Paints

The selection of the corresponding points is based ott the assumed geometrical rela-

tion between the images. In our context a q affine transformation seems to be adequate,

and therefore, has been employed. The robust adjustment is split into two steps

First, only the shift between the images is determined. This leads to better approxima-

bons, both for the shifts and the weights lit the following 6 parameter transformation.

Both adjustments have the same structure.

In each iteration, the parameters, the residuals, the precision of the shift, and the

average weight are determined, and the weights are adapted for the next iteration. If a 	 ^ ^^

weight is smaller than a certain percentage (say, 1(3%) of th g average weight, it is set to

zero, eliminating that observation. The first 4 ite^atians are performed with the weight

F

^d..w._,......_..,,.._,^.	 ..... ,	 ..	 ^	 - --	 _.^
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	function given by eq. (20b), after which th redescending function in eq. (22b) is applied. 	 ^'
r.

The agorithm stops if either the required precision of the shift is reached, not enough

corresponding points are left, or a pre-set number of iterations is reached. The residu-
a

'	 als of the last iteration are tested, and with all residuals passing this test one additions} 	 ....,

	

.^	 iteration with equal weights is performed to obtain the final transformation parameters.
,^

r^

	• ;	 The obtained list of corresponding points may then still be ambiguous, as the same
"^°i

	R =	 point in one image might correspond to several points of a cluster in the other image. 	 • ^	 '-
r^

	

^_,^	 ^ r

The list of pairs of points is then cleaned keeping those correspondences which have the

	

^,j	 ^:y	 i

	^^ ^	 smaller residuals.

y
.^	 ^

^^

^3

	

', 	 The following two examples are presented to show the performance of the new algo-
K:,	 f
,.^	 ^	F	

rithm. In both cases, the two images I' and I" are derived from an original image by 	 ^ ^	 ^ {
^^

	extracting two separate windows and distorting them by an affine transformation 	 `	 'F

according to eq. (I2b) with random numbers in B ranging up to 0.15. Thus, the aver-

	

.	 k,_ a
age linear distortion is approximately 10% or 6°. The extracted windows are contum- `" t'	 I

	looted ^^^ ith white Ga.ussic;n noise with a standard deviation of a = 15 gray levels. Both	 } L

windows are then smoothed with a 3x3 Nanning filter (1 2 1)T * (1 2 I).	 4	 . ^.

R	 ^.

	

R^	

_g

^.5 Two Examples



.!^
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" 1.	 The first example is based on an artificial image (cf. Figure ^.7.). It may represent
r1

^ apart of a rural scene with same light roads between fields of different brightness.

"^
L.

The dark pi.Yels are the points selected by the interest operator. 'fable 7 contains

.-,j the preliminary weight sv and the values of q in percent describing the closeness

,-,
of the error ellipse to a circle.

^.,

Observe, that some paints, e.g. point ^. in the right image, lie on an edge, but
`.^,

^-^ due to the irregularity of the edges have been selected. Both values, w and q are
..-'

^;	 ^
small {w = 31I, q = 36 % in this case).	 From the tSxI6 = 240 possible point.

^-

';'

L:

pairs 59 were selected as possible candidates for correspondence. 	 Their weights

,;, vary considerably, namely due to the correlation eoellicient (cf. Table S).	 The

L:_:

robust shift adjustment yields i$e pairs listed in Table 9.	 It shows the ambiguity

^- of the result, as for example paint 3 in the left image is connected with points 7
^a

F

..	 u and 9 in the right image. A.s the residuals of the pair (3,7) are smaller than those

.,	
'-' of {3,9) the pair {3,7) is kept.	 The cleaned list in Table 9b would be the result
^:_r

with the shift parameters Daly, showing that even with a wrong geometric modelr^,.
^^

nearly all corresponding objects can be found (cf. Table. IOb).

^1

c
The result of the robust affine trahsformatiot^ (cf. Table 10) shows a slightly

di#l'erent result.	 The. final correspondences are shown in Figure ^2. 	 If one cam-

pares the final result with the list of the candidate pairs (Table 8), obviously the

>^
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Figure I1 Example 1: Artificial image Pair With Selected Points {black pixels)

NpTE: Window size of interest operators:	 7

F
^J

^'

-.,..
^:..:;^

Window size for non-maximum suppression: 	 3

^ -^	 Ibrrri	 ^^.	 r-- ...^	 ^	 ^^	 iii	 ^	 .^+^+—^	 i.—^.f	 p .,..^,,.
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rha^	 j ^ ^^ ^t

1 201 4.737 410. 311. 0.813910
2 206 1@.307 410. 469. 0.934143
3 307 6.047 907. 423. 0.743084
4 309 9. 129 907. 708. 0.769720
3 406 3.333 364. 469. 0.733859
6 408 8. bbb 364. 443. 0. 872919
7 303 27.938 410. 3Bb. 0.932111
8 310 2.032 4I0. 280. 0.372882
9 603 1b. 436 430. 3Bb. 0.883114

10 608 2.733 430. 443, 0.623202
11 708 Ib.076 714. 443. 0. 893975
12 808 11.647 483. 443. 0.899332
13 610 1.838 483. 280. 0.389571
14 906 4.333 343. 469. 0. 777062
13 408 11.360 343. 443. 0.849266
16 911 2. iB7 343. 323. 0. 399432
17 1002 2.891 961. 300. 0.611310
18 1003 2.434 961. 288. 0.611800
19 1004 2.378 961. 688. 0.319524
20 1007 2.692 461. 423. 0.362601
21 1102 2.333 964. 300. 0. 6134!
22 1103 5.660 964. 288. 0.874139
23 1104 33. 190 964. 688. 0.966364
24 1107 2.328 964. 423. 0.601318 ,^(
23 1113 133.224 964. 1374. 0.983662
2b 1 L 14 3. 320 964. 368. 0. 681337
27 1115 13.244 964. 308. 0.891936 _.
28 1116 7. 161 464. 540. 0.812974 ^^
29 1212 4.827 316. 719. 0. 776953 „^
30 1312 22.732 622. 718. 0.919691
31 1313 7. 178 622. 1374. 0. 764347
32 1317 1. B91 622. 314. 0. 379353
33 1403 2.995 963. 288. 0.689392
34 1404 11. 141 963. 588. 0. 843669
33 1407 3.303 963. 423. 0.745271
36 1409 2.978 963. 708. 0. 337126
37 1413 13.047 963. 1374. 0.861033
38 1415 4.759 963. 308. 0.732863
39 1416 3. 142 963. 540. 0.638146
40 1312 7.280 448. 718. 0.800946
41 131.5 2.030 448. 308. 0. 384841
42 1316 2. 123 448. 340. 0.389507
43 1317 12.494 448. 314. 0.908975
44 1319 24.536 448. 396. 0.943966
43 1522 11.948 448. 446. 0.874251
46 1609 9.838 1871. 708. 0.746461 t
47 1611 3. 331 1871. 323. 0. 336333
48 1623 129. 139 1871. 1683. 0. 9 70396
49 1706 i6. 139 1318. 469. 0.879777
30 1708 2.468 1518. 443. 0.333513
31 1717 6.066 1318. 314. 0.764804
32 1719 4.692 1518. 396. 0.683444
33 1810 1.367 667. 280. 0.504329
34 1824 3. 183 867. 344. 0. 779704 "^
33 1414 3. 144 311. 368. O. 643980
36 1913 7.749 311. 508. 0.843612
37 1916 6.314 311. 340. 0.810626
38 2013 5. 123 640. 1374. 0.631036
39 2323 29.446 686. 1683. 0.911693

Table 8 Example l: List of Selected Pairs

NOTE: ij point No. in left and right image (201 	 (2,1))^ w initial	 '
weight^w preliminary weights rho correlation coefficient.

,^	 ^-
-	 -

__	 .^



w	
^'^

e g ^ima^sd ^its{a^:

a)

i L^Pti right:

1	 2	 6
2	 3	 7
3	 3	 9
4	 R	 8
s	 e is
6	 9	 e
7	 11	 13
8	 13	 i^t
e i4	 is
sa	 1^	 17
11	 15	 19
12 15	 22
13 18 23

ciaan list

b)

3 1^f4 righ`^

1 2 6
2 3 9
3 ^t 8
4 8 is
3 i3 12
8 14 13
7 i5 19
5 16 23

Table 9 laxample 1: Result of Robust Sh^.ft Adjustment

a) uncleaned list containing ambiguities

b) cleaned list

r10TE: 6 iterations

^.	 ^
^ ^^

^	 ^_ ^	 .• ^"^	 11
1^.__^ ..._. 	 _	 ... .•	 • _m-_ YRfhr_^rx•...^......w....v..we w+WM^w«..,. ..^.^.^_^..^.^_. 	 ..... ^	 .. r.a-a	 --_	 _	 _. --.."
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a

,^

r

11.077	 -12. 61S

xl yl xr yr dx dy

ia. a0q 04.Oaa 21. aaq 22. 004 -a. 077 0. 613
i2. aaq ^:^. 0aq 2i. oa0 33, a0a -a. 077 (?. 813
12, Q0a 43. aq0 2^. aa0 ^^. Oqq a. 923 0. fii.°I
13. aaq 31. 0aa 24. aqd iii. a00 -a. 077 -O. 3B!S
16. aaa 21. aao a&. oaa a. eaa -1.077 -o. 39S
16. aaa 31. aaa ^n^. aaq 18. aao -^. a77 -a. X85
24. a0a iF1. aaa 37. aaq ^7. q0a i. 923 -1. 38^
26. aao 19. 0Q0 3S. OOq k^. Oa0 -2. 077 i. 815
a^. oaa 4a, aaa 37. aao 27. oa:i -a. 077 -0.3e3
3Q. aa q 23. Qaq 39. qaq li. aaA -2. q77 q. 613
3q. aao aa. aaa 42, aaq 11, aaq a. 923 0. 615
aa. aaq 23. qaq 43. aaa 10. aaa 3.923 -O. 3a5
31. Qaq 38, aaa 45. aaa 2+F. 0a0 2. 923 -1.38

zl yl xr yr dx dy

i q. a0q 34. aaq 21. aao 22. a00 -a. a77 a. 613
12. aaq 45. Oaa 24.. add 33. Qaa a. 923 q. 61:i
i3. aaq 31. qaq x4.000 1^3. Oaq -a. 077 -q. 3B5
16. aqq 21. aaa 88. aqa 8. aaa --1.077 ^q. 385
28, qOq 19. qqa 35. q00 8. OQQ -a. 077 1.615
26. aaq 46. aaa 37. aaa 27. aao -a. 077 -0. 303
3q.Oaq 23.0x0 42.00a I1. 000 0.923 a. 613
0I. x00 33. a0a 45. aaa 24. aao 2. 923 -1. 3B3



-^ ^	 ^	 ^^r:

Y ^tC^a	 _ -_	 . _.. '_. _P...	 --. -- .

^5,	 ^ 4 `{'

	1. iS524	 a. insaa	 3. 58

	

-a. 4s9ea	 a. aEiZ{}1 ^ -^. ^n "

a}
1 la^^Pt right	 xl	 yi

n n
{B ; a)

xr
	

yr
	

dx
	

dy

1	 a	 ^
Z	 3	 7
3	 3	 9
$	 $	 e
^	 a is
6	 4	 S
7	 it	 13
8 13	 12
9 14 13
io	 15	 sa
11	 15	 19
12	 15. as
19 16 23
i$	 5	 5
15	 13	 17
!b	 6	 5
17	 4	 6

ia. aaa
ia. aoa
12.aaa
13.aao
i6. aaa
lEr. aao
a^. aaa
26. flaa
26. aaa
^a. aoa
3a. aaa
30.aoa
31.aaa
i+€. a4Q
a^. oaa
ia. aaa
13. aao

34. a4n
^a. aao
^€^. Oaa
31. aoo
Zi. aaa
31. aaa
$1. aaa
19. OaD
4a. Oaa
Z3. aaa
23. aoa
23. aQ0
38. aaa
i B. 040
19. aaa
i a. 4014
31. 440

21. oao
21. aan
a^. noa
a$. aaa
26. aaa
2$. aao
3a. 4oa
35. aaa
37. aoo
3^. 004
$^. aao
a5. naa
45. Oa0
Zl. aaa
39. aaa
21. aao
21. ooa

^^. aaa
33. aaa
33. aao
18. aaa
a. aoo

f8. aaa

za. aaa
a. aaa

aa. aoa
ii. aaa
11. aao
io. eaa
24. Oa0
7. aoa

11. aoa
7. aaa

22. aoo

-1.961
1. 563

-i. 437
-1. 68$
^1. lae

1. 9a2
-a. 5a^

1. biB
1.'782
a. 811

-a. 189
-3. 189
-a. 448

o. 86Z
-a. aaa

1. R68
1. 316

a. 63a
^a. ego
-a. era

1. ?2Z
^. 633
i .453
a. 556

-a. aZ7
-o. sas
a. ^4^
a. 142
1. 1+€2
a. 28Z

-1. $8a
-3. 42T
o. aa$

-2.27B

61e^n list

b)
i Ie^t right
	

xI
	

9I
	

xr
	

yr
	

dx
	

dy

1	 2 6 io. OQa 3.4. 4aa 2i. ooa 22. aao -1.961 a. 637
2	 3 9 12. aao 45. Oaa Z$: OQO 33. aaa -1. X437 -n. 8$a
3	 B is 16. aaa 21. aaa 2b, aoa 8. aaa -1. iZ9 2. 633
^4	 9 8 1E►. 44a 31. 4aa 2^F. aaq 19. aao i. 902 i. $53
5	 11 13 Z$. oaa 41. aaa 3a. aaa :t7. 4a0 -0. 5a5 a. S54
E► 	 13 12 ^. aaa 19. Qaa 35. aoa 8. 4aa 1. 618 -o. oZ7
y	 15 19 aa. Qaa 23. ooa $2. aao 1!. ado -a. 189 a, i$2
8	 16 23 31. aoa 38. aoa $;. aa4 2$. aaa -a. $$8 0. 282
9	 6 S 14. aao i7. 444 21. Qaa 7. oaa 1. aaa a. 26$

Table IO Example 2: ResulC ai Robust Affine Transformation

a) uncleaned list, conCaining ambiguities

b) cleaned IisC, final result
{ef. Figure l2)
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Figure 12 Example 1: Result of Correspondence Algorithm.
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most similar objects are also correspondent ones. 'f`he abject pair 3(8,10} with the

largest residuals is found by chance, ?^ both points are just above the level of dis-

tinctness. But observe that the objects in pair (5,5) are more similar than those

	

;^	 -

in pair (6,5). The context, i. e. the common geometrical model, however, selects

.^

	_:	 the pair (6,5) due to its better fit, which seem to be reasonable as can be seen

	

j	 from 1~ figure I2. The final transformation parameters show scale differences up to
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^ ^	 20 o between the two images.	 A
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^
^	 2. The second example is based on an image from the Axizona Test Area. The reso-

	

. 	̂
L

^'F
'f

	:i	 lutian of the original image has been reduced by a factor of two, yielding pixel 	 ° E

	

[	 ^ ^^

	^	 sines of 50 µm. The selected windows of 80x80 pixels with the interesting points

	

: ^	 ^^^^	 w

	

µj	 ^,

are shown in Figure 13.

	

^°^	 ^^

	3^3 and 50 points have been selected, almost all having error ellipses close to a 	
^. ^^

.-_r I
	^	 circle (cf. Table 11}, From the 1.550 possible pairs 127 were retained as candi- 	 ^-'^	 ',,
r,

°^
	dates (cf. Table 12), Observe that the weights in this case do not vary so n:nch 	 ; L

'^	 as in the first exam le and are causiderabl smaller. The final result fields 18	 `^£

	

-,	 P	 Y	 Y
:^

	object pairs and is shown in Figure 14 (cf. Tables 13 and 14). Also in this case 	 r-,:	 j .
^^

	

I	 R^

	the scale difference is approximately 20 0, but in addition a rotation of approxi-	
._,

	

V I	
r n	

i'^

	

:j	 mately 10° in bath axes becomes apparent from Figure 14. The shifts of +4 and

	

^^i	
`^"	 ,^	 +18 pixels correspond to an overlap of the two °windows of approximately 70%. 	 4s	
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na i	 ^ ^ na i	 ,^ ^

1 118 5.643 5i 2149 4.838
2 314 4.394 5a 2115 4.77+1
3 321 2.468 53 4213 18.835
4 417 5.736 54 2227 3.344
5 419 2.498 55 2239 4.372
6 ba4 2.901 5b 2242 4.abb
7 626 7.761 57 2334 5.221
8 786 b. 448 58 x340 3.506
9 903 5.9,72 54 2344 6.369

14 921 2.360 64 2350 b.41^,
31 92,3 5.0'.9? b1 2408 2.662
i2 927 1.740 b2 2419 13. k{^9
i3 1408 2.880 63 2427 4.470
14 1112 3.905 64 2434 4.62b
15 i205 4, iB2 65 2440 3. 616
i6 32:_3 2.141 66 2444 5.546
i 7 1217 4. 604 67 252f^ 3. 528
38 1219 2.110 68 2529 4.389
19 1227 3.880 64 2538 10.427
20 1304 2.721 70 2546 4.5b5
2i 1317 4.453 71 2biB 22.025
22 1322 5. b87 7?. 2644 4. 370
23 1326 8. 102 73 2717 34, S95
24 1334 4. i86 74 2719 3. 926
25 14J0 6.434 75 2722 7.434
26 'x}13 2.392 7b 2725 7.321
27 1825 5.155 77 2734 9.565
2B 14:27 2.200 78 2735 4.:18
29 1508 13. 592 79 2740 5. f^40
30 1511 2.145 80 2743 6.878
31 1521 2.783 81 2744 15.4b4
32 1525 2.925 82 2814 2.86b
33 1!503 9. B43 H3 2821 23.014
34 1605 2. 7S0 84 2825 3. b89
35 16?1 3.211 8S 2827 3.45
3b ^ 1623 4. f 38 B6 2834 2. 642
37 1627 2.230 87 2913 5.572
38 1639 9.894 BB 2949 4.51,2
34 1726 3.290 84 3017 4.004
40 1737 4.264 90 3031 3.112
41 1741 2.716 41 3040 4.883
42 1804 -8.803 92 3041 3.695
4a 1807 4.351 93 3044 8.05►7
44 1819 3.058 94 3050 2.444
4$ 1834 4.684 45 322; 32.112
4^ 1911 34.671 9b 3123 2.489
47 19x1 2.798 97 3327 2.634
48 1939 2.405 98 3130 3.692
44 2010 i 7, 253 99 3139 3. 171
50 2025 E4. 839 IQO 3229 2.622

^^^ i

389	 ^^
s^

na	 i d
	 ^	 ^

	

101 3238
	

5. 4B3

	

142 3245
	

2. b73

	

103 3343
	

4. 368

	

144 3423
	

3. 961

	

145 3522
	

4. 566

	

106 3527
	 a. 37b

	

147 3344
	

4. 418

	

148 3543
	

5. 201

	

1139 3ba5 	18.289

	

110 3631
	

3. 709

	

111 372a
	

6. 383

	

112 37x5
	

4. 658

	

113 3726
	

8. 724

	

114 3731
	

4, flat

	

:i5 3734
	

4. 462

	

116 3737
	

2.934

	

117 3744
	

5. 444

	

118 3741
	

5. a45

	

114 3743
	

4. 729

	

124 3826
	

18.68{7

	

121 383!L
	

3. 9B0

	

122 3437
	

3. 512

	

123 3240
	

9. 494

	

124 3843
	

4. 102

	

125 3934
	

15. 418

	

12b 3435
	

3. 754

	

127 3944
	

B. 294

Table 12 Eitample 2: List of Selected Pairs

NOTE: ij point Ito. in left and right image (20l = (2,l))

w initial weight

`^	 -.^

__.	 ...	 _ ._	 - _	 .._..	 ._.-	 -.	 r	 -	 -	 -....	 ....
--. .,	 .^ 	^	 ^^-	 -	 ^^:

.^

	

_	 _



390

^ltiaest^d ahi!'t:	 - iF3.111	 -3.33

f	 l^^t ript^t xl yl xr yr dx dy

^ iE 7 3fr. 00o ss. aaa ^a. ooa ^a. aaa ^. 1 1 1 -t. +b^7
^ 19 11 3b. <?0a ^#. aaa ^^, aaa ss. aoo s. i 1 i a. 333
^ 24 19 50. aaa s1. aaa 3^F. aaa ^9, aaa e^. 111 1.333
^ ^b 18 X2.000 +^F7. Oaa 3^F. QaA 4S. aaa 0. 111 1.333
3 Z7 17 a^&. aaa a8. aaa 34. OaG` lb. aaa -3. F189 -2.6b7
b a a1 se. aoa si. aao 38. coo so. oao a. 111 ^. aaa
7 ^^ 2O ^s. a00 21. aaa ^E3. aoa ^^. aaa -^. se9 -i. 6^7

ab ^s bn. aaa ^^. aaa ^a. aao ^F3. aaa -1. qAS^ ^. X33
e 3B 37 77. aoo aa. aao s^. oaa ^. aoa o. 111 -1. +567

,-	 Table I3 Example 2: Result of RobusC ShifC Adjustment

NQTE: 7 iteratians^ list had not been cleaned
^^

.:'

r a. 9192b a. 13883	 -L4. 90 ^ c ^ ^ ^ a }
` a. 178x3	 !. 17112 ^ -19. 92

i la^ft right

	

1	 iB	 7

	

2	 19	 I1

	

3 2^#	 14
4 2b 18
s 27 17
^ 2a ^^
r 3^F 23
8 35 28

	

9 12	 s

	

La iS	 8

	

ii as	 1a

	

!2 21	 4
13 22 13
I4 29 i^
iQ a5 22
1$ 38 26

	

17	 ^	 a
18 39 3a

xl yl xr yr dx dy

36. aaa 38. Oaa ^a. aaa 80. aaa ^. 2as a. 849 '
36. aoo aa. aaa 23. aaa sa. naa -o. 3s9 -a. spa
so. aaa Si. oaa ^^. 000 aa. aaa -a, osi -o. ^^^
'2. aaa ^€7. aaa 34. aoa 4s. O0a a. 222 -o. 622
sb. aoa a.^. aaa ^^a. o0a 16. aaa a. x29 -a. zaa
s^. aoa- si. aaa aa. ana sa. aaa o. ass -a. aaa
^s. aaa 21. aao aa. aao x^. oaa -1.707 a. 2^^
^^. aao ^a. aoa 46. aaa ai. aaa -^. aaa a. ass
27. aao 19. aaa 12. ana 8. aaa -2. 147 -a. 8b^
34. 000 b3. aOa 22. aaa ba. Oaa -a. 3x3 -a, aa8
4a. aGa i9. aoa 2a. naa ^. oaa -0.177 -a. 186
^E4. aoa i^. 0Ua 23. aaa ^F, aaa a. aex a. 3x7
aa. 0x0 18. aaa 2B. 00a ia. aaa a. ss8 a. aeO
s7. aaa 9, aaa 33. aaa ^. aaa a. a^43 -3. 23^
^^. aaa 1s. aoa ^^. aoo i2. oaa -1.334 a. 9aQ
7^. aa0 i2. oaa ^^. oaa ^. aaa a. sus a. era
aa. aoa 2i. aaa 9. aaa a. aaa -a. i^a -a. 23^
77. aaa 2^F. a0a 82. aaa 22. aOO -a. 489 -a. ia7

Table l4 Example 2: Result of Robust Affine Transformation

NOTE: 5 iterations, cleaned list (f^.nal result), only 2
correspondenc^.es were ambiguous.
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.^. S Preliminary ^'or^xclusions

From other experiments with simulated and real data the following preliminary con-

elusions may be drawn:

a. The algaritlim in its present form works well if the relative distortions of the

images are not larger than ^0-3[i% corresponding to a rotation of up to 2^°) and

the overlapping area contains enough distinct points. 'These conditions can

alcra ,ys be met if an operator provides the approximate values, or the images are

oriented with au automatic procedure as the LNG li^ethod,

l^. The results are accurate ug to ^-2 pixels, if the deviation of the geometrical model

from the rea,1 distortion is not too large.

c. The algorithm is fast enough to replace the first iterations in a correlation-based

i
algorithm far high precision registration ar rectification. The total computing ^ 	 ^-,

..J

time for a pair of images with i28^128 pixels is approximately 2-3 seconds on a

VAX Il. f 780 and is nearly proportional to the number of pixels.

r^
d. The limitation of the algorithm in its present dorm results from the similarity 	 `1

r^.

measure, namely the correlation coefficient, which is not scale or rotation indepen-

	

rs	 i

dent. ^.s aIready pointed out, other measures, as for example invariant moments 	 t,

might solve this problem.

^^
`'



^ _ __ _ ^

I

^^J

'I

^^ g.	 Further research should be directed towards a linl^ with the features of the LI^-

me hod.	 There are two wa s to do that which are com Iementarv: One couldt	 p	 .y^_

^' use robust +estimation procedures to ref ne the estimation of the L1V^-method and
^:

one could use the abstract features, especially the abstract lines, as input for the
;^
4-

^i

correspondence algorithm.	 In this case each abstract line would give rise to four

ti ^ observation equations, derived from the coordinates of one end point of the line
.	 ^	 . ,,; 

_^; and the coordinate differences to the other end point. 	 If consideration is res-

^:

r' tricted to rotation and scale differences only, the angular difference and the loga-
:: ^'

^=

^`	 ^ ^, rithm of the scale ratio of the pairs of abstract edges would lead to a robust esti-
^^

^.
mation of the means of the shift, the rotation and the logarithm of the scale 	 3. ^'

A
^. ^	 ^'3

^-' difference of the two images. 	 The inclusion of line features into the algorithm	 ^^

'^6 ^--
^_.

would allow its application for rectification of satellite images..	 ,.
^"

^,..
^:

^
^ _

-	 i
^

f

f
L^

^.

^.

i.
:- ^.

^^^,

^^
I^
^Îj

^^.^^
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5.1 Canclusianr

_^ ^.
e
li

ii

{

._.7

^j

5. C4NCL USIONS AND RECOMMENDA7'lONS 	 ^ ,

From the research performed sa far, the following are the conclusions to be drawn:

^.
1. The collinearity (or parametric) model is superior to the polynomial (or interpoia- 	 `^'

five) model particularly when the number of control points is small. 	 ^,

I,-^
2. Through simulations, it is shown that the parametric model adequately describes r;

the real data.
:: ^^

^=

f-,
.^

,'
;,

3. Rectification of single image scanner data is more sensitive to image position 	 '
^^,	 i }

errors than ground position errors.	 ^-^ ' r
-	 !

4. Uncertainty in attitude estimate is the main source of error in system-corrected	 L^^ ^,.I

images.
^,

;;
i	 -,

^: '

i

5. In general, when more than about 25 well distributed control points are used, the	
-^

effect in rectification accuracy is marginal.	 '^^

LJ
6. The distribution of control features is critical to the rectification accuracy; to	 ''

obtain the same accuracy about three times the number of well distributed con	 ^.,
I

' ^ _^	 trol features are needed when such features are randomly distributed. 	 '^i
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' ?. The block adjustment procedure based in the parametric rectification mode! was

r

successful. Tie points between overlapping images improved rectification accuracy,

^; particularly when few control points are used.
^.

'°',;;. S. Edges proved to be an efi'ective tyge of control for single image rectification.	 In
^:

general, about three edge pairs are needed for each conventional control point.

}
9. 1^n efficient new algorithm for finding corresponding points in image pairs has

been developed. The unknown	 parameters of the geometric transformation

'^^between the two images are derived using robust estimation techniques.

^1
{

1^. Tests with simulated and real data show that the present correspondence algo-
1;

^ ^
s

^w
rithm can accomodate geometric distortions up to 2D to 34 ^, which corresponds

^°
^^

to an average distortion of 3 to 7 pixels in an image of size 1.28x 12^ pixels.
^s

^' 11. The correspondence algorithm incorporates a new operator for finding distinct
^	 ^^ ^ a

^I objects in an image based on the expected precision of locating such abject by ^	 i

^._ l

^^

crass correlation.

i^

t^
4	 }

^ ii	 ^

^	 ^^

I	 ^^:d^
1

Y	 ^

^	 bbb^^^

.— ^..	 ....	 ..^ _	 zn^...,.,.......-.......
.-^....	 ^^^. rM_	 _,...	

^	 ..-
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r'Y
-	 ^_.^-- —	 ---	 _ .	 ......	 .. _.a



5.^ Recommendations

1. Continue to investigate other non-conventional control such as geometric con-

straints and relative control (e. g. distances, angles etc.).

2. Extend the block adjustment program to aecomodate edge control and perform

tests.

3. Continue to develop the correspondence algorithm and apply it to remote sensing

data both for registration and rectification.

4. Study the rectification/registration sequence.

^. Investigate rectification accuracy assessment.

6. Analyse blunder detection and identification procedures.

7. Research the problem of merging remote sensing data and digital terrain models.
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t ^	 ABSTRACT

Rn investigation of the optimum number of ground control paints

required to rectify a fu11 scene or a portion of a Landsat MSS scene

I	 was conducted on data from southeastern Louisiana /southwestern

Mississippi and eastern Kansas. The ground control points utili2ed

were randomly distributed across the partial or fu11 scene. This work

r	 suggest that 2^ ground control paints is more than adequate to rectify

a partial ar fu11 scene of Lardsat MSS data. An additional study

examined the error incurred in choosing ground control points

t	 representing artificial versus natural features.
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Introduction

This study involves an inuestfga^fon of the geometric accuracy of

scene-ta-map registration products of Landsat multispectral scanner

CMS5} data.	 The rectification of [,andsat MSS data to a Universal

Transverse Mercator {UTbf) Map base is an important pre-processing step

in the analysis of earth resources science data. Potential applica-

ti ans that f1 ow Pram an accurate scene-i;o-map recd ^Fi cai;i on process

includes:

l.. component of a multisource data base

2. development of change detection products

3. input; to a habitat classification

The accuracy with which ground control points CGGP} can be select-

ed is an important source o =̂ error in the construction of uhe mapping

equations which relate I.andsat scene coordinates to map coordinates

{northings and castings in _the UTM system). The use of a non-linear

transformation in the mapping equations may not be ,justified, when one

considers the accuracy with which ground control poir#ts can be select

ed {Steiner and Y,irby C9]}. A study of ground control point selecti on

accuracy revealed that CSteiner and Kirby ^9]):

1. GGPs can be selected more accurately on maps than Landsat

images

2. GGPs can be measured more accuraely on mran-made features {road

intersection) than on natu ►^al features iland-water inter-

faces).	 '

A commonly utilized mapping equation is the affine transformation

which is eq^aivalent^ to a First degree. polynonial. The properties o^`

_	 _	 _

r	 ^,	 ^ _:,:.	 ^^^_ ^	 ^
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the affine transformation in relation to geometrical rectification of =

Landsat data are discussed by Kirby and Steiner C5], Steiner and Kirby

L g7, Yon Wi e and S^i:ein C^o7, #torn and Woodham C^], Emmert and Mc^illem

C2], and Wong C12]. 	 In comparing the UTh9 map co ntrol points and the

Landsat	 the

,`

scene control	 points of	 same objects utilizing an affine

transformation,	 the linear least squares approximation is used which =

enerates residuals which measure how we11 the data fits the ma 	 ing	 pp	 g i;

equation.	 The root mean square (RMS} value is a measure of the degree ^^^

of fit.	 The residuals	 stem from no^^linear distortions 	 in satellite

orbit and attitude, errors attributable to curvature of lines due to

;;

earth rotation and map projection, scanner mirror velocity non-linear-

it	 and	 random	 variation.	 The affine transformation accounts forY^ ^	 ,

distortions	 due	 ta:	 translation,	 scale	 change,	 rotation,	 aspect

i
^,;

ratio, and skew	 Van Wie and Stein C1.0]}. 	 An analysis of two Landsat
'	 ',^

M55	 frames of the component sources of error in the residual 	 error ^	 ^^

term found that the "other" category ^attitgde errors} wore generally ^^:^

1argEr than the transformation error component or the point measure-

meat	 error component	 (Steiner	 and Kirby	 C g]).	 Another	 s^^u rce	 of

.;

'	 '

distortion considered by the same authors iKirby and Steiner CS]} is

r	 '

the differences in geometry between the UTM projection and the Landsat
1

;;

MSS scene.	 The affine transformation does 	 not compensate for this

distortion (called geometric base problem).

A	 number of investigators have employed polynomials of a higher ^^
,,.

degree as mapping equations.	 Wang C3.2] reported an RPiS value of 'r57m

for a 20 term palynami al , while the RMS value of a fi rst degree )	 ?i

polynomial	 applied to the same Landsat frame tivas ^-1ISrn.	 There is a r

R
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^^

^. ^, tradeoff involved, however, in that at least 20 GCPs must be used per
3^

P ^' frame to provide a least squares solution fora 20 t!?rm polynomial {up

r
to 30 GGPs would have to be used in practice).	 dot only must the

higher degree polynomial use a large number of GCPs, but the GCPs must

^^ be well	 distributed near the edges and corners of the frame {Yon Wie

i ^- and Stein	 ^lO]).	 For .products	 issued by the EROS master data

^a processor {MAP)	 to produce P-format tapes {spatially and rac#iometri-

^^
^^ ca11y corrected), the number of GCPs used can be related to the

^^ scene-tawmap registration accuracy.	 If 25 to 50 GCPs are used, the
:^

rectification accuracy should be wi thi n I pi xel more than 99^ of ache

.^^ time..	 For 8 to 24 GCPs the rectification accuracy should be within IO

. ^: pixels,	 while for Z to 7' GCPs	 the rectification accuracy should be

^' ^ within 2O pixels more than 99^ of the time {Nelson and Grebawsky C7^).
^

^
!,

A	 recent	 study	 of	 Landsat-4	 P-format	 rectification	 accuracy

,^^ analyzed	 the sources of error due to locating GGPs accurately,

, f	 , digitizing and map distortions, and relief variations (Welch and Usery

i^
[l 1. ]) .	 For MSS data the i ocati on error was ^-3O-40m (rinse	 ar root

xy

mean square error - vector),	 the map and digitizing error was -^10-ISm,

-^
and	 the	 terrain	 relief	 error	 was	 roughly CIO-3Qm.	 1'he	 root mean

. ^^

^. square .error vector is computed from the deviation between the mapping

equation and the withheld ground test point locations. 	 When a first

degree	 polynomials was	 employed with	 10	 or more GCPs	 for a whale

^^^ ^^	 scene, the rinse 
xy value -was -^SOm. 1'he use of a third degree poiyna-

i!
mials with 30 or more GCPs , produced an rinse 

xy 
value of ^-55m. For a

f^	 ].024 by 1.024 pixel area, I5 GCPs were used with first and second
e

^	 degree polynomials to produce a mi nimum rinse xy value of ^-45m. the
^'	 ^^.
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xy 

value increased to ^60m when only 10 GCPs were utilized. 	 For ,

a 256 by 2S6	 ixel area, 5 GCAs and a linear first order	 o1 namialp	 p	 Y

yielded an rmse	 value of ^4Um,
xy

The	 affine transformation	 and	 higher degree	 polynomials	 are	 an
9

example of interpolative or surface fitting models. 	 The other type of

model used in rectification is the parametric model which incorporates r

information	 on	 satellite	 position	 and	 sensor	 attitude	 [Mikhail	 and ^^

Paderes Cud).	 The use of parametric modelling in	 rectification has ^i

been described by Mikhail 	 and Paderes CSC, Norn and E^oodham C4^, and

5awada	 et.	 al	 CBS.	 Parametric modelling 	 includes	 two components:

sensor modelling and platform modelling. 	 Sensor madF^lling corrects

for panoramic effect (pixel	 projection on a plane),	 nan-linearity of

scanning,	 and unequal. number of pixels per scan. 	 Platform modellin g

deals with problems associated with sensor attitude and the satellite

position in orbit.	 Mikhail and Paderes C5I describe this approach in

r

^;

some detail.	 The satellite col7inearity equation c^as used to combine f,	 ;

^^the sensor and platform models. 	 Ground control	 points are used to

estimate the unkno^rn parameters in the sensor and platform models (19

unknown parameters existed in this study). 	 The conclusions of the

investigation conducted by Mikhail and Paderes CG] include:

1.	 The maximum rectification accuracy . for a polynomial model 	 is ^	 _-

about half a pixel. ^^

2, Rectification accuracy is not significantly improved when the 	 ^,
;^

number of GCPs utilized exceeds 25.
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3. The recti fication accuracy is sensi tive to the identification

accuracy of a GCP in the Landsat image, but is insensitive to

tine accuracy of identifying a GCP on the map.

Recent work by Mikhail and paderes {personal communication) re-

ported that the col1inearity model gave equal or lower RM5 values for

the same number of ground control points than did a polynomial model.

The differences in RMS values between the collinearity and polynomial

models is mare pronounced for l.0 GCps than it is for greater than 40

GCPs. The same conclusions were arrived at using synthetic data as

were determined Pram using real Landsat MSS data from Kansas and

Louisiana.

i^eth€ads

The Landsat MSS frames used in this study were acquired aver

path:23 and row:39 of the worldv^ide reference system {southeastern

Louisiana - coastal Mississippi) and aver path:29 and row:33 {western

Missouri - eastern Kansas). The Kansas data. was collected an 3.1/9/81., 	
G

while the Louisiana data was collected on 3.3./21/82. Bath Landsat MSS

scenes had 20^ cloud cover. The Louisiana scene was rei ati vely flat

{elevation: 0 to 362 feet above sea level3 and contained up to 35^

open water. The Kansas scene ►vas hilly {elevation; 730 to 240 feet

above sea level) with neglible amounts of open water. The extensive

^! amount of open . water and wetlands in the Louisiana scene present a

significant challenge far accurate rectification when compared to the

Kansas Landsat frame.

i
^^	 -
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The points to be utilized as ground control points {GCPs^ and

ground reference points (GRPs} were chosen on 1:24,000 scale, 1.5

minute quadrangle sheets produced by the U.S. Geological Survey

(USGS}. The GCPs are used to generate the mapping equations used in

the ge4registration procedure, while the GRPs were employed as test

points to independently assess the accuracy of the georegistratian

procedure. The ground points map coordinates were recorded in the i1TM

system as northings and eastings, while the Landsat scene coordinates

were recorded as rows and elements. The same paints were identified

on the 7.5 minute !lSGS quadrangle sheet and the Landsat A-format MSS

scene. The types of features used as ground points included manmade

(road intersections} and natural ( river intersections} categories.

Table 1 gives same examples of ground points utilized in the Louisiana

Landsat frame.

Far the whole scene analysis, 356 ground points were used in the

Louisiana data set and 359 ground points were used in the Kansas data

set. Far the half scene analysis the number of ground paints avail-

able was 242 for Louisiana and 241 for Kansas. For the quarter scene

analysis the number of ground points utilized was 182 to 198 for

Louisiana {Areas A .and g} and 1.50 to 158 for Kansas (Areas A and B}.

The ground paints available were divided into GCPs and GRPs.

The mapping equation utilized was a linear polynomial and the fit

of the GCPs to the mapping equation was quantified by the computation

of the RMS value din meters}, To evaluate the gearegistratian

accuracy of the Landsat MSS product, the procedure of Graham and

^.
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^^I ^E-̂	 Luebbe ^.3^ was employed. This procedure quantifies the georegistra-
t^_.

Lion accuracy in terms df RBxA5 {row offset), CBTAS fcclumn offset),
^-,

^_	 RSD Prow standard deviation), and CSD {column standard deviation).w.,

Good georegistration accuracy would be characterized by sub-pixel

^--^	 offsets and standard deviation values. The equations for computing

^"	 bias and standard deviation are:

NAP	 {ROWi .	 - ROW2 • )

NP

1
f2) RSD =	 ^	

{ROW1
i
	- RDW^

i
	- RBTASl2

= ^.7

tdP -

^? where NP is the number of GRPs chosen, ROWZ is the Landsat raw pre-

,^
dieted from the mapping equation s	and ROW2	 is the Landsat row read

from the MSS ima er	 The units of RBIR5 and R5D are in 	 ixe1s.9	 y	 p

)!^ The ERL computer software module GNRI was utilized to take a

random sample of GCPs i^rom the overall ground point list for both the

,^
^a Kansas	 and Louisiana data 	 sets.	 The random samples were chosen in

^^ groups of eight and combined with the previously chosen GCPs. 	 Groups

^'^ of eight were utilized because the quality assessment number associat--

i^^
ed	 with	 Landsat	 P-format MSS	 tape's	 registration	 accuracy	 employs

^^

multiples	 of	 eight.	 The	 module CSPA was	 utilized	 to	 compute	 "R"

values	 which	 give	 a measure	 of	 the	 spatial	 distribution	 of	 ground

^^
control	 points	 f Dow ^^.^) . 	 F'or the purposes of thi s paper "R" vat ues

Y ^ between 0.7 and 1.3 are indicative of a random spatial 	 distribution.

The module SMGC was utilized to compute the bias and standard

deviation values as well as the RMS numbers,

..

^,	

r



s	 ..	 .	 ,
^'`.	

;_
° ^'

,.	 -	 ^	 1

^	 ^.
'I

^,

410 ^.

î̂
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A separate test was conducted, in canjunctian with the avera1l

study, to see haw accurately a given grouted car^tral paint could be

selected. Ten ground control points representing natural features and

ten ground cantral points representing manmade features were picked at

random from the Louisiana P-format t^SS data set, This experiment was

the only case in this paper in which P-format data was used These

ground control points were reselected ten times in order to see how

much operator error was introduced in GCP selection. The operator

located the ground control point an a 1:24,000 sca1Q ilSGS map and then

moved the track ball cursor an the digital image display device until

the sane ground point was identified on the display screen. This

procedure was replicatd ten times with the data processor, who record-

ed the Landsat scene caardinates location, not informing the track

ball operator of the results. Table 1 lists the characteristics of

the ground control points used in this study.

Most a€ the statistical analysis utilized in this report was

generated using the BMDP Statistical Package (Dixon et a1, ^0]). The

descriptive statistics mean, standard dev;an on, standard error of

the mean) and analysis of variance were run using program BMflP7D. The

analysis of variance model was tested for equality of variances using

Levene's test and if the l.evene's test results wire statistically

significant, then the Brown^Farsythe procedure was used for the

analysis of variance computations (Dixon ct a1. ^(3^^. The Duncan's

multiple range test was employed to separate out significant treatment

effects in those cases where the analysis of variance results were

,.	 ..	 -	 -	 -,	 -- ^_	 ?qty. _..,^^ -'	 .r--'._ ...	 ...	 .- . z,^-_	 .^



)I
M ^!

	

411

^,

statistically s7gnificant at the 5^ level, The correlation analysis

was carried out with program BMDAGD.

^i

T
Results and Discussion

^-^ The ground control paint accuracy experiment found a row bias of

"^ 0,04 pixels	 far natural	 features and a column bias of O,I.2 pixels.
L.;

For manmade features the row bias was 0,12 pixels and the column bias

was	 0.04	 pixels.	 It	 appears	 from these	 results	 that manmade andL, f

,,^-, natural features can be chosen with equal accuracy.	 Also the operator
i

^'^ bias	 i n	 ground cants=al	 paint selection does	 not represen^c a serious

j' source of error in the scene-to-map regi stration procedure.,,

The	 results of the optimum number of GCAs needed to rectify a

^^
given portion of a Landsat MSS scene in E.ouisiana and Kansas i s given

,^, in Tables 2 through 6. 	 The	 "N"	 column gives	 the number of ground

^^= control	 paints used to develop the mapping equation. 	 The "R" column

^' gives an indication of the type of spatial distribution that the GCPs
^^

exhibit across the Landsat scene. 	 The "RMS" is a measure of how well
^^

^^: the GCPs fit the mapping equation.	 The accuracy of the georegist^^a-

tion procedure	 is measured by the RBIAS,	 RSD, CBIAS and CSD values

^

f,^

^ imeasured as fractions of a pixel.	 Thy bias and standard deviation

ir-
values are computed from the GRAS. 	 The values in the last raw of each

^;.r
column represent the mean and 95^ confidence interval about the mean,

This	 row is presented far a general	 descriptive overview of the

„^ results, but should not be interpreted literally in these cases where

^_ the .analysis af. earl ante (A^OVA } results are stab rti cal ly si gnificant

{I

^wJ
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'	 Cindirated by *). The results presented represent the outcome of 44

replicates for each the "!^" equals 8 through 40.

For the whole scene analysis the R values for Kansas are larger

	

`	 than those for ^.ouisiana Csee Table 2). The reason for this is that

the Louisiana scene has large areas of open water in which it is

impossible to choose GCPs. The RM5 column shows what appears to be a

counter-intuitive result i n that the R{^S va1 ue goes up as the number
.t

of GCPs utilixAd increases From 8 to ^0. The reason for this appears

	

,^	 to be that as the number of GCPs increases 9 it is more likely to

encounter outlier GCPs which di start the overall RMS value. Another

possible contibuting factor is that for N equals a, there is only one

degree of freedom le^Ft over to make the estimate of the mean and thus

	

^'	 the mapping equation lacks the redundancy in GCPs necessary to make a

ec'se A im too the mea	 The RBIAS and CBIAS values decrease in

	

^^	 pr ^	 ..st a	 f	 n.

	

j	 magnitude as the number . of GCPs used ^^^ increases. 	 In this case

outliers da not distort the' results because there are many more GRPs

used to check rectification accuracy than the GCPs employed i;o gen-
r

	

''`	 state the mapping equation (GRP s = total avai 1 obi a ground poi nts -_,,
GCPsy. The RSD and CSD values are fairly constant in magnitude with

increasing H values. This being the case it was decided to concen-

trate on the RBIAS and CBIAS values in order to decide what the

optimum number of GCPs required to register a whole scene of Landsast

	

^	 data was.

The results of the Duncan ` s Multiple range test were uti 1 i zerl to

choose the optimum number of GCPs . required. The ^ values for which

P^

1
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.t

^rl

^`!	 } the puncan's	 multiple range	 test gave significant	 diff^.^rences were
i.

Seurated out from those tredtment Pff@C^5 w^liCh were no n-Signi ^lCant.

The range of ^ val ues which were not si gnifi cant were vi ew^ed as

^;	 r^, del i neat~ ng the number of GCPs which gave equivalent results and the
s 1	 ^' optimum number of GCPs was tide lowest ^ which 	 gage nonsignificant

"^' results.	 For a whole scene the optimum number of GCPs far the
^^

,--,
Louisiana data was H=24•(RBIASI	 and TI=IG(CBIAS}, while for Kansas the

^^ results were N=24(RBIAS} and ^t-32^CBIAS).	 The RBIAS, RSD, CBIAS, and	 .
^:

F	 ! CSD vat ues were roughly the	 same	 for bath the Laui si arra and Kansas ^,'^,
^;

^

F

^	 ^-^` data sets.	 In bath data sets the RBIAS and RSD numbers were less than 	 ^	 ^

;`
;i
^I

the CBIAS and CSD values.	 Thus,: registration accuracy is more accu-
^	 `^Yi	 t^^

^^ .rate	 i n	 the	 row direction	 than	 i n	 the cal umn direction.	 Goad
r^

^,;	 ;,i brect'l f 'I Cat l an accuracy i s indicated by thA sub-pixel bias and standard	 i
^. +

Y

^	 -	 i

'	 ^.. deviation values for bath Louisiana and Kansas.
^,^	 ^

^t	 ^^^

,

The results of the half scene analysis are presented in Table 3. 	 ^	 '^

^"^"
L,

The R1^S values	 shotir the usual 	 trend of increasing as the number of

GCPs utilized increases.	 The RBIAS and CBIAS values decrease as tine H

f	 r-

!^.
LJ'

value increases.	 For the Louisiana Landsat Frame the R^45, RBIAS and	 ,^

;" "
CBIAS values are less in the half scene analysis than is the case far	 ^	 ^^

^^
^^,	 ^ ^ the whole scene analysis, but the Kansas data i s the same for these

;,
3

parameters i n tyre hal f and wYrol a scene analysis. 	 The optimum number 	 ^	 ^
^:

of GCPs	 far the Louisiana data	 in the half scene analysis	 is ^^16

^

n

^C$IAS and RBIAS), while the results -for Kansas 	 arz R=1.6(RBIAS)	 acrd;

,`^ Pl=24(CBIAS^.	 Once	 again . the	 sub-pixel	 bias	 and	 standard deviation	 `

{	 ^y4 values indicate that good scene- to-^r^ap registration accuracy has been
^;

^^

^^^^
r

obtained.

y_
ti
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Tables 4 through 6 present the results of the quarter scene

analysis for two different areas {A and S) of the Landsat ^1SS Frame. ,-,

Bath areas A and area B in Louisiana were chosec^ in such a Wanner that -^

a minimal	 amount of open water was oval 7 ail e.	 For both area A and ^^'	 ,
!:

area B in Louisiana and Kansas the GCPs were we11 distributed across

the area	 covered	 { given	 by	 L,	 scan	 lines,	 and C,	 elements)	 which

_.

resulted in R values in excess of 0.94, 	 ^n Table ^ which presents the

Area B results far Louisiana and Kansas, i:he R value is higher and the

Rh4S value is laver than is the case for the half or wh4ie scene anaiy- ``^

sis.	 The RMS values increase in magnitude as the N value increases,

whi 1 e the bi as	 f row and col um^a)	 f i gores decrease	 i n value as N

,. ,

increases.	 The explanation for this phenomena is the same one that ^,

was provided earlier.	 'The optimum number of GCPs required to rectify ^^-^	 '

a quarter of a Landsat scene are for Louisiana N-24{RBIAS)	 and `^'

N=Ib{CBIAS},	 while	 for	 Ka^isas	 the	 numbers	 are	 N=7.6{Rg IAS)	 and
s .,

N=S{CBIAS).	 ©nce again good	 scene- to^-m^tp	 registration	 accuracy	 is
L J

indicated . by sub-pixel bi.^,s and standard deviation values. r_,,	 ^

Tables 5 and 6 compare areas A and B for Louisiana and Kansas. ^^

Far Louisiana the R^15, bias, and standard deviation values are higher -^

in magnitude for area A than they are fo g^ area B flee Table 5).	 These
.._	

^^,

numbers are the same for - areas A and B in Kansas { see Table 6?.	 The

trends	 in Rh4S,	 bias and standard deviation values are the same for
^"i

E'

area A for both Kansas and Loui ^i a^a as those pre y i au^:ly explained •For ^-^^

area B for both Landsat frames.	 Thus analysis a^F two different por- r,

ti ons df a Landsat frame yielded Simi 1 ar resui is which suggests that
_.^

the previous conclusions may not be data specific.

r- ;,

j
^^

n1

i 	̂
11̂xJ k

... ̂ .ur^ru. "	 - wti...._. _,_. -	 _.	 _..

^.
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1'abl es 7 and 8 present the results o^F correlation and regr ^essi on

analysis for Louisiana and Kansas •For data from the whole scene ana-

lysis. The columns represent the dependent and independent variables

(y and x) in the regression equation, r is the correlation coefficient

(the square of r represents the amount of the total variation explain-

ed by the regression analysis), m is the slope of the regression

equation, and b is the intercept of the regression equation. 1'he last

column presents the statistical significance of r (non-sigificant=

N.S.; or signi ficant at the 1^ or 5^ 1evels). In this analysis the r

value may be significant at the 1^ or B^ 1evels because of the large

''^
number of replicates employed, but the regression equation may net be

meaningful because of low values of rand r2 . It was decided that the

later situation prevailed in this data, It was concluded that there
,i

is no apparent relationship between RM5 values and the bias and

standard deviation figures. Furthermore there is no apparent rela-

ti onshi p between CBIAS and RBIAS or C5a and RSI3. 1'hi s suggests that

all of these variables (RMS RBIAS RSa CBIAS, and C5D) are inde->	 >

	

`	 pendent of one another and that the variables measure different

properties of the scene'to-map registration process. One would expect

i

	

^	 this result •Pram the background information discussed in the intro-

	

.^,	 ducti on.

Conclusions
,^^

The ground control point accuracy experiment quantified the error

associated with choosing GCAs. 	 This error did not seem to differ

	

^,	 between manmade and natural features. The RMS values increased in

^_	 _ __	 _	 _...	 _._ 4	 _	 - _,^ ^^
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magnitude	 as	 the	 N	 number	 increased,	 while	 the	 bias	 and	 standard

^,

deviation values decreased as ^ increased. 	 This result coupled with ^^;

tine	 correlation/regression	 analysis	 suggested	 that	 the	 RNf5	 number ,^,

measures	 a	 different	 prpperty	 of	 the	 scene-ta-map,	 registration _^

process Ihow we11	 GCPs fit the mapping equation} 	 than does the bias "^'
f,

and	 standard	 deviation	 Figures.	 1'he	 bias	 and	 standard	 deviation

values should be utilized to estimate the accuracy of the scene

^:

^,

rectification process. 	 It appears from this study that 24 G^:Ps should ^,

be more than adequate to rectify a Landsat scene-ta-map, far portions ^'

of a Landsat frame ( quarter of a scene up to a whal a scene} using a `^'

relatively	 simple	 linear	 polynomial	 as	 a	 mapping	 equa^:ion.	 It	 is

passible that mare complex mapping equations may yield better results, J

a consideration if ane wi11 be performing scene - to-map registration of ,^,

f.andsat thematic mapper data 4^o meter pixels} in the future. 	 t

.._r

.r-,

l.e J

r^,n

'. .1

^,^

r" ^

ci

,_!^

^^

t- -7

^_^

r

^" ^	 J
i
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Table 1. Ground Control Points Used in Accuracy Experiment

^^

't

rat

l	 ^,

POI NT # MAP NATURAL/^dANMADE DESCP,IPTION

191 Savannah SW Natural Site is the corner of a forest block
230 Bay St. Louis Natural Site	 is	 two	 tributaries	 joining

together
047 Folsom NE Natural S i to	 i s a	 f i el d corner against a

forest
366 Happy Jack Natural Site is two bayous coming together
372 Point a is Hatche(62) Natural Site	 is	 fwo	 marsh	 bayous	 coming

together
033 Ponchatoula SE Natural Site	 is	 two	 marsh	 bayous	 coming

together
l37 Haaswood Natural Site	 is	 two	 wetland	 rivers	 coming

together
371 Lake Batola Natural Site	 is	 two	 marsh	 rivers	 coming

together
209 Malheureux Point Natural Junction of two marsh bayous
328 Oak Mound $ayeu Natural Junction of two marsh bayous

045 Folsom NE Manmade Powerline/dirt road junction
001 Franklintan SW Manmade Road intersection
171 Logtown Manmade Interstate/4-lane highway

intersection
350 Vagcleave (62) Manmade i'ighway intersections
317 McHenry (62) Manmade Highway/dirt road intersection
275 Bush Manmade Dirt road intersection
279 St. Tammany Manmade Pipeline/highway intersection
354 Pascagoula (62) Manmade Dirt road/highway intersection
246 Carnes NW Ma^^made Interstate/dirt road intersection
264 Bougaiousa NE Manmade Highway/dirt road intersection

^,
^..^

^'!^S •^YS. S	 x1l•.' Asa



Table 2. LOUISIANA -- 4IHOLE SCENE

( 4{l replicates}

N R RMS RBIAS RSO CBIAS CSO

$. 0.77 94.58 0.38 0.06 0.82 D.14
16 0.77 119.18 0.20 0.06 0.39 0.12
24 0.73 7.29.02 0.17 0,06 0.42 0.12
32 .0.71 132.72 J.lb 0.06 0.36 0,12
40 0.71. 133.95 0.14 0.06 0.37 0.12

Ail
0.74 + 0.02 1.21.89 + 3.94	 0.21 ^- 0.03 O.ObO 0,47 + 0.05 0.12 ^- 0.002

*: SIGNIFICANT AT 5^ LEVEL IH ANOVA

KS - ^fHOLE SCENE

(40' rep? i Cates }

N U RNlS RSIAS RSD CBIAS CSO

$ 0.$6 112.60 0.27 0.07 0.70 0.1fi
16 0.85 140.80 0.21 O.Db 0.44 0.14
24 0.83 144.8$ 0.1.7 0.06 0.39 0.14
32 0.82 148.72 0.16 0.06 0.30 0.14
40 0.83 146.30 0.15 0.06 0.27 0.1.4

A11 0..84 ^- 0.02 * * * ^
138.66 + 5.59	 0.19 ^- O.D2 0.06 + 0.002 0.42 + 0.06 0.14 + 0.002

^^d

*: SIGNIFICANT AT 5^ LEVEL IN ANOVA

-.	 ..	 ^	 -	 t	 ^	 ^r	 ..	 j^"' .	 1	 c, ^-..--J	
L._.	 ^ .	 J	 L	 ^	 t	 'i	 .,.	 '.^	 L	 ^	 ^..-	 ^:^	 C^	 . ^	 ^	 .. ^	 sl	1.. - ' j	 { _	 -	 F. ^	 ^	 i	 _f	 7

A^

Q ^

s.	 _^T.._.._	 -.^__.._	 '^'r	 ^-	 ^-



Tab? e 3 .	 LA. -HALF SCENlE (40 REPLICATES}
rt

7

Q

N R RMS RBIAS RSD CSIAS CSD

U (3, 75 84.1$ 0. 19 13.06 Or5`! O. I4
I6 0.70 100,55 O.Z4 0.05 0.34 0.13
24 0.67 208.65 O.I2 0.05 0.31 0.12
32 0.^6 II0.45 O.IO 0.05 0.25 0.12
40 0.66 111.50 O.IO 0.05 0,27 0.13

Ai I t}.69 ^- 0.02 ^ ^ * ^
1.(33.07 + 2.64 0.13 + Q.02 0.05 - -^ O,OOI 0.35 ^- 0.04 0.13 ^- 0.002 -

^: SIG^lIFICA^fT AT 5^ LEVEL I^! At^OVA

KS,	 .. DRLF SCEiVE X40 REPi.ICATE5}

^ R RCS #(BIAS RSD CBIAS CSD

8 0.90- 111.55 0.43 0.08 0.70 0.16
16 O.8I 133.88 0.26 0.08 0.58 0.16
24 0.79 140.38 0.22 0.08 (3.44 0.15
32 0.80 143.75 O.I9 0.08. 0.38 ^	 0.16
40 0.79 I4&.30 0.16 0.08 0.33 0.16

A^ 1 '^ * ^ 0.08 -^ O.OG2 ^ O.I6 + 0.002
0.82 + 0.(32 135.17 + 6.59 0.25 + 0.05 ^ 0.48 ^- 0.05

*: SIGOIFICAI^T AT 5^ LEVEL IN AtJOYA

.^

K _ . _. _ _ ^ .^ _.^ ____w^_.... 	 _ ^._ ___- .	 .. _	 v	 _.
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Table 4.	 LO112SIANA 1/4 SCENE _ AREA B L y 200 - 1691	
N	

,
a	

^:	 N	 i

(repiica^es = 40)

N R RM5 RBIAS RSD GBIAS CSD

8 2..06 60.68 0.26 0.06 0.36 0.08
16 1.07 71.70 0.17 0.06 0.22 0.07
24 1.05 75.35 0.1.0 0.06 0.21 0.07
32 1,00 76.00 0.12 0,06 0.21 0.07
4D 1.00 76.58 0.11 D.D6 0.17 0.07

Ali 1.03 ^- 0.02 * * ^
+ 95^Ci - 72.06 ^- 2.01	 0.15 + 0.02 0.062 -^ 0.001 0.24 ^ O,D2 0.074 + 0.002

*: A^IOVA SIGNIETCRNT AT 5^ LEVEL.

lGAI^SAS 1/4 SCENE -AREA 8 L:500 - 1991
E:	 - 4

(rep^ica^^s = 40)

H	 R	 R^5

^"	 S	 1.20	 53.78
16	 1.15	 7$ .48

^	 24	 1.14	 85.38
32	 1.14	 81.23
40	 1.1^	 $s.Ds

A21	 3.15 + 0,02
-.	 ^- 95^C I	 78.58 t 5.21

s	 '^:^ ANDVA SIGK7FICAMT AT 5^ ^.EVEL

RBIAS RSO CBIAS CSD

0.25 0.08 0.27 0.13
0.15 0.07 0.25 0.1,3
0.13 0.07 0.27 0.13
D.12 0.07 0.24 0.13
0.12 D.07 0.21 D.14
* D.07 ^- O.D02 0.25 + 0.03 0.133 -^ D.002

0.16 ^- 0.02

•--' J	 L --r--^-y	 L .-5	 C..- ...' ^
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w Table 5. Louisiana 1/4 Scene: Area A; L:1--1500
F:1--1774

a

^
^

^	 0
^

R
-

RCS RBIAS RSD eBIAS CSD

8 1.05 123.60 0.48 0.12 0.34 0.23
^	 `; 16 1.01 131.58 0.2b 0,11 0.53 0.21

24 1.03 136.25 0.21 0.12 0.37 0.22
32 1.04 140.25 0.20 0.12 0.35 0.22
40 1.06 144.85 4.79 0.12 0.35 11.23
All 7.04 -^- 0.02	 135.30 -^ 7.38	 * 0.117 ^- 0.002	 ^

0.27 + 0.04 0.49 -^ 0.07 0.222 + 0.004

*i ANOYA Significant; a^ 5% level
No. Replicates: 40

Louisiana 1/4 5certe - Area B: L:200-7691

N R R#^S BIAS S.D. BIAS S.D.

0 1.06 so.6s 0.26 0. 06 0.36 O .as
16 1.07 71.70 0.17 0.06 0.22 0.07
24 1.05 75.35 0.10 0.06 0.21 0.07
32 1.00 76.00 0. 12 O.OS .0.21. 0.07
40 7.00 76.58 0.11 0.06 0.77 0.07
Al l 1,03 ^- 0.02 * * ^ ^

72.06 -:^ 2.01 0.15 f 0.02 0.062 + 0.001 0.24 ^- 0.02 0.074 + 0.002

*: AHOUA Sigrt •tficant♦ atr 5^ Level

^fo. Replicates ^ 40



.^,Kansas 3/4 Scene - 7krea A: L:1-1500
E • -1 ^

Ta51e 6.

_ _. _ .. ^ . 	 _ _ a.0 ^.^...	 __^.. -- ----	
^..	 .^

t
I

^	 R	 RMS	 RBiAS	 R5 0	 CBIAS	 G54?

S 1.00	 X9.30 4.21 0.06 0.64 0,74
^	 16 0.96	 93.58 0,i5 0.06 0.35 0.12

24 O.^r^	 96,90 0.1.3 0.06 0,29 0.^2
32 0.95	 97.6(3 O.iO 0.06 0.25 0,13
40 0.94	 98,68 0.10 (3.06 0.22 0.13
A11 0.97 + 0.02	 ^ * O.E359 + 0.001 ^

_A
_	

93.21 + 2.12 O.i4 + 0,02..` `^ 0.35 + 0.04^ 0.13#3 + 0.002^'

^: ANOYA signifi cant; ai; 5% '#evel

^E , ^	 ^o. Replicates: 	40
. ,^

^:ansas i/^- Scene - Area "B" x:500-1991
E:	 -

H R RMS BIAS 5.0. BIAS S.Q.

8 1.20 53.78 0.26 0.08 {x,27 0.13
16 7 ,15 78.48 0.15 0.07 0.25 0.13
24 1.34 85.38 0.13 0,07 0.27 0.73
32 1.74 87.22 0.72 0.07' 0.24 0.13
40 1.72 88.08 0.12 0.07 0.21 0.14
All 1.15 + 0.02 ^ * 0.077 + 0,002 0.25 + 0.03 ^

-' 78.58 + 5.21 0.16 + 0.02
_

0.133 -^ 0.002

*: ANOVA Signi-Ficant at 5^ Level
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.^^! Si gni 1•icance
^; ^ x r m b o^ r

^,'4L
RBIAS RMS {},028 O.i02xi0-^ 0.178 A.S.

,,.; RSO RMS 0.245 0.830xi0- O.O5i 1^
^,. CBIAS RIBS 0.074 0.7&2x1.0-3 0.316 N.S.

^
ĉ

+
s
] r̂ 	 (^ ŷ 7 ]̂

s
T 	 ^+

-o . z2̂ ẑ a
7
.
'̂]
osx^p` 0 .

r
1̂^s a

y
.

ŷ
Ia BIAS RBIAS 0.249 V.l Q1 ^.L^7 .L h7

'' CSO RSf3 0.134 0.192 0.129 N.S.

.^
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Table 7. LOUISIANA CORRELATION ANALYSIS - ^1HOL^
•;

^

i

Scene (N = 8 - 40, 200 'replicates)

^ x r m	 b

j	 ^^	 RBIAS RM5 -0.19a 0.0014	 -6	 0.379
3	 RSD RMS -0.045 -0.906x10	 0.061.
'	 CBIAS RM5 -0.174 0.0027	 0.801

CSD RMS -0.529 -0.369x10-3
	

0.164
GBIAS RBIAS -0.257 0.648	 0.369
C5D R5f} -O.OB2 0.276	 0.104

I

^,	 ! KANSAS CORRCLATION ANALYSIS - ^dHOLE SGEN^,..:^^

^N ^ 8 - 40, 200 repl^ca^es)

i `—_	
^

Si sni ^Fi cance
o^- "r

1^
N.S.
6^
1^
i^

N.S .

p

i^

i^

'',^



I	 Table 8.	 LOUISIANA CORRELATION ANALYSIS - g^IOLE SGENE

(I+j = 40; 40 replicates ^

Sign^ficanee
^r x r m b af^"r"-

RBIAS RMS D.451
-A.448

0.466x10 ^ 0.076 N.5.
RSD
CBIAS

RMS
0.04+4

-^-O.7D6xi0 0,069 1^
RIMS - 0.757x10-3- Q.475 N, S.

CSD RM5 -0.322 -0.165x10- 0.137 5^
CBIAS RBIAS -0,413 -0.028 0.374 N.S.
CSD RSD 0.162 .0.526 0.084 N.S.

KANSAS CORRELATION ANALYSIS - WFIOLE SCENE

^N = 40; 40 replicates}

^^

Significance
^ x r m b of	 r

RBIAS RM5 4.349 0.0012	
5

-0.031 5^
RBI} RM5 -0 ,.023 -0.124x10- 0.460 N.S.
CBIAS RM5 ^}.1A^4 4.0010	

4
0.124 N.S.

CSD RMS -0.311 -0,708x10- 0.14$ 5^
CBIAS RBIAS 4.054 4.109 0.258 N.S.
CSD RSD -4.173 -0.74 #3.182 {^.5.

a	 ^	 ,	 ..	 -	 ,.	
J	 ^	

-	 F.	 .^ ,.
L ,,...._.,	 ^ .^_.^	 ^... .:!	 -	 a	 =.	 .+	 ^	 ^	 ^-.. - -`	 ^	 '. ' ^	 J	 l	 °^	 t`° -r	 r.	 iF	 ice--- J	 t—	 -"^	 _}	 rte-- :.j	 ,-	 ,^ y
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IMAGE VARIANCE ANI^ SPATIAL STRUCTURE
IN REMDTELY SENSED SCENES

CURTIS E. WOODCOCK

DEPARTMENT OF GEOGRAPHY
BOSTON UNIVERSITY, BOSTON, MA ^2^.^5

ALAN H. STRAHLER

DEPT. OF GEOLOGY AND GEOGRAPHY, HUNTER COLLEGE
CITY UNIVERSITY OF NEW YORK, NEW YORK, NY, 1^^21

Qr3gin^tx ^h^to^^,p^ m^^; b^,	 ^aama=:^,
from EGOS l^^t^ C^x^^^
Siot^ Fax^^,^ ^ ^.&;^^.

ABSTRACT	 """	 ,.,^, +^ ^,;•.
:. ,^.	 ..

Empirical studies of da.gital images derived by scanning

air p^,otos and through acquiring aircraft and spacecraft

scanner data shows that spatial structure in scenes can be

measured and logica3.ly related to texture and image vari-

ance. Local variance, measured as the average standard

deviation of brightness values within a three-by-three mov-

ing window, reaches a peak at a resolution cell sine about
	

,6

two thirds to three-fourths the size of the objects within

^^ 
the scene. If objects are smaller than the resolution cell.

size of the image, this peak does not occur and local vari-

ance simply deco:eases with increasing resolution as spatial

averaging occurs. Variograms, which measure the average

squared difference in pa^.rs of brightness values as a func^

tior;. of the distance and direction between them, can also

reveal. the size, shaper and density of abaects in the scene.
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This gaper presents the continuation o^ research

described in the 1982 issue of these proeec^zngs ^J.j. To 	 '^

avoid redundancy, the reader is ^ce^erred to that paper for a

more thorough background. The primary research goal. is to

develop a better understanding a^ spatial patterns in image

data as they relate to the characteristics o^ the ground

,	 'f

F.

scene.	 The long term ok^jective ^,s to develop methods o^

scen+^ i^:^Eerence that directly exploit the relationship

between the ground scene and the spatial patterns in images.

Before that ,go al.^can be accomplished, an improved under- ,y
.,

standing o^ tYi'e meaning o^ the results of various measures

of spatial pattern must be developed.	 zn particularr idea- ^^

tifying those characteristics of the ground scene that can

be recovered from measures of spatial pattern is of i
t

interest.

^	 'In this paper, images from a variety o^ environments

and . spatial resolutions are examined using two methods o^ `^'

measuring spatial pattern,	 In addition, a new direction o^
.	 _^

• , ^^

research that involves simulating remotely sensed images ^

will be discussed.	 The use o^ simulated images aJ_lows for ;;z

control o^ the ground scene, which aids the interpretation ^^	 a
i

o^ spatial pattern measurements. ^-^

The two methods used to measure spatial patterns are
L .a

^	 ^
^^,

{l y graphs of local variance as a function o^ spatial reso-

T;,

L'l
. ^Rlll

^—^	 ... c_ _tee _^. _x^_. _1e 1^ 3EYV—mwaxi^rM'^tiY`w'^i+4lwrOws.^^^r r.^r^.^^,^• ^^ _. ^	 r^,.
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lotion, and {2) two-dimensional variagrams. Local variance

is meas^zred in images as the mean value of a texture image.

The texture value at a given pixel is the standard deviation

o^ the surrounding 3 X 3 window of pixels. Note that this

definition is only one of many possible definitions of tex-

ture [2^. To evaluate local variance over a range o^ spa-

tial resolutions, the imagery was degraded to successively

coarser resolutions by simply averagirsg the resolution cells

to be combined into a new, larger resolution cell.

An a^.ternative method of examining spatial structure in

images is through the var^,ogram [3]. The variogram is ca^.-

culated as the mean squared deviation between two pixels a

given distance and directia^ apart. This can be thought of

as a measure of the expected difference between two pixels

given the spatial relationship between them. The results of

these calculations are plotted as two--dimensional contour

plots. Amore detailed description of both methods caz be

found in last year's paper.

Another brief note of background concerns the descrip--

tion of ground scenes. The concept of a scene model, or the

development of a generalization of the nature of a scene, is

essential to this project. A scene can be described as

being composed of objects on a plane, or as in our case, as

elements on a background. Scene models can have numerous

types of elements and be very complex, and even have a

nested structure in which smaller elements are used to



,_	
^	 i

X30
1	 f

describe or define other elements, keference to the ele-

	

^ !	 meets in the scene and their character^.sta.cs occurs

	

^ I	 throughout the discussion of the results.	 I{

^ESV^Ts

Both methods of measuring spatial pattern in image data

were used to evaluate spatial patterns acquired from three

types of environments in images at two resolutions. Imagery

was analyzed at two different resolutions in order to be

ab^.e to cover a wider range of resolutions in the local

variance/resolution graphs and to help illustrate that the

formulation of scene models is related to the resolution ©f

the data. The imagery at very fine resolutions for each

environment was digitally scanned from aerial transparencies

using a microdensitometer, thus allowing analysis of spatial

pattern at finer resolutions than are avaa.lable from conven-

tional spaceborne sensors. Thematic Mapper {TM) or Thematic

P^apper Simulator {TNiS) data were used as the coarse resolu-

tion data for each environment. The three types of environ-

ments used in the ana.Lysis are forested, large-field agri-

cultural, and urban/suburban The presentation of the

results and their discussion is organized around the indivi-

dual images analyzed, beginning with the finer resolution

imagery for each environment.

,^	 'Îf	 1

-"h

l_.l

('1

^.

^.

i{r

1

`^ _

G^

t^

r•^-.

.	 ^, 4..^.^.,.^^_.^^.,..^...M..._.,rt.,..__ .._ .,.... 	 _	 ..-	 ^-	 - --__.^	 .^..__



i
{t
	 s

k1C;i

^^^

^	 ^	 b

South Dakota Forest image

The color aerial transparency o^ the area used to

i create this image was obtained from the Nationwide Forestry

Applications Program o^iice at the Johnson Space Center in
^'
^.. Houston, Texas.	 The exact location of the area in South

;,^
Dakota covered by the photograph is unknown, but it serves

;.;
as a good example of a simple forested environment composed

^. of trees on a relatively uniform background.

Figure l A-D shows the digitized photograph at the ori-r.
':^.^

r
ginal resolution and as averaged to calculate the graph o^

^;- local variance as a function o^ resolution (Figure 2).	 The
^.
^>

graph shows that local variance is low at the resolution
t

r^T
^,

that the photo was scanned, or X1.75 m (Figure lA).	 At this

resolution, if a pixel falls on a tree, its immediate neigh-
^',

^a
z,

bars are also likely to be on the tree, since many pixels

comprise individual trees. 	 In this situation, the pixels in

a 3 X 3 window ar.e likely to have similar values and the

^^ local variance will be low.	 Similarl	 jy,	 ^.^ a pixel lies on	 ',^

_	 the background, its ne9.ghbors are also likely to be on the

^{w,

	

	 background, and local variance will again be low. Natur-

ally, some windows will fall along the borders o^ the trees
E^

^''	 or background, and as a result will have high local, vari-

jj

	

	 ante, but the mean Local variance for the image will still

be law.

LaV 
1
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Figure i. South Dakota forest image shown at resolutions as

	

scanned (0.75 m? {A}, and as averaged to yield resolutions	 .^
of 3 m (B) , 6 m {C} , and 9.0 m {D) .	 ^►
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Figure 1, continued. South Dakota forest image, scanned and
averaged to resolutions of I2.^ m (E) and 16 m (F}.

e	 16	 7^	 77	 ^^	 ^i	 56	 6. "01 fe50^U11L7R C2^^5
E	 17	 10	 7^	 ]0	 ]6	 a7	 ^! melets

SPATIAL RESOLLJTIOti'

Figure 2. Local variance (average standard deviation within
a three-by-three window) as a function of resolution cell
size for the South Dakota forest image.

As the size of individual resolution cells increases,

the number of pixels comprising an individual tree

decreases, and the likelihood that surrounding pixels will

be similar decreases (Figure lB). In this situation, local

i
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variance increases. This trend continues until the pattern

becomes vexy mottled and a peak in local variance is

observed at 6 m {Figure 1C). Wha1e it was originally

hypothesized that local variance would peak at the size of

the elements in the scene, the observed peak occurs when the

resolution cells are somewhat smaller than the trees in the

scene. Close examination of the size of trees reveals an

average size of between 8 and 9 meters, whereas local vari-

ance.peaks at about 6 meters. Thus, there is not a sample

relationship between local variance, spatial resolution, anc^

the size of elements. - ^.n explanation for the location of

the peak in local variance could not be determined from this

image alone, bud became better understood after viewing

graphs from different environments and after the image simu-

lation phase of the project.

As the resolution increases past this peak, local vari-

ance decreases. This decrease occurs as individual pixels

come to include a mixture of both tre ys and background. As

this mixar^g increases, the general contrast in the image

decreases and pixels begin to look more like their neig^i-

bors. Local varaance thus continues to decrease {Figures

1D-IF).

There. is considerable structure in the contour pint of

the variogram derived from the South Dakota forest image

{Figure 3). The. strength of the relationship between a

given pixel and its neighbors tends to . decrease with dis-
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F^.gure 3. Two-dimensa.anal variogram of the South Dakota
forest scene. Units are pixels at original resolution (x.75
m) .

Lance until it reaches the sill, or the Zevel of no interac-
i

z^	 Lion, at about the eighth contour line. At this distance,

,-,	 the relationsh^.p between pixels is essentially as if they
L_0

were selected at random. rdeally, this portion of the cones

tour plot should be flat, but it appears to have local pea3ts
'y,

and pits. This effect may be due to the fact that the con-

'^.

	

	 tour plot is derived from an estimated variogram. With

increased sampling, this mottled appearance may be reduced

`^'

	

	 or even disappear. The zone of inf luence in the variogram

seems related to the size of the elements {trees) in the

scene, as the width of the area inside the sill approximates



twice the size of a tree in the image.	 ^-

Another notable feature of the variogram is its aniso-- 	 '

tropy, which is attributable to the shadowing in the image 	 -

(Figure lA). The variogram is markedly elongated along a	 _;

diagonal from the upper right corner to the lower left 	 >-^

t	 earner, which corresponds to the orientation of illumina--

tion. Since shadows Zook mare like trees than background,
_,

the shadow of a tree tends to reduce the variance measured
r--,

in the direction of the shadow. ,^

^^

Canoga Park Residential Image	 1

:^

The image of a housing development in Canoga Park, Cal-
wi

ifornia, was obtained through NASA Ames Research Center	 s.
^^
,:

(Figure ^A}. The data were collected by multispectral 	 ,
r"	 :^

scanner; the red band was used for this analysis, This	 '-'	 ::^

scene presents an interesting change from the forest 	 ^ ^ ^ ;^k;,.^
environment in that it is a complex scene, having several. 	 i^

c q

kinds of elements. Associated with the complex nature of	 I.. ,	
`I

the scene is a change in the way the scene is organized. In	 .;n

this environment there is not a well-developed background

similar to the forest environment. Instead, there are 	 ^
^;

several different kinds of elements that are arranged in a
aR

'^

mosaic to comprise the scene, The most obvious elements in
1

the real scene are houses. treesr streets, lawns, and cars, M1`

However, close examination of a blowup of the image (Figure

'^

^^Y

^^ ^'

';qa^_...	 ._ .	

r..r	
'
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A	 B

Figure 4. Red band of multispectral scanner image of a
housing tract in Canoga Park, CA. (A) Portion of image; (B)
enlargement showing detailed structure.

4B) reveals three kinds of elements: houses (actually their

roofs), streets, and vegetation or very dark areas. Vegeta-

tion covers most of the spaces between the houses and the

streets. While it is undoubtably composed of many types of

plants with different 1if e-forms, they all appear very dark

in the image and cannot be differentiated. Due to their

dark appearance, shadows can not be distinguished from the

vegetation either, contributing to a description of the

scene using three elements.

Figure 5 shows the graph of Local variance as a func-

tion of resolution for this image. This graph is similar in

appearance to the graph for the forest scene in that the

local variance is low at the original resol^ltion of the
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Figure 5. Local variance as a function of resolution cell
size for the Canoga Park residential image.

data, rases to a peak, and then decreases. Howeve^c, the

general shape of the curve is different and the resolution

where local variance peaks is different. The shape of the

curve connecting the points on the graph a.s broader, not

having as sharp or as well-defined a pear. The broad nature

of the graph is probably attributable to the complex nature

of the scene, with different elements being of different

sizes. The broad distribution of sizes results in high

local variance over a wider range of spatial resolutions.

The peak in local variance occurs at about l3 - 15 m, or at

five or six tames the original resolution of the imagery.

The general size of the e^.ements again is larger than the

spatial resolution where local variance peaks. The average

size of houses Ws approximately ^.^ pixels in the original

image, while the streets are approximately 11 pixels wide

and the spaces between houses .and between houses and the



^.^
^ .	 _

streets averages about ^ - 8 pixels.
-^

^`	
.	 '^^. The variogram o^ the Canoga Park image is nearly circu-

^, lar in the zone of influence (Figure 6}.	 This isotropy

^^ indicates that there are not any well-defined directional

^^	 ^' effcects in the image	 One can see in Figure ^ that the
5:	 !	 L:

roads run in several directions ^.n the scene. Tf one or

rye
V

more directions predomin,^ted, there could easily be aniso-
L.:

^--
1If

tropy in such an image -- reduced variance in the direction
k

^ 	̂ ^^° tY^e roads are oriented. 	 Also, there could be effects
t.

^	 ^' related to the shapes of houses that might be recovered
^_:
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Figure 6. Two-dimensional variogram of Canoga Park zesiden-
ti.a1 scene. Units are pixels at original resolution (3^ m).
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through anisotropies in the variogram.
,-,

The sill of the variogram probably falls somewhere

between the fifth and the sixth contour lines, although an

attempt was nct ^:ade to formally define the sill. The fifth

contour line is the last one to hold definite structure and	 ,^,
4

lies about 8 or 9 pixels from the center, indicating the
	 f:

-^
existence of elements in the image that are at least that 	

,,
.,

large. This size acrees reasonably well with the sizes of 	
^' Y

f

objects in the scene.	 '

,--,	 '

^	 Agricultural zmage , 	 -'

The imagery used for the computation of data for the
^^

local variance function were scanned at a resolution of 	 ^_^ ,.

approximately x.15 m {Figure 7A) . Although they are not	 ^:,

shown in the figure, the image includes portion of two other 	 ^^`^

fields. Such f^.ne resolution was used because it was 	
^ _

..
hypothesized that an individual agricultural field could be .^-,

characterized as being composed of elements such as indivi- 	 _,	 ,^

dual plants, crop rows, and a background of soil. Tn this 	 ^-^ °

formulation, if the resolution cells were smaller than .inch.- 	 °'

vidual plants, or the width of a crop row, then the initial
	 r, ?

local variance Mould be low. As spatial reso^.ution

increased to approximately the size of the elements, an 	 ;_:,

increase in loca.^. variance would be expected, sh.milar to the	 <-,

findings in the forest and residential environments Local
,^.^,

(_; J
l

? 4^	 i
t

^.	 ^^
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A	 $	 `^

a

^ Figure 7.	 Agricultural image showing row structure. 	 {A)
Partion of	 image;	 (B)	 detail.

' variance would then be expected to decline as spatial reso-

lution increased.
CL' ^	 ^,

The observed results	 (Figure 8)	 do not follow the

R	 ^ hypothesized form because the imagery was not scanned at a

resolution fine enough f or individual elements 	 {rows, sha-

dows, and furrows) to be characterized by many pixels.

^^
Instead, the graph begins with local variance already high.

The distance between crop rows is approximately S resolution

cells at the original resolution of x.15 m.	 In those five

pixels are included the well-illuminated portion of the crop

row, the shaded side of the crap row, and the soil ;arrow	 '^

between the rows.	 As a result, very few 3 X 3 windows in

the image will have low variance. 	 This problem can be seen

^^

^`

^,
..^...	 tea_ -	 _	 -	 -	 --	 ^- ..._ ,^..^	 -	 --
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Figure 8. Local variance as a function of resolution cell.
size for the row-crop image.

^,	 in a blowup of a portion of the image shown in Figure 7^3.

^	 If resolution were considerably finer, variance within both
a

^,

	

	 the shaded and well-illuminated portions of a single crop

row would be low. A spatial resolution on the order of 5 cm

would be required for this effect to be observed. Another
r

factor that may contribute to the Jack of initial low vari-

	

• ^	 ante is that the crop is in a mature stage, and the crop
.^	 j

	

'	 rows have grown close together. Thusa there is not a weld--
1

	^	 developed background signal. between rowsn against which the

	

.^	 crop rows woulsd be highly contrasting.
i

Another noteworthy feature of the local variance graph

is the rapid decline past the peat to a very low level.

This feature is the result of a scene that becomes very

	

-	 homogeneous once the resolution cells are larger than the

a

:;,;
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crop rows.

Variograms were computed for two different agricultural

fields in the image and then the entire image as a whole.

These variograms exhibit considerable structure related to

the orientation and spacing of the rows. Figure 9 shows the

variogram of a portion of the field shown in Figure 7. From

the variogram it is easy to determine both the direction of

the rows and their spacing. The crop rows are oriented hor-

izontally in this portion of the image, as can be seen by

[*^^'^

ri
^i
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Figure 9. Two-dimensional variogram of a pardon of the
agricultural field shown in Figure 7. Units are pixels at
original resolution cell size ( 15 cmj.
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the low variance associated with horizontal movement ^.n the

image. Variance changes shaxply with mavement across the
^e

rows, with variance increasing up to one ha^.f of the dis- 	 ci

Lance ^etcveen rows. Fram that paint, variance decreases,

until. a minimum is reached at the distance between rows.

This cycle of high variance a% half-widths anr^ 3.ow variance 	 `
^.

at even mult^ .ples of the distance between rows is repeated

a^.l the way to the edges of the variogram, and wou3.d con-

tinue if the variogram had been ca^.culated far a larger win-	 _.

dow sire. It obviausly arises from the repetitive pattern 	 ^,

in the image itse^.f produced by the row structure. The

i"hi11	 Y^lill! "I'i'd^^kll Poi il9^ull hYllll^.tlim'VYI!di^!'?

Figure ^ . 0. Variogram of a port^.on of the agricu^.tural scene
show^ .ng "vert^.cal" row structure.
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distance between rows can be determined by counting the

number o^ pixels between the ridges or valleys in the

variogram.

For the ^ie^.d in the ^.ower ^.e^t portion o^C the image,

the variogram (Figure 3.^) exhzbits structure similar to the

previous variogram except that the row direction is rotated

90 degrees. The same pattern of ridges and valleys occurs

at the same spacing between rows. The pattern in the

variogram for the entire agricultural image (Figure 11) is

easier to understand after looking at the variograms for the

individual ^ie^.ds. The variagrams for th y: entire image can

Figure 1.^.. ^iariogram for entire agricultural ^.mage showing
combined e^^ects o^ orthogonal rows.
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be thought of as the result of superimposing the variograms

from fields with rows oriented perpendicularly.

The variograms for these agricultural fields illustrate

the strength of the methods to illustrate underlying struc-

ture in images. Figure 7A shows a large portion of the

lower Left agricultural field used to estimate the variogram

in Figure 9, and the linear structure can be easily seen in

this picture. However, Figure 7H is a blowup of a portion

of this image and illustrates how noisy this linear struc-

ture is. The variogram estimated from the-image clearly

identifies the linear structure despite the large noise com-

ponent in the image. These results suggest the similarity

between the variogram and spectral analysis, which is

another method of finding periodicities zn data.

Thematic Mapper Agricultural Zmage

The image used to analyze spatial patterns in an agrz--

cultural scene at coarse resalutian is a Thematic Mapper

image (Hand 3) obtained from Johnson Space Center (Figure

12). This image is from the area near the corners of Mis-

souri, ^ouisianar Kentucky, and Tennessee, and the subimage

selected is west of the Mississippi Hiver. This area is

ideal for th^.s project because the scene is composed almost

entirely of agricultural fields'. In addition, many of the

fields are planted in different crops or are at different

_.__.
^.	 ---_ ._. ^_...,,._n_^y.. -	 ^_.^	 _____-_._	 .r.^._^^
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A	 B

Figure 12. Midwestern agricultural scene imaged by Thema^ic
Mapper (A).	 (B) Detail.

stages of development, and thus are contrasting in appear-

ance .

The graph of local variance as a function of resolution

has a similar form to the fine resolution forest scene,

although it covers a different range of spatial resolutions

{Figure 13). Local variance starts teas©nably law at the

^7:^iginal resolution of the data (30 m), but increases to a

broad, general peak at about 240 m, and then begins a gra-

dual decline. This shape indicates that the elemants in the

scene are larger than the resolution cells of the original

data. In this scene, there are a variety of field sizes and

shapes, but the most common field size is a quarter-section,

which is 14 resolution cells on a side at the original reso-

lution of the data {Figure 12B). Thus, the peak occurs
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Figure 13. Local variance as a function of resolution cell
size for the Thematic Mapper agricultural image.

before the size of the elements in this scene, similar to

the findings with the fine resolution forest image.

The variogram derived from this image is shown in Fig-

ure 14. The variogram generally decreases as a function of

distance, reflecting the homogeneity within fields. The

size of the zone of influence is related to the size of the

fields in the image, and there is a slight anisotropy in the

variogram. This anisotropy is related to the general trend

toward rectangular fields in the image that are longer in

the north-south direction than the east-west direction.

This characteristic pan be detected in Figure 12A,

^.

^,

,.
,.^	 i

_.

^^.

Washington, D. C. Thematic Mapper Tmage

The area used for the calculation of the local

variance/resolution graph and the variogram in this TM image

_ _ - __	 -



^-- Figure lQ,	 Twa-dimens^,onal variogram for Thematic Mapper
mid^.estern agricultural, image.	 Units are pixels at original

^^ resolution	 (30 my .

^	 [

^- is taken from the city of Washington (Figure l5).	 Thus, it

^°
,^

is not as simple or as well-defined a scene as the previous
^::.

examples.	 The graph of local variance as a function of spaw
^w

L:,
tial resolution (F^.gure l6) does not have the familiar

structure of initial. low values, a peak, and eventual

^ decline.	 Instead, there is a general decline in the local

^^^'' variance aver the range of spatial resolutions covered by
L^

the graph.	 This ind^:cates that the elements in the scene

are generally smaller than the original resolution of the

data.	 There are some mul.tipixel abjects in the image, as
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Figure 15. Portion of Thematic Mapper image of Washington,
D. C. {A) with detail (B),	 {Images are reversed left-far-
right.)
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Figure 16. Local variance as a function of spatial resolu-
tion for the Thematic Mapper image of Udashington, D. C.

can be seen in Figure 158.	 These blocks of bright pixels

are large buildings and may help explain the flat beginning

,^..
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of the graph in Figure 16. ,Other than these large build--
__

ings, there are few homogeneous regions ^.n the image. In
L

^^

part^.cular, the residenta.al area of southeast Washington in

the left part of Figure l5 has a mottled and random appear
:.

ance.
L'

^'he variogram derived Pram the Washington D.C. image

does not exhibit any structure that is particularly
L_

_	 interesting (Fi.gure l7} . The sma^.l size of the zone of 	 ^,!
^"	 ;:.

^:	 influence a.ndicates the relata.vely small size of the fev^
.-
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	 elements that are larger than the resolution cells in this

scene. There is not an obv^.ous explanation for the complex

shape defined by the fifth contour line. There are not any

features that have a simalar shape or whose comb9.ned orien-

tations would produce this pattern. These var^.ations are

most likely due to random effects. however, it is p®ssible

that they represent subtle c^laracteristics of the image.

Klamath Forest Thematic Mapper Simulator Image

As an example of a forested scene at 3^-meter resolu-

tion, a Thematic Mapper Simulator image of a portion of the

F^lamath National Forest was obtained from Ames Researoh

Centel. ([lnfortunately, prints of this digital .image were

not available at the time of preparation of this

manuscript.) The results of the two methods of measuring

spatial pattern for this image are similar to the results

for the Washington D.C. image. The graph of local variance

as a function of spatial resolution shows a marked dec3.^.ne

;•^	 as resolution increases (Figure 18). The results indicate

^.	 that there are not any spatially homogeneous e^.ements in the.,'- .
^,	 f

image that are composed of many trees. Initially ^.t was

^^	 expected that stands of.trees,.which can be identified by

^^

	

	 human interpreters, might cause a second peak. in local vaxi-

ance at a resolution related to the sire of the stands.
-

^

F^	 I3oweve^, such a peak did not occur-for this image,

4 ^.
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a	 ^^

.

?^A
The drafting of the variogram for this image was not

"^ com leted in time for this 	 ublication,	 However, it looksP	 P

^;	 ^
I

very similar to the results for the Washington D.C. image,

^^
exhibiting a small zone of influence. 	 In addition, there

L ;- are no we11-^deffined anisotrop^.es that reveal any directional

^.. orientatzons to the elements in the scene.	 The variogram
^i
^=° thus confirms the conclusion that there are no large, spa-

a

tiall.y homogeneous elements obvious. within the image.
^	 Lu

I

^: lmage Simulation

^^ The results,presented in the last section are intern

preted in an intuitive manner.	 The emp^.rical. nature of

remotely sensed images makes it difficlxlt to contras scene
^^
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parameters in a way that allows experimentation to veriFy or

help clar^.Fy the meaning Qf the results. Thus, it became

important to develop a method of acquir^.ng images Pram scene

with l^nown characteristics. One way to approach this prob-

lem is to simulate ground scenes and model their reflectance

characteristics to produce an image. This approach has

several advantages. First, it allows complete control, and

thus knowledge, of the ground scene. Second, simulation

allows examination of simple scenes, which is important For

developing a solid foundation in such an exploratory and

empirical study.

Forest scenes were selected to serve as the basis of

the image simulation phase of the project. Forests were

selected For several reasons. Past remote sensing research

experience in forestry directly contributed to the develop-

ment of the ideas for this project. Also, Forests present a

simple scene model that can be simulated relatively easily.

And, as part of another line of research by Strahler and Li

[^], a simulation program existed that could be modiFied for

the purposes of this project.

The image simulation procedure is based on Monte Carlo

methods and uses atwo-resolution concept. The First level

of resolution is the size of the units in the ground scene

at which elements are difFerentiated. The second is the

level of aggregation used to simulate the image. For the

simulated image used in this project, these two resolutions

^; .
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were the same, which means that each resolution c:^11 was

assigned to a single type of element (crown, shadowed crown,

understory, or shadowed understory). This approach produced

images simi^.ar to the fine-resolution imagery that was

scanned from aerial photography.

The ground scene is modeled as trees on a plane. The

trees are conical in shape with a known apex angle and a

lognormal height distribution. The apex angle used is based

on the resu^.ts of field measurements. The use of a 3ognor--

mal height d^.stribution was selected on the basks of the

results presented in the ecological literature. Fie^.d meas-

urements of tree heights have confirmed the lognorma]. shape

of the dist^r^.bution, but have illustrated the variability of
r^
^^	 the means and variances characterizing the distributions.^^

The trees (or canes) are distributed randomly on the

surface with one exception ^- tho center of a net^^ t ype as

not located within the cone of a previously located tree.

This modificata.on to the random model was based on the

expectation that competition between trees would result in

the likelihood of finding trees very close together being

lower than the random model wou^ .d produce [ 5 j , Subsequent

field measurements have not supported this hypothesis, and

have inda.cated that the simple random model is a good

approximat^.on to spacing in conifer stands.

Fallowing the random location of trees and the lognor-

mil assignment of their heights, an elevation map is created

;^
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with the heights of the surface above the base level

representing the height of the forest canopy, By specifying

a direction of illumination and a solar zenith angle, sha-

dows are produced. The result is the def izxition of four

kinds of surfaces in the scene: trees, background, shadowed

trees, and shadowed background. From these, a digital image

can be synthesized that resembles an image drawn from a real

scene (Figure l9) .

The results of the graph of local variance as a func-

tion of resolution for a simulated forest image are shown in

Figure 20. The size of the image that was simulated limits

the number of tames that spatial resolution can be degraded.

Thus, at was not possible to evaluate local variance for the

full range of resolutions used in the scanned forest image.

However, the shape of the curve is very s^.m.^.lar :o the

results for the scanned forest image {Figure 2}. There is a

prominent peak at 6 m and then a decline in local variance.

The diameter of the tree crowns in the simulated image

has a mean of 7 m and a very low variance {approximately ^.5

m). However, because the shadows look more like the trees

than the background, the effect of shadows is to make the

trees appear elongated in the direction opposite the illumi--

nation source. ^f shadows were considered part of a single

dark element with trees, then their size along one axis

would be ll m. Thus, the peak in local variance occurs at a

size somewhat lower that that of the elements in the scene,
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Figure l g . Portions of simulated forest images. On left,
simulated image. On right, texture image derived from it.
(A) Image as simulated at 3-meter resolution. Other photos
show image degraded to 3-meter ce11s (B); 6-meter cells (C};
and 9-meter cells (D).
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Figure 20. Local variance as a function of resolution ce11
size far the simulated forest image.

similar to the results obtained for the forest image.

The reason that local variance peaks for this image

before the sire of the elements is reached can be better

understood by examining the changes in both the simulated

image and the texture image derived from it as the image is

degraded to coarsex resolutions. To display this process, a

series of pictures with portions of both the simulated image

and its assoca.ated texture image are p^.aced sa.de by side in

Figures ^.9 ,^wD. The first pasture (Figure l9A} shows the

simulated image at its original resolution. Zn the texture

image, ha.gh local variance occurs p^°imarily around the per-

imeter of the tree and its shadow, behaving like an edge

detector. The area insa.de the perimeter stall has vela--

tively low 1oca1 variances and the area between trees is
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black, as the background has the same va^.ue in all loca-

tions.

.^

	

	 Figure 19L shows tY^e results after the image has been

degraded to 3 m. At this resolution the •gees can not be

distingu^.shed from their shadows and begin to appear out of

focus. The dark areas inside trees in the texture image

have disappeared because the side of the trees in terms of

number of pixels has decreased. Sim^.larly, the distances

between trees shrinks and local variance becomes increas--

ingly influenced by effects from neighboring trees. Com--

parison with the first texture ^.mag€ (Figure 19A} shows a

larger area covered by bright values, indicating high local

r,	 variance.

The resoluta.o^ of peak iocax variance {fi m} is shown in

Figure 19C. At •Lh^.;°, resolut^,on, 'trees have become very i
small., and a large area of the texture ^.mage is bright, 	 ^

indicating high local variance. An interesting character^.s-- a
f̀

ta.c, which becomes very important, ^.s that there are a con

siderable number of pixels with intermediate values in the

texture image. In the previous texture images, pixels were

e5.ther near edges and very bright, or in homogeneous areas

and very dark. These intermediate texture values are the

result of the effect of the der^ra^?at^:on of resolution on the

appearance of trees.

At a resolution of 9 m, local vara.a^ace has begun to

dec7.^.ne (Figure 19D}. The texture image has begun to look

• 'OI
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l^.ke a continuous tape image, qu^.te di;^^erent dram the edge

detector in figure 19A. While a greater proportion o^ the

texture ^.mage has values other than black, the mean value o^

the image is lower. ^ha^s observation is the key to under-

standing the reason that local variance peaks before the

size o^ the elements. ^s the a.magery is degradedr the model

for the appearance a^ a tree is di^^erent than originally

expected. As the resolution cells become lamer, trees tend

to look more and mare out o^ focus, with many pixe^.s being

composed oaE a mixture o^ both dark tree or shadow and light

background. Thus, as tYze size o^ a tree is approached,

instead o^ having alternating l^.ght and dark pixels for tree

or background, there are several intermediate tone pixels.

The reflectance of any given tree is spread through many

pixels. This e^^ect can be seen in Figure 1 gC and l^D. The

et^ect o^ numerous intermediate-tone pixels on the texture

im^.ge is the producta.an of only a ^Ew high texture values.

The contrast between pixels in the image is not large enough

for high texture values.

When viewed from tha.s perspective, the result that

local variance peaks before the size o^ the elements makes

senve. The samp^.ing theorem states that a zeso^.utian cell

half the size of the element would be necessary. to assure

	

^^	 br^.ghtly contrasting pixels in the image.. This per^^^ctive,

	

^'^	 combined with the ^.ncreas^.ng area covered by texture values
c

that a ye not b^.ack as resolution increases, produces a peak
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in local variance at shout 2j3 to 3J^ the s ize of trees ^.n

3^oth the simulated and scanned forest images.

The variogram for the s^,mulated image ^.s shown in Fig-

ure 2l and serves to confirm the interpretation of the pre-

vious varxograms. The sill occurs at about the width of a

tree f ram the center. ^1so, the anisotrapic shape is

related to the orientation of illumination, similar to the

results far the f ii^e re:^^lution forest image. It is
interest rig that the var. ,gram of the simulated image has

peaks and p^.ts outside the zone of influence. The signif^.-

cance of these features i,s unknowns but ^.t is possible that

they are ind^.cative of periodicity induced by the constraint

placed on the location, of trees. Substant^.ation of such an

^^

^ ^r^ ^^̂^
Figure 2l. Two -dimensional variogram of simulated forest
scene. Units are p^.xels at highest resolution ^l m^.
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effect wa.T^'. regu^ce further testing.

This study shows tk^at spatial variance in diga.ta^.

images depends on the rxature of ab ;̂ ects withsn the scene

itse^:f r including their size, shapes a^td spacing. ^hert the

resoluta:an cell ssze of an image is suff^.ciently smaller

than the ob^eEts that dQZ^inate the scene,. overall image tex-

ture remains lover the ob^^ects can be resolved, and the two-

dimensianal variogram will easily reveal the^.r shape. As

resalutiom ceT^. size xnc^'easesr local variance wz^.l peak at

a reso^lutioz^ cell size near two-^th^ .rds of the size of the

ofa^ect. if the reso^ .^rtion xs tov coarse to reveal. ^.ndivi-

dual aks^ectsa Ioca^ variance wi^.l never peaef^ as the image is ^.̂.^.

^	 degraded,. and the variogram wi1Z show ^.ittle structure. 	 ^^° ^I
^.	 -;^^

	^`i.gure 2Z presents all the 1.acal variance graphs 	 r

derived far real images s pawn on a s^:ngle graph. Nate that	 ''^

the abscissa: xs logarithmic; Hate also that the he^.ghts on 	 L, t.'	 i.

^'. i	 the y-axzs^ which measuxes laca^. variances. are dependent on
i

	

.	 the contrast of each image and are thus Hat directly cvmpar- 	 °^

able. However,. tk^e figu^:e clear^ .y identifies the sensor--

	

.,	 ^^

scene aambinatxons for ^3hich c^assa .ficati.on and clustering
,_`	 1,

are appropriate (where resolution cell: size is significan^.ty	 u

smaller than. the vb^^ects in the scene} as apposed to m^ .xture	 -^̂;	 ,.is;'
modeling (where resolution cell. size i.s signif^ .cantly larger	 ^s
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^^	 ^!^ Figure 22.	 Combined local variance graphs for the scenes
^:^	 u > studied in this paper.	 Note that the height of the peaks is

;^
arbitrary, since it depends on relative image brightness.

^i
L^

than the objects in the scene), 	 Thus, it will be easy to
-.

'3
4̂^r

identify fields with TM data, but urban scenes will require

`
^^

a different approach than classification.	 SPOT panchromatic
_

'u ^ data, at 1^-meter reso^.ution, will de^.ineate urban objects

^^" and forest trees, but will still not reveal the periodic
L x

_ structure of crop rows within agricultural fields.
i
^
t̂p

Future work, anticipated for the third year of this

^.. project, will. involve the explicit formulation of variograms
!I
^^ for scenes composed of simple objects in regular and random

^^
t^

arrangements,	 We wild. also formulate the exact relationship

bwtween parametric variograms and variograms of images in

^~
^^

which spatial. averaging within picture elements occurs.

'	 .From this fors^ulation, we should be able to link the
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variogram directly with the graph o^ local variance as a

funcG,iOn of resolution cell sa.se. Clarifying these rela-

tionships should a^.low us to come to a better understanding

of how variograms and other spatial. statistics may be used

in remote sens^.ng for better scene modela.ng, ^.mage enhance-

ment, and image understanding,
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^e examine the task of matching images of a sceac when they are taken from

very' different vantage points, when there is considerable scale change, and wh^^

the image orientations are unknown. " ►Ra'e use the linear structures in the scene

as the basis of our correspondence procedure. This paper considers the problem

of describing the linear structures in a manner that is invariant relative to tlx^

variations that can occur among images, and discusses a method of finding the best

description of the linear structures.
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When the human visual system is presented with two views of a single scene, it

determines the relative viewing positions of the two images and brings the latter into

correspondence. That is, the relationship of each image to the scene is understood

so that both images can be used as information sources far further processing. This

human ability functions well aver a wide range of viewing positions and condition^7.

It is this ability to place two very different views of a single scene into correspondence

that we address in this paper.

Vi'e should draw a distinction between twc^ forms of the image correspondence

task. Traditionally, image registration has been a task undertaken by photogram

metrists. Gne application involves registering an image to a map so that new in-

forn ►a.tion, present in the image, may be transferred to the map. ^.nother is the

registration of the two images of a stereo pair so that disparity information can be

ex#,ratted. In each of these tasks the two images, {or, in the first instance, the image

and the map), are similar in terms of both their viewing position and their scale.

The techniques used for registering the two images are paint-based. A feature paint

in one image is matched to the same feature paint in the ether image. In automated

syst-ems #.his is achieved by selecting a small windav^ about the feature in one image

a.nd then correlating this window with one in the second image. If there is little

distortion ar occIusion, this technique performs well; it has became the basis of

current automated image-registration systems.

The research reported herein was supported by the Defense Advanced Research FroJects Agency
under Contract IVfDA9G3 .83-C-Op27 and by the National Aeronautics and Space Administration
under Contract NASA 9-166(34. These contracts are monitored lay t¢^e U.S. Army Engineer
Topographic Laboratory and Tuy the Texas A&IVI Research Foundation for the Lyndon B. Johnson
Space Center.
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The other farm of the image correspondence task seeks to find the relationship

among views that differ widely in vantage point, scale, etc, We will refer to this as	 ^	 l
^,;
,;i the correspondence task, and use registration as the came for the form of the task 	 `

^^

	

	 ou#lined above. In correspondence tasks there is significant distortion between the

images, the scale may differ and srst^y not even be constant across a single image, ^^^

as is the case in oblique aerial imagery, occlusion is common, and the response

of the various sensors to a single feature differs greatly. Feature point matching,

as used in image registration, is prone to error. However, feature point matching

is not- the only means of placing images into correspondence. It appears that the

human visual system makes use of nonpoint features, such as linear structures and

extended landmarks. The aspects of our loves#igation reported here utilize the

linear structures of the images as the prime elements for achieving correspondence.

In classifying the methods that could be employed to find linear structures in

images, we draw a distinction between techniques that use semantic information '

and those that do not. If, far example, we apply a road operator to locate some

of the linear structures in an image, that operator has had built into it semantic

knowledge about the appearance of roads. '^4^e could proceed in this manner and

build comparable operators for all the scene objects that manifest themselves as

linear structures in images. 1^lterrta^ively, we could seek to find the linear structures

in an image without "identifying" their nature. l:n this case, we identify the image

behaviour interpreted by us as a linear structure without knowledge of the world

objects that gave rise to that structure. ^Je choose this latter course because we

wish to establish the correspondence among images without first having to identify

the scene objects.
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The correspondence task is carried out in three stages: we must hnd the linear

'^ struct .ures, we must build their descriptions and, finally, we must match these

descriptions. The details of the first stage is reported in Fischler and ^rVolf [lj.

Tn this paper we explain how those procedures are employed in the correspondence

task. Vie present a detailed account of our implementation of the second stage --

+.^	 namely, building structure descriptions — along with an outline showing haw these

descriptions - are to be used in the final matching stage.

^o ^`i^nc^ing ^^e ^ine^r^ S^^^c^^^es

Descriptions of the semantically free procedures we use to find linear structures

in images can be found in Fischler and ^Volfilj, In essence, these procedures nrst

find thane pixels whose intensity levels are Iocal maximums and minimums, then

cluster such pixels and identify the minimal spanning tree for each cluster. The

tang paths in each of the sganning trees are found, whereupon these form the basis

far the linear structure reported by the procedures. The results .of applying these

procedures a.re shown in Figures ^-^. Figure 1 . is a natural-color oblique view of

the Eel river in northern California; Figure 2 is a vertical infrared view of the

same scene. Each was scanned through red, green, and blue filters; the results of

the procedures for finding linear structure: in each of these separation images are

Shawn in Figures 3(a),3{c),3(e) and ^{a},4{c),^4{e). In addition, the red, green, a;nd

blue separation images were combined into images of hue, saturation, and 'intensity;

these were also processed to find the linear structures contained in them. The results

are spawn in Figures 3(b},3{d),3{f) and ^(b},4(d),^4(f).
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These separation images differ appreciably in their linear structure. Certainly

na one separation image can be selected as providing a complete delineation of

the river. The philosophy we adopt is to view the original image from as many
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Figure 4. Linear Structure in the Vertical Image

perspectives as possible, obtaining the linear structures as seen from each of these.

'That is, we look for structures in hue, in the green spectral band, and so on. Of

course, the hue image is derived froth the red, green, and blue images, and contains

only redundant information, but this presentation of the information may show

struct^ire that was maskeu in other presentations. In this sense, the additional
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Figure B. Linear Structure in the Composite Vertical Image 	 -.:._
t

perspectives prr^vide new information an which the linear-structure finders can 	
s

act. The results of combining the linear structures extracted in all the various

- Jperspectives are shown in Figures 3(h) and 4(h). Clearly, same of this structure 	 ,

comes from shading effects rather than from physical structure in the scene. We 	 ^^

need to separate_ the real physical structure from all else. 	 •T^:	 ^
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Figures 3(]r; and ^(h) were obtained by adding the binary images produced by

the linear-structi2re finders. Consequently, in the combined image the values are

greater than one at those pixel positions where linear structure was seen in more

than am separation image. We treat this combined produce as a new "grey-level"

image and, once again, apply the linear-structure finders. The results obtained from

appl3•ing these procedures to Figures 3(h) and 4(h) are depicted in Figures 5(b) and

fi(l>). Figures 5(a) and 6(a) show an intermediate result before we cull short struc-

turrs. For each of the structures in Figures 5(b} and 6(b), we calculate the average

"intrnsity", f.hat is the average number of original separation images exhibiting that

litic^ar structure. Figures S(c),5(d),5(e),5(f),5(g),5(h) and 6(c),6(d),ti(e},8(f),6(g),6(h)

ret cal «^hic^h segments would remain if we thresholded the "intensity" values at ^,

I.5, 2, 2.5, 3, and 3.5, respectively.

V4'e build a description of the linear structures from one of these images. "^'he

image we use' will depend on the final matching procedure. if we wish. to attempt
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-.	 ^^
to first match the "StFOngest" structures we use the image resulting from a high

.,
threshold. On the other hand, if we wish to match the complete structure, the 	 _

_	 unthreshalded image would appear to be mare appropriate. In the next section, 	 •-^

where we discuss the nature of the structure description, we use as examples 	 -'

tl^e foregoing two extremes. In the case of the oblique image, we have used the

"intensity" image at a threshold of 3.5 (Figure 7a), while for the other case, the 	 r-^,

^• ertical infrared image, we employ the unthresholded image (Figure 7b}.

3. ^escr^bing the JLinear S^ruc^ures	 F^,

-^	 The means used to describe a linear structure is not independent of the use to
^i

.1

^}^hieh this description will be put. A description that makes it possible to reproduce
r--,

	

^ ;;	 the structure is different from one that is $ufFicient to recognize it. As matching is
.:;
^	 our goal, we want a description that is general . enough to be unaffected by noise in	 ^:,

the data, but specific enough to distinguish among structures that the ,human visual 	 `^^'
P	 _

system would .classify as different. ".I"o the extent feasible, the description must be 	 j'
i	 t. 1

^, I	 invariant with respect to the variations that can occur in the data. Specifically, we
^	 ^	 AT']

.,

want the description to ^^^, independent of orientation, scats, and vantage point. 	 ^^^

^^	 ^	 -

.^
Our matching process will compare graphs of symbolic descriptions. ^Te wilI use	 u, j

`. ^	 as Iitt.le metric information as possible. Consequently, the descriptions we employ 	 ^, `^

are synnbaIic ones, t}^e primitive entities in each oI` vrhich have qualities that are 	 '-,

r: +	 tk^emselves symbolic. For example, a primitive may be astraight-line segment whose	 ;
A, J

'. ^	 ro ernes such as an intersection an le with some other rimitive have values	 i
:, p p	 ^	 ff {	 p ^	 ):	 ^,^
:;
^:^	 acute, near-colinear, etc. rather than a value in degrees. 	 ^^
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+^.,	 -	 The primitives we have chosen to use are straight"line segments, arcs of circles,

1?' ±	 nand model-less, that is, data we prefer to describe as indescribable, data for which

^'	 the data set itself is the mast apt description. The choice of these few primitives
^.:

stems from the observation that human description of linear structures seems to be

,^	 based on curves and straight lines — moreover on whether adjoining curves curve

v	 the same ar apposite ways and whether adjoining pieces of the structure intersect

in particular ways. Tt is also a fact that humans find certain parts of the structure 	 ',

too' difi'ictilt to describe, and assign them some generic term like "wiggles". 	 `}^

Selection of the description primitives is only half the task of description

building. We need to be able to divide the linear structure into parts and assign

a prirllit.ive to each. Usually the task of dividing the linear structure into parts

and describing each of these parts has been handfed as two relatively independent

prOCCSSE$ lIl which partitioning has preceded parts description. The difficulty with 	 }
Ei

this approach is that some characterization of the breakpoints between parts has to

be found. Generally, this characterization is based only on local properties of the

linear structure, even though neighborhood information or local inhibition may be

empIoyec^ so as to benefit from more broadly based information. in this respect, the

task af, describing a structure in terms of its primitive parts appears to have been

repl:^ced by the more difficult undertaking of describing breakpoints. Our concern

is to find the "bc5t" description without first having to find the "best" subdivision.

Furthermore, we would like "best" to be defined in terms of a global criterion rather	 '^

than local properties of the structure.

.The advantage of defining best in terms of a local criterion is that many can-

didates for the definition of "best" spring to mind. The disadvantage of defining

.^
k^
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"best" in a global sense is the lack not only of likely definitions, but also of '^I

computationally effective algorithms for finding this optimal solution.. Howeve{^,

a description that views the data from a "gestalt" perspective seems more liltely ta,

be independent of image orientation, scale, and vantage paint than one that applies ,

local data measures to define the optimal description. ale define best description, a^.

the ane that minimizes the number of symbols needed to encode the linear structure

in terms of onr description primitives.

^. I`^[Ar}.^an^l ^n^e^ding

The need to match data to description primitives i^ a central aspect of decisiop

theory and pervades artificial intelligence research. It is a human's ability to

abstract data in terms of descriptive models that distinguishes human information

pracessino from its electronic namesake. Efi'ective data abstraction is a balance

betti^^cen ttiti^o competing requirements. ®n the one hand a descriptive model must

fit the data adequately, while, on the other, the descriptive model must not be

needlessly complex, 'I'he criterion we use to select among competing descriptions is

based on the work of Georgeff and 11^allace (2], in which the description considered

"best" is the one that can be encoded in the fewest symbols.

'	 Suppose we wish to send data to same receiver so that he can recreate the

-	 data to some preselected level of resolution. 'The. sender and receiver have agreed
1

on a language for this cammunication that consists of a set of primitive elements.

What is the most efficient encoding of the data; which message has the minimal

'€	 -	 encoding length? Consider the example of sending a message that describes a linear
^i

^,
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struct^^re. The latter can be thought of as a list of ^ and y coordinates. fret

us further suppose that the language of communication contains three primitives:

straight-line-segments, arcs-of circles, and model-less-segments. Is it more efficient

to send the data as a single model -less-segment primitive, that is, as a list of (x,y).

coordinates, or might it be more efficient to describe the data by one or mare of the

other primitives, specifying sufficient information to describe how the actual data

differ from the primitives?

The message can be viewed as a list

«•here 1l^1 is the specification of the primitive, D the specification of the data, in

terms of the selected primitive 1i^f. I,et us consider an e_^ample. Suppose we have

a data set that approximates astraight-line segment. We could communicate this

by specif^• ing a straight-line-segment primitive M, where M consists of a code for

the straight line-segment primitive and parameters that specify the actual straight

line segment. These parameters might be the endpoints of the line. 11Ve also need

to specify the actual data in terms of this primitive M. The data specification ^D

might, for each data point, specii 'y its coordinates as a. distance along the line {from

its centre) and the perpendicular distance from the point to the line.

As the expected distances from the points to the line are small, we shall choose

an encoding of these distances so that the mare probable of these, the smaller

distances, are encoded in fewer symbols (or bits) than those that are less likely. In

the actual examples we shall describe later, we assumed a Gaussian dis#ributian far

these perpendicular distances and we encoded optimally far that distribution. The
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optimal encoding length is just the negative Iogarithm of the probability, i.e., the

function denoted as "information" in information theory. 	 ^	 -'
.^

If we Dave a' small number of data points fewer symbols may be needed to

rammunica .te the data as a list of points; if, however, there is a large number of

data points that exhibit behaviour consistent with a primitive, it will probably be	 _,	 ,^

cheaper to encode this data set as the primitive and then specify the data in terms 	 ^—	 ^

of that primitive, Of course we are not just com aring the encoding of all the data 	 -^p
r,.,

^ti^ith either one lrimitive or another. It might be more efficient to encode the data
^^

as a few primitives, with each primitive "explaining" a different part of the data, 	 r-.

The encoding we select is the one that is globally hest in explaining all the data. 	 ' ^-^

A ^ti^a.y of viewing the message form outlined above,.
E

L^

^^ ;

is to look upon .^^ as the overhead of introducing .another primitive while D	 ,_^f	 '^
k

represents the quality of the f'it between the data and the primitive. Of course, since 	 ^,
_	 ;	 ).

dill'erent primitives have different wt's, 11^ also weights each primitive 's efficiency	 ^	 ^^
^^

for encoding data. In comparing message length we are balancing the complexity 	 ._ ;^` J

introduced by adding an extra primitive to the description of the data against the 	 ir_,

quality of fit between the assembled primitives and the data values. 	 --^

Although the above discussion focused an encoding messages for cammunica-

	

ti_	 J	 ^

tion, we use minimal encoding length as the criterion for finding the best description

	

^,	 ^

of a linear structure — without any interest on our part in actually transmitting the	 ^!

data. This of course means that we only have to decidd how many symbols would 	
r

be used if we ,were to encode the linear structure in a particular manner rather	 `^ ^^
r^

^`

	

`i	 ^L
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I
than actually doing the encoding. We can use the results of information theory to

determine the optimal encoding length without even having to understand what

the optimal encoding scheme is. That is, information theory gives us an operator,
.^

or a measure, that we can apply to a description to determine haw many symbols

we would need if we were to encode it optimally, without any consideration of the

^,	 actual encoding scheme and without the need to do the encoding.

^` Let us consider our application, encoding linear structures in terms of three

primitives: straight-line-segments, arcs-af-circles, amd model *less-segments. We will

assume that the data are specified an a Nx^l grid, and that the noise in the data will
t^'

induce a Gaussian distribution of the data points around the generating primitive.

,^	 Given that all grid points are equally likely, the cost in bits of encoding a grid point

is Ia^N + IogM; (log is to the base 2). N'ow consider the three alternative ways of

^,	 encoding r data paints [using one primitive only).

;^	 ModeF less-segment;	 .
^_;

We need a code to specify that the primitive being used is the model-less-

segment.. As there are only three primitives, and we assume that they are all equally

likely, it costs log3 bits to specify the code. Specification of the data in terms of

this primitive will require in turn that we specify r grid coordinates, that is, a east

of r[lagN + logM) bits.

Straight-line-segffierat;

""	 We can specify the straight-line-segment prirr^itive by specifying the endpoints

^;^ of the line segment. This casts 2{logl^l + logl^t) bits. In addition, the cost o£

specifying the code -for this primitive is 1og3. Ta Specify the data in terms of

this primitive we will, for each data point, specify a distance along the line and

..	 __ m _	

-.

-	 ^.
_^
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the perpendicular distance from the point to the line. If the line segment is of

length ! (in grid units then, to specify r distances, if we assume that all distances

are equally liltiely, will cost clog! bits. If it is also assumed that the data points

have a Gaussian distribution about the primitive model, the cost of specifying r

perpendicular distances is

—!ag	 ^' a z"o '	 ,

r pEa	 ^7!'Q

where d is the perpendicular distance from the point to the line, and d the standard

deviation associated with the distribution. When the above expression is expanded,

the sum over the c!'s is just the sum of the residuals squared that is calculated when

the line is fitted to the data by least-squares methods.

Arcs-oi^circies:

We specify the arcs-of circles primitive by specifying the endpoints of the arc

and one other point on the arc, This costs 3(logN + dogM} bits, while the cost of

specifying the code for this primitive is log3 bits. To specify the data we use the

same scheme as we did for the straight-line-segment primitive.

Using these casting functions and a search algorithm that examines the various

ways for partitioning a linear structure into primitives, we find the best description

of that structure.

5. Resets

j	 The results of using the foregoing procedure on some of the linear segments
.^

a	 found in Figures 1 and 2, (and shown in .Figures 7(a^ and 7(b^), are depicted in thea
i . f;

^^'	 remaining panes of Figure 7. From Figures 7(a) and 7(b) we have selected some
'r,

i3

__ _	 .
r.+ .
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,^.,	 linear structures. The selected structures, which form the main course of the Eel

	

^^.
	 {river, are shown in figures ?(c} and 7{d). Our interest is in determining whether the

description built from one imago is the same as that from the other. Of course, in
;^,

n
the final version of the structure builder we would need to handle all the segments

simultaneously, but this will necessitate considerable improvement in the search

	

^^	 algorithm to keep computational costs dawn to a reasonable level.

^» Figures 7(e) a.nd 7[f) show the primitives returped. The arc of circles are shown

	

^-	 as full circles to improve readability. In Figures 7(g) and 7(h) the primitives have

been overlaid on the data to show the quality of fit. In assessing these results, 	 '
^_
^_

one should keep the purpose of this description in mind. We want to extract a

^	 cicscriptian of the linear structure in terms of lines and curves, in terms of the

	

^.	 manner in which parts intersect {acute angles, near-calinearity, etc.), in terms of

relative curvature {tight curves, gentle curves, and the like}, and in terms of the

seyuencing of parts in the structure. Given that the two images are viewed from very '

different vantage points, that the scale is quite difi`erent ( pot even constant in one

im^ige^, that. one image was taken in the infrared band and one in the visible band,

that, the images were taken one-and-a-half years apart during different seasons,	 '-

and that no semantic information was used in the processing, the closeness of the

resulting descriptions is noteworthy. This points to the usefulness of processing

the data in the above manner; namely, the method of finding the linear structures;

	

^1	 the primitives used to encode the structure; and the encoding length measure as a

	

+^	 criterion for best description.
#
t̂i^

,^, Figure 7 shows the results obtained with real data. Similar results have been
^;

obtained in experiments that employ other real data sets. Justification of .the

a
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Figure $. Encoding oP Synthetic Data

method, ho^s^ever, requires further extensive experimentation. To better understand

i.lie behavior of the description builder we include an example using synthetic data.

The data points are shown in Figures 8(a) and 8(b). Tn Figure 8(b) one extra data

point has been added to those shown in Figure 8(a). The resulting descriptions are

shown in Figures S(c) and 8(d) and overlaid on the data in Figures 8(e) and 8(f).

The addition of one critical point alters the description, an effect not unknown in

the human visual system. The resulting descriptions seem to match those perceived

by humans when they are presented with Figures 8(a) and 8(b). while we could not

claim that minimal encoding is the criterion used by the human visual system for

description building, we note that this criterion conforms to the type of behavior

we would want to achieve if we ware modeling the visual system. Of course, if the

resultant description is sensitive to every addition or deletion of a data point it is of

r r-
i
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little use. In general, the minimal -encoding length description appears to be stable
r-,

«^itl^ respect to data changes, except whe y "critical" paints are added or deleted.

a. 7Vlabc^ing ^I^e ^esc^iptions

if the description we obtain from the description bailder characterizes the

data and is invariant with respect to orientation, scale, and vantage paint, the 	 .

burden of matching descriptions is lightened considerably. It is our intent to match

descriptions at the symbolic level, to represent the descriptions found by minimal

encoding as graphs of symbolic entities, and to match those graphs on the basis

of their structure. Of course, it is unlikely that the graphs derived from different

,.,

	

	 images gill match perfectly. Nevertheless, from a prospective match we can find

correspondences in the original images, and calculate the camera transformation

^^	 between floe images. 	 '

k	 IfF

	t. I : ,	 This procedure allows data in one image to be transformed into the other. It

	

^` Vii,	 means that we can transform a linear structure found in one image into the other

image. For those parts of the graph where there is a mismatch we can ask the
^-,

	^	 question: how would the linear structure that is associated with the mismatch be
^J

r encoded if it were first transformed into the other image and then encoded? In this

	

^s	 manner we can attempt to explain the graph mismatches. If we cannot explain the

	

,^	 misnna,tches we should consider another match of the graphs. Through this process
^^̂
^

of lj^•pothesis ar^d verification, we seek to avoid acceptance of a transformation that
r

does not explain "aIl" the data.

	

^,	
.!

T _	 ___
^"
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r-.

?. Conclus^or^	 _

having found the linear structures in an image, we are faced with two major

tasks before we can use these structures to find the correspondence between different 	
-.^

f.

images of a scene. We need to be able to describe these structures in a way that is

independent of the variations that can occur between the images, and we need to 	 ^J

be able to match these descriptions to find the relationship between the images. 	 '--

In considering structure description we show that the usual technique of divld-
r,-,

ing the structure into parts and then describing the latter can be replaced by a

procedure that finds the "best" descriptipn of the data on the basis of a global 	 ,-

vie^c• of that data. This technique simultaneously divides the structure into parts	 "

and describes them. `Best n is defined as the cheapest encoding of the data when

`^^e consider the trade-off between the quality of explanation of the data and the 	 rn

complexity of that, explanation.	 ^'- ^

n
This approach produces a description of linear structures that appears rela- 	 ;'

^ :1

ti^• ely insensitive to the vantage point, scale, and orientation of the original images,

;t matt• prone to be a description that enables easy matching, and hence an effective 	 ,_

approach to solving the problem of image-to-image correspondence. 	 -^
^^'

^,
^.^ r
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Abstract

This report describes work in the area of subpixe^.

accuracy in image registration and edge detection. Two

main directions of research ware pursued: edge defection

and tuatching based cin the digital geometry of edges and

random field models for probabilistic analysis of registra-

tion error.	 In the edge detection approach, error bounds

and error probabilities were computed using theoretical

models.	 Algorithms were developed and tested on simulated

imagery,	 The methods appear promising for high accuracy

edge position estimation and registrati.on^ though further

refinement of the procedures will be required. 	 13sing

random field models, a statistical measure of the quality of

the cress correlata.an peak as an, esti^tate of the offset

between a sensed and a reference image was developed.

Simulations were performed to determine the validity of this

estimate with real imagery and to study the results of

interpolating digital correlation functions to estimate the

translation offset to subpixel accuracy.
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Section Q. Yntroduction	 ^^

r.Subpixel accuracy in the registration of images and the 	 _	 '
^^

location of objects within images is a topic of growing 	 ^•	 •^
^^

impvrtanae.	 Many users with high accuracy mensuration and

classification requirements are faced with the difficulty 	 ^^

of using high resolution monochromatic imagery or lower

resolution multispectral imagery such as . LA13^SAT.	 The

accuracy requirements have driven many users from the lower	 ,} '.
'^,

resolution iutagery^ but xecently the possibility of using .	 ^..i.

??	 both types of imagery together has been considered. 	 An	
j, '

additional interest in	 subpixel	 registration accuracyn
^. ;	 „^

^	 results from the need for high accuracy interband registra-
P
^;	 tion to improve classification accuracy.	 L^
r^.	 ^	 ^	 ,

^,	 This report describes our continuing efforts in the

t;	 ^

^,',,	 analysis of subpixel registration 	 accuracy.	 Two main	 `' t ^p

^^	 ^
^^	 directions of analysis have 	 been pursued.	 The first	

^r i

^:i,,;

;^	 approach uses the digital structure of straight edges in

P	 r':
imagery • to aid in the matching of images. This work has	 ^i..' J	 '

•^	 two bas 1C applications,	 ^lne is registration, the major	 rs,

interest of our work. The second application is to thA	 '^'

-	 location to aubpixel accuracy of structures in images. The 	 Y^
^?.,

two applications should be carefully distinguished. 	 Subw	 ^^
e—:7	

J

pixel registration accuracy only insures subpixel alignment

based on control objects such as pvznta or lines. Subpixel 	 ^^	 '^
`	 c

j^ ^

	

	 feature detection is of direct interest xn features which 	 ;=^

may not evex^ appear zn previous images. Our methods are of n r

^^	 ^
,::.:^

:.^	 particular interest in mensuration problems for near features
^^

r-,"^J

-..	 -	 - _- _., ^.._^	 ^	 _"^rx	 sue. ^ :-_	 _--_-^. - -.. _ _
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ti

such	 as	 measuring	 road	 widths	 and	 building	 si^ea.

The	 study an the agplication of the digital 	 structure
.^^

of	 edges to registration accuracy took two major directions
^..

,^, a.n	 the current study.	 Firsts we continued our	 theoretical

if
-- analysis	 af,the structure	 of digital	 lines.	 Otte key result

'^' of	 this	 effort	 was	 the development	 of	 proofs	 for	 the

formulas	 describing the set of lines which could give	 rise

r-
j^,.

^4. i
to	 an observed digital edge.	 During the first year effarty

we cued formulas which were published 	 IDs-5m^ without proof.

^;`^,. ^ffarts	 to	 obtain	 further details	 from the	 authors	 were

unsuccessful.	 Uue to	 the key importance of these	 formulas

and	 the	 difficulty	 of	 verifying	 theme	 we	 derived	 the

^^ results.	 The derivations as well as	 the formulas	 themselves
L:^3

}

are	 it^portant when we consider the problem of digital edges

L_. in which same pixels are incorrect. 	 This work thus provides

a	 cornerstone for the theoretical analysis of noisy 	 edges.
':	 i
L_,

Due to the complexity of the enumeration problem for digital

^-,
4I lines,	 it	 is	 useful	 to develop asymptotic	 formulas	 for	 the
i__:

count	 of	 digital lines,	 Asymptotic results	 are	 described

hers	 together	 with limited empirical veri,fi,catian, 	 These

^-^ results	 mre	 in	 turn	 used	 Co	 develop	 asyttcptatic	 error

^" estimates	 for	 the	 accuracy	 of edge	 location	 given	 the

correct digital edge.

The secor►d part of our work on the	 digital..structure of

edges	 far	 registration accuracy involved 	 the computatiotc^ of

average-	registration	 accuracy	 for various	 models.	 This



^^

... _	 .....	

I 	

{ l^^

`-1
}

1

ores for subpixel edge estimation which used the grey Levels

slang the edge to estimate subpixel accuracy. One particu-

larly promising approach led to. an average accuracy of ^^aell^

under 0.1 pixel in a limited simulation study, 	 This

appraach^ which appears quite promising, is a natural

extension of the digital edge matching of the first yeaF and

we are in tl^e process of trying to extend the analysis to

cover this method.

The second main approach taken in our study is based an

the correlation sf:ructure of imagery. Using the theaxy of

stationary random fields we derived the probability of the

peak of the cross-correlation function between a sensed and

reference ^.mage being more than a specified distance from

the true offset. Simulations were performed to determine

the validity of this estimate and to determine the quality

of the estimation of the o€feet using the peak of a quadric

surface fitted to the correlation function.

The results described in this report provide a faunda-

tion far the modelling of subpixel accuracy. In addition

methods are developed which appear premising nn an experi-

mental. level. The theoretical methods developed have been

applied to simplified versions of the ^nethnds and work is

currently underway to extend this analysis and test the

methods more tharaughl.y.
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x	 - gX^atest integer t= x
x	 - leasC integer ^^ x

mnn	 - greatest common di^rasor of m and n
I,{a,b) - Line joining paints s^ and b
^i(n) -•Eider toCienC f^znctian - the number of

. posiCive integers less than ar equal. to
n whic:t are relatively prime to n

^{n) - is the Maebius furtctian defzned as
follows:

if n > 1 ^ let n = p^'S,	p^K	 be the
prime decompasitionK of n.^ Then

^(n) = 0 otherwise _ ^ -

Section l.. INTROH[^^TIQN T^ GEQMETRIC REGISTRATIQN

Matching edges in sensed and reference images can be

used fvr regisCraCion. The degree to which the pos^.Cion of

a real-world edges such as a field boundary, can be located

in imagery depends heavily upon one's knowledge of the

scene artd Che sensors, Edge detectors can be used Co

locate reasonable candidates far edge paints and Chen an

edge cant be mare precisely fit using Chess poi.nCs.	 Alter-

natively, an estimate of subpi^el edge ZocaCion can be

formed directly from the grey Levels CHy - Aa]. Hybrid

apgroaches may also be adapted. We study Che aacura.cy

attainable using Che first of these appraachas^ which we

call the geometric accuracy approach.

]3efare laur^chin $ into a description of our model. far

geomeCric accuracy, it is ssseful Co consider those aspects

of the regisCratian problem we wish to capt^ire in our

model. The heart of our .approach i.s to estimate the pasi-

tzars- of an image edge Ca subpixe,l aGCUracy and use this

t''
1::,

;a,,%;

^.

,E
ti::

I^r

,^.
^^

L..

^^

'I
x#95
	 i

,^	 _.
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information to define a translation between the sensed and

the reference image. In the ideal case ? the grey levels an

each aide of the edge are constant off the edge pixels and

the edge Pixel grey levels are a simple weighted average of

these two grey levels. If all grey levels are possible and

the edge pixels tyre all known then the pasitian of the edge

can be exactly determined. Such a situation is clearly

unrealistic but it serves as a starting point for appraxi-

matian.

Most current methods for attaining subpixel accuracy

employ slime type of	 interpolation of the correlation

function.	 zf such a method is to achieve subpixel accur-

acy, the digital correlation function must be able to

achieve p^.xel accuracy. 	 In our work, we assume pixel

accuracy is available either through correlation ar other

methods. Thus, in the simpie case of a one-dimensional

shift any real world point can be determined to lie within

a 3x.1 pixel, strip, Our results can be improved drastically

if we assume we know, from registration, we are in the

correct pixel, but this is a highly unrealistic assumption.

The analysis described in this paper pertains to the

problem of one-dimensional translatS,ans. This is not part--

xcularly restrictive since the two-dimensional problem cax^

be easily decomposed. into on:e-dimensional sltift estimates.

Tin the line Iodation estimation problem, we are trying to

locate a real world line y ^ sox ^ b in the image. A shift

(^]x, d y) between real world and image coordinates yields a

i

! .̂
<..

s	 -	 - ^._	 -	 -
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^^ line	 y	 =	 ta(x - Qx)	 •^ b +	 y in the image.	 This	 may	 be

,W, written	 as	 y = mx ^• b ^ (^y - m®x^ which is	 the	 original

^' line	 ahift :̂ e	 only • , in	 the y direction and	 by	 an	 amount

r` 4y	 - ^n©x.	 Our 1 -d estimation procedures enable us to	 esti-,,
^.

^_,

mate	 4y	 --	 m4x,	 Given two Lines, we can	 solve	 {possibly
.

I using	 least	 squares}	 for Ax and G1^y separately. 	 Frain	 this

^,
;^

point	 one	 we	 will	 canfane	 ourselves	 to	 I-d	 shifts.

^ The	 models	 described	 here	 assume a	 set	 of	 pixels

^' labelled	 edge	 pixels	 are provided by	 an	 edge	 defection

L.:
N procedure,	 Three cases	 can be considered.	 £ irst^	 the	 set

^^
,'r of	 edge	 pixels are exactly the digital edge 	 correapo ►tding

_,

to	 a Line in the real world. 	 This model	 is unduly restrac-
((,r
r'''

^	 ^:^ five	 since	 an edge which comes very near a pixel 	 boundary

iiT
ca^i	 show	 up i.n the next pixel due	 to noise.	 Seconds	 one

"^^ could	 consider	 a	 model in which the seC	 of	 edge	 pixels
.-,
1,^u given	 is a subset of the digital edge corresponding to	 the

real	 edge,	 This	 approach	 is	 more	 realistic	 sine	 it

discardenables	 us	 to	 some pixels whose classification 	 as

^^, edge	 pixels	 is in doubt.	 Finally	 we coulc#	 give a	 model

`'^' in	 which some pixels lying on the digitization of the	 real

jj'^
1:^

edge	 are	 given	 and	 some	 incorrect	 pixels	 are	 given.

..	 Far .	the	 first models	 in which a complete digital	 edgy
1 ^'

^, ^.s	 available ?	a	 tight upper bound	 for	 the	 regas .tratzon

f
^ error	 a3	 a	 function	 of	 the	 Lane	 parameters	 is	 given

^"^ (Section	 ^).	 This	 allows us	 to gave	 some	 probabilistic

erxor	 estimates	 for	 the	 faaiil^t	 of	 all	 dagatal	 lanes
1^:

(Section	 !).	 This	 analys^.s provides	 the farm	 basis	 fbr

ti'
,^

_.	 _ .	 _._ ._. _ __ ......_	 - -	 _______^. ^	 -	 - -	 ---	 ^ L
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the	 study	 of	 the seaand and third models, but 	 since	 our

results	 ^.M	 these asses are not so complete yet i 	 we	 leave -

thew	 to	 fuCure	 'reports.	 We notice nevertheless 	 Chat	 in

many	 agpl=cations	 one	 anly	 finds	 rather	 short	 digital .^

Lines	 with i.n^ormation only on lD Co 20 gixels^ and	 hence

oacasionaliy,'	 e.g.	 if no analytic	 formulas	 are	 avai'^able^ .

it	 mighC	 be perfectly justified Co rely an	 computer-aided r,

counting	 of	 possibilities	 when this counting	 ^.s	 not	 too .,

time consuming. "`°

As	 a	 first	 step in out analysis we	 garametrixe	 the
^	

'

chain	 codes	 of digital.	 lines (see section 2 for definitions}
u

by	 four	 parameters N^q,p^s ae	 proposed by	 [}?a-Sm]	 and	 use .^.

so^ae	 formulas from the same paper. 	 Regretfully the	 report y

[Da-1]	 in	 which	 Chess	 formulas	 are	 proceed	 is	 nvk ^''

apparently	 available and hence we supply our own proofs 	 in
^^u	 i

the	 text	 (Section 3).	 There is an excellent report 	 [Ra-We] ^^'

}
'	 which	 seems to be generally unnoticed i and where there	 are

^M
ti

several characterizations o£ those chain codes corresponding ^_

to	 digital	 lines	 among all passible strings of 0's 	 and 1's. ^-^

We	 do	 not	 use	 their results	 exglicitly	 but	 Chey	 seem
9j	

I

^,

esaextCia^	 in	 the	 analytic study of the second 	 and	 third ^^
::s

model.	 We	 paint out that bath in	 [Do- Sm]y 	 [Ro-We]	 as	 in
r

other	 taork	 in Che literatures no attention is paid to 	 the ,^

counting	 of all digital	 lines of finite leagth.	 >:t	 is	 not --^	 j
i

enough to taunt lines through the origin as done in [Ro^We], :,	 i	 1

and	 since	 our probabilistic analyses 	 rec^uize	 such	 count'
us

we	 give	 an	 exact formula fax the number of all 	 lines	 in
F

. _-^

^,

_ ^'.

.___	 -	 __	 _
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,^

A',

,^

section	 7,	 which is nat a	 straightforward g^z^eral3.zati.on

of	 the	 formula	 for l^.nes through the	 origin. ►̂e	 also
^',

d:
provide	 asymptot % c' bounds	 for the number of	 Imes	 of	 a ',

given	 length as well as prat°^.de grounds	 far the	 reasranable

ennjecture	 thgt.	 this number	 L{N)	 is of	 the	 foam ;,

^°
^,
t

'^

Ttxe	 proof	 of	 th^,s conjecture xemains	 as open	 problettt.
.^
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Section 2. Aagatal Straight Lane Segment parameter
^stamation

^s t itaatiOr► of the iocatian parameters of a real world

edge giving rti.se to an image edge is discussed in this

section, The ideas discussed are a sumzuaxy of those parts

of ^Do-Staff which are useful for subpixel xegistration.

Their basic result ae a determination of all lz.n.es whose

digatixaCian is a specified chain code. ^n Later sectionst

this set of lines will be used to derive error bounds on

reg^,stration accuracy,

Sevw^'ai iine digatazai"ion procedures are cocamanly used

in graphics and image processing. Given a iine segment in

the upper right hand quadrant of the planes with si4pe and

y--intercept bath between 0 and 1 and strictly less than 1,

we define its digitization as follows: To each intex--

section (a ' b) between the line and a iine x = a^ a an

integers we associate the pixel with lower left hand earner

(a^ ^.b^(). (see figure 2.1}. The chain code of the sequence

of pixels with lower left hand caardanates (0, 8)^ (l,b l ),

... , (H i bk } is the sequence c^ ^ ... ^ cu where

0 a f ^b^1	 = b^„1

c,
t

1 otherwise

The restrictions on the scope and y-intercept of the 7.atnes

under consideration a>re made for samplicitg of presents--

lion. Sy ayinmetry the t:esulL•s c2n be extended to remove

these conditions.

^	 rr:.F	
4
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To determine the lines with specified chain code,	 it

is useful to have a parametrization of the set of all chain

codes of digital line segments resulting from digitizing

the class of lines specified	 above.	 In [Do-Sm]	 the

following parametrization is given. A cigital line segment

chain code ( c^,...,eN) is given by a quadruple of integers

(N^P^q^s)•

N is the length of the chain code, i.e., the number of

0 ` s	 and 1's.	 We note that not every string of 0's and	 1's

is generated by a line segment. For a characterization of

those that are, see [W-R].

Figure 2 . 1 Chain code of a digital line. The digitization
of the dark diagonal line has pixels with lower
lefthand	 vertices	 (0,0), (1,0), (2,0),	 (3,1),
(4,1),	 (5,1).	 The resulting chain code	 indi-
cated by the arrows is 00100.

Next, q is defined to be the smallest integer such that

there	 exists an extension c	 , c	 ,..., with c i s ,c ,...

	

H+1	 N+z	 1	 ^.	 3

periodic with period q. Define p to be the number of ones

^^^

^^

11 % ..8111 `^^^...	 ^	 -	
,. ,^ti ,-.-----^' ^
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,.

in a period. 'fhe fourth parameters s, pxovides a normal-

^	 ization of the chain code for one period. 	 Geometrically,

s may be ^.nterprete^t as follows. Any chain cads corres- 	 ^!
....

ponds to a line segment with rational slope,	 Among all

such segments, select the slope p / q with p^q = 1 which 'has	 -

the minimum q, This q is the period. The standard chain

code corresponding to the first period of this chain cads 	 J

is the chain code of the digitization of the first q pixels	 ^`

of the line through the origa.n, y ^ {p/q ) x,	 The i-th	 _

	

'-	 element c^, of this chain code is given by

	

^^	 c^	 -- i i { p / q )^ - ^(i- 1){p / q).1 ^ i=1,2,.. . N
^'

	^^	 The parameter s, o£ a code string o£ length N^ is defined 	
.1

^^

b y the condition. that the standard code string of p/q
^.

	

^_^	 _	 _

	F	 starts at the {s + l}th element o£ the original chain code.

	

^	 ^^

	^^:^	 Given the parameters N, q,p,s of a codestring, 	 the ith	 ^^	 ^^

$	 element of the. original code string can be obtained by
^^	 M^

c	 - ^,{i -s){p/ q}S - ^{i-s-1){p/q )^ , i = 1 , 2,...,N	 ^`" ^ ;al
The parameters satisfy the constraints 4<=p<-qt=N and 0<=	 ^^

	

N	 ,^^

	^1	 s<=q-l.	 A point which will be particuiarly important for 	 ^.
--^

	

^	 ^
the registration problem is that there are constraints on 	 ^^

the pazameters other than the above inequalities.	 These	 -i,
f	 ^	

,tl

additional constraints are described in Section 3. 	 Oux

	

^I	 '

	

^`I	 interest in these matters stems from the need to enumerate	 ?^!	 i^
•	 I	 :'	 ^e

	^^	 the digital	 7.ines satisfying various conditions. 	 If it	 Fu ^^ ^^

	

^	

'	 ^were not for these messy constraints 	 the enumeration	 ;;.

	

`^^	 problems- would often be straight forward.	 Without these

	

!^^	 additionai	 constraints	 far fixed N, we would obtain - aIi	 °^ ,I '.^

	

c	 i	 z

^_ ,

	

x :^	

T^	

^^,^

	

^^	 ^	 ^

^_.	 ---	 _	 ,_	 .._ .	 --- ---	 ___. W . _-

	

^.	 --__



^^^_	 .._

^^
digital Line segments o£ length N by independently varying

a,p,q subject to the constraints 0<^p<=q<=N and 0<=s<=q-i.

We now give an example of the computation of the

parameters for a chain code.

	

""	 EKAMPLE:	 Chain code 10010100

	

,_,	 N =^ $:	 there are 8 digits in the node
q - 5:	 the above code is part of the

	

^-	 infinite cede
].00101001©10010

	^	 p -- 2:	 the number of 1's in the period

	

^.	 YO010 is 2

s - 1: the standard codestring of 2/5 is

	

^.	 00101.	 The	 standard	 codestring
starts at the 2nd element of the

	

^'	 chain	 code.	 Hence	 s =	 ]..

	

,.	 Since the smallest period plays an important role, let
^G

us point aut two ways of computing it. The first one might

^' be easiex to use for long strings with the help of the FFT,

the second one is very convenient for direct computation in

short strings.

	

ji'	 For the first algorithm extend the chain code to the
^^

right = with period N, i, e. c ` ^ N = c i	Then
^I^

	

uv	 N	 ^.,r c.
q = inf { j: 1 <=js=N such that 1/N 1: {-1} ^	 ^ '^J	 =1^ .

	

^„	 i^l

	}^=	 Notice that the maximum valae of the average in the defin-

	S;°	 ition of q is precisely 1. In the second algorithm, we
I:,

extend tha code chain in bath directions by zeroes and

	

'	 consider

N	 G -^ G-
q - inf j : ^1< = j < =N such that l/ (N- j } E {-1) ^	 ^^^	 = 1

	

L:,	 iWl

with the understanding that if the set of j's is empty we
I!.,

	

^"'	 take q - N.	 What this really means is that we slide

,^
M

	

. _.	 _

^^
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sttcaessively to the right the chain coda aced compare the

tail end of the original chain code with the first pardon

of the shiftted chain . code, the value q corresponds to the

first perfect match, if there are na matches then q ^ N.

The primary result of [ ^a-5m] is a description of the

'	 set of all lines whose digitization over the intertral IQ,N]

is a set of pixels specified by a chain code. This result

is of great importance	 for our regisCration accuracq

results since i: t provides a hold on the errors which	 say

arise by approximating the true edge by a feasible edge.

The set of lines is described by a quadrilateral in the

(e, ^ }-plane where a is the y-^. ntercept of a line and rr is

the slope. We will call this plane the dual plane, The

proof of the following; formulas will be found in the next

section.

define fuTeCtiCfRS
II

 F and L by:

aaa

Let ^ be defined bq the equation:

{^+)	 1 + ^^{p /q)^ 	- ^ .^(p/ q )	 -	 l/q	 and o < ^ < qy

ar 9 what z$ the same, by the fact that ^p ^ - 1 (mad q).

The aet of feasible 13,nes is a convex quadrilateral in

(e^^)-space with vertices A, B ? C, iD given by

(5) A = {^F(s)p/q^ - F{s)p^ /q^ ,per /q* )

(7)	 C	 =	 {1	 ^-	 ^F{s	 -^- ^ )p/q^	 F{s	 ^' ^ )p/gePlq}

.__^......,m.-am-,.--.._
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(8}	 D	 =	 (1	 +	 ^F(s	 ^ ^ }p/q ,^	 - F(s	 ^	 ^ )P ~ / q 	vPr 	/ qr	 }

where

(9}	 q'^ ^ L(s	 + ^)	 - F(s}^	 P+ ^	 (Pq^ +	 l )/q

(lb}	 q-	 = L ( s}	 -	 F(s	 ^^ }:	 P	 ^	 ( P q	 -	 l)/q
t.

The	 above expressions for	 the vertices of the feasible

quadrilateral	 will be discussed in greater detail in	 later

sections.	 We note here that neither of the vertices A,	 C, e'^'

b	 nor	 the	 paints in the two sides	 of	 the	 quadrilateral

determined	 by them correspond to Lines	 that have the	 chart

code	 ( I^,	 q,	 p,	 s}	 after digitization. 	 It	 is	 also	 very

important	 to note that ( since we are worIcing with lines 	 of

non-ne ;^ative	 slope	 <	 1 and non-negative ordinate 	 to	 the

origin	 <	 1)	 the	 quantities	 p^,	 q^,	 q	 are	 strictly '^

°" ositive	 while	 ->= 0 (in fact	 from ( ZO)	 it	 follows	 thatP	 +	 P	 s

p -	 = 0 only if p = q^' ^ Z)e	 This	 remark,	 which is	 omitted

in	 ^bo-3mj,	 is	 crucial to provide a correct count 	 of	 all j

.^ distinct	 digital	 Ii Tle s 	 of length N	 (cf.	 Proposition	 l0).
}	 ffgi
^	 ^

It will be Proved	 in the next section.

i
.	 ^

's ""^,

:^

^.

^ie3

r

i

,.
,.

i
1

^'^

^^_ -_	 _. -
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":.i'

^:::

^l

Figure	 2.2	 Feasible	 region	 for a	 digital	 line.
The digital line consisting of those pixels with
darkened boundaries has the shaded area as its
feasible region.

D
C

B

A

Figure	 2.3	 Intersections	 far	 the	 feasihle	 region.
The four boundary lines A, B, C, and D of a
feasible region are shown.	 The intersection
of A and D always lies between the parallel
lines	 B and C. These lines in the x,y space
correspond to the vertices	 A,B,C,D of the
feasible	 quadrilateral	 in the (e,^r)	 parameter
space.

it	 ^

n
D
i1

^	 1

p

0
D
I'

^ RI
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^, Section	 3.	 -lligi.tai	 Line	 pormuia	 ^'raofs

We	 provide here	 the	 praofa	 of	 the	 iEormulas	 t^)	 --	 (IO}.

of	 previous section,	 since as we pointed out the manuscript

^'
^.

jAo^- ^.] a.s .unavailahZe and sage	 errors	 might have	 occured	 in	 the

C/^
otiganal	 dex^,vations	 o$	 these	 foxmulas	 ^]o-Sm]	 ,

^:: The	 z^eader	 may	 safely skip	 this	 section w^.thout	 lack	 of

Continuity.

L= ° We	 begitt with an observatie^n from	 Lit-^W] which	 rema^.ns

valid	 for	 ].fines of	 finite	 length N due	 to the	 fact	 that alL
^a

digital	 Imes arise out of the digitization of lines of the
i
f;_, form	 y = pJq x + m jq ^ 	 U <= cn < q^	 p n q	 L	 (We assume	 q >I

^.

' since	 for	 q	 -^	 I	 we	 only	 consider	 the	 line	 y '=	 0).
:_

^i.^ ^; Lemma	 L:	 Por	 a Line of slflpe p/q,	 vertical	 displac^:ment

^'"
^^

upwards	 by	 ^./q	 units	 results	 in a cyr_lic	 shift	 of	 the	 code

. ^ ;^̂  ^,.

^'
by	 ^	 digits	 to	 the right within each segment of length 	 q,

^^, I	 I	 -j
^L

where R is the solution of the equation

(ll)	 Lp ^ -1{mad	 q},	 0 <	 <	 q.
^;

^^^`^ Proof:	 Ear	 the	 purpose of this	 lemma we can	 consider	 a

`
^"' digital	 Tine	 of infinite length generated by the 	 Tine	 of

I
c^

equation	 y	 ^ (p/q)x ^ e,	 0 <= e < 1.	 When e = 0 the	 line

^.
contains	 exactly those points in the lattice ^ 	 of the	 form

t lC q ,	kp }, k E ^	 When a is	 increased the node remains	 the

same	 until	 new	 lattice paints Lie on the Line, 	 if a	 new

lattice	 point	 (q'q	 p')	 appears	 for a vs7.ue e^,	 then	 one

gets	 a	 transposition of ehe 0 which corresponds 	 to x =	 q'

and	 the	 I	 that carresp`ands 	 to x - q'	 ^ 1	 for	 values	 of
I

e	 < ea	,	 e ^ ee ,	 as a quick	 look at the picture shows.,	 `the
4
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^^
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. paints	 ( q'	 + kq, p' -^ kp), k{ 7l, belong to the	 line y =

{Pl q )x ^ ea arad nv other lattice point does, otherwise the

slope could not be p/q with p^q 	 1. Notice that because

of the upward shzft we have 0 < q' < q and 0 < p' < p for

the first value e c where the above transposition takes

Place. This implies that the code of the line y = ( p /q)a^ +

ev zs the same as that of the line y ^ {p/q)x with a right

cyclic shift in each period of size q ` . 'fhe same fact will

hold between anir twa successive upward shifts of the same

ma^ni. tude a	 It remains to a.dentify this magnitude e9 and

the value q'.	 Since eo ^.s the first positive valve for

which s ►.sch a shifC recurs, we have that the- parallely^ram

of vertices	 ( o, o),	 (q,p}, (q',p`) anc^ (q+q', P*P'}	 is	 a

minimal parallelogram nn the lattice {sae [HWW, p. 2$J} and

hence its area is exactly ane, i.e.

(l^) p'q — q'p ^ qec 	 1

1^'rom this it follows that eo = l/q and q' is the quantity

defined as ^• by {1l). After successive transitions of this

size, ( ar what is the same after q successive cyclic shifts

of size ^.) we ^o back to the original code.

We are now ready to relate Che code ( N, q,p,$) to the

family of lanes that induce the same code. First, we know

that it is ^.nduced by a luxe of the form

and we would like to fi.nrl the relatian between ► s and m.

The lemma 1 tells us tk^at

(1^) Qm = s(mod q).

^'
.,^



^^^

i	 ; -	 ,I^

Hence, we have

(iS} s = Qm -- kq for some k >= 0,

in fact, using the function I' introduced in {2) we can

write	 '

s = F(^m)

since all the function F does is to select a representativE

in	 0,^.,..,,q- L 	 far every element in ^'/q^'.	 Substituting

the expression (1S) into (13) we obtain

(16)	 y - ( p /q}s + an/q = ( p m)/q ^ ae/q - kp = p'm-kp a 2!

where Che tlti^td identity was obtained using {12} (Recall

^ ^' q' iz^ (13)}. That is, we see khat Che value s has the

property that for x W s the point in the line (13) is a

lattice paint. Furthexmore, this is the first lattice paint

in the interval 0 <= x < ^ wh^.ch lies on the line, other-

wise the slope of the line will be rational with denom-

inator strictly smaller than q and in contradiction to the

fact, tae axe assuming that the chain code has smallest

period q (this justifies khe letter F to denote the

function on ^/q^ as defined by (2)). We can also conclude

that the value y in (I.6} is give
t
n by

'Y = ^{p/q)s^ and m/q = t (pIq) s^	 ( p /q)s

since 0 <= m/q < ^,. This tells us that the line {13)

coinc^,des -with the line B liven by the dual coordinates

{b), i.P.

e = ^'F(a }{p/q}^ — r{ s ){ p / q )^ rr ^ p/q•

A.s a corollary of this representation and lemma 1 we obtain

chat the line

^-^ _.
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ai0

^ Y ^	 (pI

^; coincides with

infinite line

F(s	 ^	 ^.) and

corresp andin^ ^v

;	 ^

y = ^F

hence,	 it f01

fact

e =	 1	 ^

t ,1 We	 could by ab

^-

^..{
stuallest geria

^^	 ^ B f^' (], l

sa that	 Q =	 7 ^

^ C ^ (1]

which has code

rl

i
n

^

1

1 	 ^

:5

I^

hi }/q .-.r

one C described	 by	 (7),	 namel y the ''

3ve	 first	 lattzee	 point	 when x	 -
^,

c	 (mi l}/ q 	<=	 l.,	 we	 have	 for the

t that
:^

^^	 •h 	 1
^T

3t	 the dual coordinates	 of C	 are in

^n

:.^

3ng^sa^e denote	 the chain code of C as ^^
.a

might not be	 the case	 ti^at q	 is tits	 ti ^^

is	 code,	 as we have	 in	 the	 example: ^.

I
LJ	 ^

1,

r^ y	 (3/1i}x ^	 1/11
^;

^	 I;
' 6

^	

!'^AA'

9
T. j

QQ1	 Q001 :^,^

with ^.argest	 abscissa still	 t= N.	 We are ^oin^	 to cans^,der _^
w

"..'; now two other lines defined by:

(17) A:	 is	 the line passim thrau^h the	 first ^.2tttice	 e.^	 ^

point	 a£ the line D and the last lattice
r

paint	 of	 ;^

^.^	 '
the	 line Cs

(1$) D:	 is	 the	 line through the	 first	 lattice paint
--^

of	 C

t.
p	 I;^

f

`	 _' and the last Lattice poittt of B

,..	 ^	 , ^

^^

phase t'W p 	 lines	 are well.-^defi.ned	 and	 rsot	 vertical sznce	 no	 ! ^
^R	 °i

^;

^	 î	 l^-	 -	 - ^..^.

.^...	 _.... .__	 ,..^..,,....,.,-

_.	 -	 T _
.^
	 y^..• T

,.....,...^,.A....,...,.w....M.	 ._..._..._^..__	 -_.	 ^.,.^	 ^^^w^	 ^	 -

.........._

_...a	 --	 -	 a



^^ ^
^}^	 ^

paint o£ B coincides with a point of C and these lattice

points cannot be above each: other. Neither of these two

lines nor the line C have code (N,q,p,s} ^ircce they pass

through lattice points - differrent than. those corresponding

to B.	 Let us first derive an important property of this

collection of four lines A,B,C,A. We note that if we have

two points in the dual. space L^ _ (ei , ^r 3 ), Lx = (e^ , rr^)

which correspond to Ii .nes with code (N,q,p,$) then the

point L of coordinates

e -- .lei ^ (l-^l)e z , rr = .lrrt^.(1-.^ )rrZ ,	 0 <= ^l <= l

	

corresponds to a line which passes through the same pixels 	 '

as L^ and Lt , in fact for a given x the ordinate y of the

carxespanding paint in the line l', is just y = ^ y	 ^

( 1 - -^ } 3► Z , with (x,yl ) f L 1 , ( x,y^) F L^.	 5o the set of

lines with Cade {N,q,p, $ ) forms a convex set in the dual

s pace. ^urthermnre, it is easy to see that this convex

set S2 must contain an open neighborhood of the open segment

	

defined by S and C, this is sim p ly the fact that a line	 ^

between B and C passes through the same pixels as B but

passes through no lattice points (by lemma ^.) hence its

slope can be ^iy^gled a bit and keep the same code.

	

We are going to look at the (possibly degenerate)	 `

quadrilateral ^ai.th vertices A,^,C,B. ^'or that purpose we

need to grind the equat^.ans of the sides, e.g. the a^.de AB.

We era looking for the equation of a Line ire the dual

space, that is an equation of the xorm

err -^ be ^ c, az + bz <> p,

^^

^,,	 ^;

.	 ..	 ..	 _	 _
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	The definition of A shows Chat A and B have a point in 	 ,;

	

Gammon, na:aely the first' lattiee point of the line B, say	 ^^

	

(x o ^yo), and hence every line which corresponds to a point 	 -

in AB passes through the same point, i.e. it satisfies

the equation

x rr + e = Yo
a

which has the desired form. Calling ( zo ,wa ) the last

	

lattice point of B, (x1 ,v= ) the First lattice point of	 -

	

C, (z^ ,w^) the last lattice point of C we have the following	
n,:,

equations

AB: xprr + e = yo

I? G :	 x^rr + e = y^
CA:	 zlrr ^- e = ws

:.^

We Hate that an one side of the line AB we have x Grr + e > yo

	

and on the other side we have xarr + e t yQ . On this second	 ^,I;

	side we have that no line passes throu gh the same pixels as	 ^^ II

j	 :.:
B, hence it cannot have code (N,q,p,$), therefore 	 Ze,r^};

	xoa + e >^ y p ^. We can conclude by a similar reasoning 	 r^i
^tl

that:

S^ G ^ x orr + e > ^ yo^ {} ^zbrr + e. > W wa^ (1 { x rr +	 e	 ,-^e
1

t yL^ {^ ^ z 1 rr * e < w^^
1

which is	 the	 quadrilateral	 determined	 by	 A,B,G,D.	 '-'

	

^o finish the proof all we need to know is that the	 ^`';:
._ b

half^open segments (A,BI and [13sD) are in S2. For the first

r
one it follows from the fact that there are. no lattice

	

paints in the open txiangle whose sides are the y waxis, the	 ^^

line A and line B, otherwise we consider the line through

such a lattice paint (x^ ,'YZ ) and ( x a , yo ) , it will have the

l _._—	 _..^_f-____ - ,...	 _	 --	 .... ^	 r _ ^_	 ._ ___	 -.^- . ^._	
-	

-.	
_..._ _.....d....^..e,_a..._^._	 ^.

^._.^

	

_ _	 ^^	 ^r	 Y

^.^.	 __ .. .,	 r.^^ .._of4T.If^4f.^ur^YflYlAalf!x!.MI!^^'!. YL nI. IY^MI^e.-f:^u.,ln-a lr...w .^. 	 r	 •	 ._	 -
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same code as B but clearly has period x b -xz which is strict-

Iv less than q (reca^.l x o = s < q), Similar reasoning holds

for the other segment. Suiamarizing, we have:

Lemma 2: The convex, set S^ of all lines cainci.des with the

(possibly degenerate} quadrilateral of vertices

A,B,C,D.

Lemma 3:	 It is never the case that A = D, i.e. it is

3.tnpossible that we	 have	 simultaneously that

ixb ,vo ) - (zo	 ,w^) and (,^^,v z } _ (z l ,w i ).

Proof: In this case d^ is a triangle (it cannot he a segment

since A F BC says that A is parallel to B, which eantradacts

(^.^)). One of the sides xs BC. Hence S^ eannaC contain an

open neighborhood of the open segment (B,C), this cantra-

dicta an observation made above.

It remains to write down, the dual coordinates of A and

D. For that we need to consider w^ich is the abscissa of

the last lattice point on the lines B or C. For the li^n^; b

we have that the abscissa of the first lattice point is x W

s, hence the last lattice paint is x = s + kq, k >= Q, x <_

N.	 This i.rnplies	 that	 k	 -	 ^,(N-s'} I q^ , so we get

x = s ^ ^(N- n )/q }q = L(s) (as defined by (3}}.

since the function L turns out to be a function well-defined

on ZC/q 71, we have that the abscissa of the Last lattice paint

in G is L(s ^ Q}. We get the following formulas companion

to (19), which	 we	 will	 need	 in a later section:

xo = F(s)	 Yp = r(p/4)F{s)^ _ (p/q)F{s) ^ m/q
{20)

	

	 z = L{s)	 w = ^(P/q)L(s)^ _ (PI q }L(s) T mIQ
xa = F{s-^^} y^ = 1 ^- ^( AIq)F(sa-^),^ _ (PIq )F(s+^)

u

^f

^	 _ -,r-..	
__	 _ _ _	 - - _.. _. .....	 ..,	 .^. __	 ^	 -

._.^_._^,	 _... .r.^... -ar:.^y.yn.Wnnrr-r....^..,r...,._...1 ^. M... _.. 	 ...,	 ^	 _ _ .._ _ _...	 .. ^.^	 -- -	 -- -	 -	 --
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.^

^^ ^^	 M L(s +^}	 w^	 =	 l	 ^	 ^(p/q)L{s^Q),]	 _	 {p/q)L(s^^}
^^

;',^

^^^

The	 line	 A passes	 Ch rough	 the Points	 (xo , ya }	 and	 ( z 1	 ,w^	 ) ..

^^i
^

hence
;_

._.,

,^

^^ Befine `y"

è 	^'

F

q	
^	 ^' ^	

...	

^Q	 ^	
P	

^ w{	 ^	 y^

J
^	 ^'

^	 ^ Then
i	 ^ .,

:^

^ q	 = L{s^^)	 -	 F{s)

^a and	 p^	 = wy	 -	 ya 	 =	 { p /q){z3 - z a )	 +	 l/ q 	 =	 {P /q )q^	 +	 1/ q ^^	 .

^i

^ verifying	 (4)	 and also	 showing p^/i q^ 	 =	 1.	 We	 already	 know ?j:

1
that	 q^	 [> 0 we want	 to	 show that Lemma 3 implies	 q^	 ^	 D.

,.v

',
.f

^" 
j In fact, we have

^ `

and	 the	 only	 problem could occur	 if s ^ ^.	 > N.	 Then	 we ^..i1
^

would	 have N ^- s < q and	 s	 ^ ^ > q which	 implies	 that L(s)	 _
^

,^

^.
''	 '^`^`

I
^{s}	 and F{s	 ^^,)	 = L{s	 ^ ^ ).	 This	 is	 precisely	 the	 situ3- ^ y	 ^^

.i

^^
tian forbidden	 by	 Lemma	 3.	 Now we	 want	 to	 find	 the

"^^^
u^

r^
ordinate	 to	 the origin of A, we have _

o	 a

•`!
^;

hence,	 using	 (20) we	 obtain ^-.^

e	 =	 YQ	 '	 {P^/ q^)x^	 =	 rF'{s){p/q}^	 ^'	 B{s){p^	 /q^	 ).
.,-

:'	 S
^—r

Th^,s	 finishes	 the verif?cation of	 (5;.	 Going	 through	 zhe
... Y

same reasoning for the line ^ we see that its slope is given ?^'

b y .,_	 ^̂ ,

`
so that q^ = L {s) - F(s	 ^ ^)	 as rdquired and

^^
"^	 .'^

^ p"	 _	 {P^q)z^	 +	 m/q	 -	 {{P/q}x,t	 +	 (m+l)^q)
..^^^

_
^^

^	 "

i

^^

'.L.-s:n..^_r.,_slisi....^_....[^a^^ac^x^f

rte. _. _.,.	 _..-._..--..	 _
t.^...._	

^	 ^ ^-^^^r'	 rte.	 t:Y
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r

verifying the relation (10). Writing

and using (20) again we get

e = y^ - {p I q )xi - ^. ^ ^,Cp /q)F(s +^)^

- (pr/A- )F(s^^)

which is the only thing left to check in (8) except for

seeing that q > D. But this is again Lemma 3. Since

q^ <= D only could occur if simultaneousl y N--s < q and s^^ <

q.	 A computation shows this leads to F(s) ^ L(s) and

F(s^^) = L{sa^^) which cannot happen.

Summarizing, we have proved:

Proposition 4: The formulas (2) - (l0) defining the gixadri^-

lateral. A,B,C,D are correct and furthermore q^ > 0, q > 0,

p^ > 0 and p^ >= 0.

Section 4. Feasible Region Shape

	

The descri p tion of the set of al?. lines whose digitiza-
	 .^

tion is a specified chain code of a straight line segment

mill now be used to obtain a worst-case bound on the

subpixel accuracy with ^rhich we can locate a point in the

image. We mill show that given a period q chain code of the

digitization of straight line segment, there exists a real

number x such that the total. spread an y--values at the point

x of all line segments with the given chain code is I/q

(see Fig . 2.2). Thus by selecting the midpoint of this set 	 ^'"
'E	

'^ ^^L:
^
^. -

	 of {x,y) ' s we have estimated khe position of a point on the	 1

^_.^-	 f^,

^;

_	 .	 __^__ _	 ....	
^	 ^ ,:^, ,.
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Tine to within an error of l/{2q). This provides our error

bound.	 In Section 5, we will examine the distribution of

i/(2q) corresponding to a probability distribution on lines.

To see the correctness of Che l/q spread, we first

observe that khe parallel lines B and C of the feasible

region (section 2) have slope p/q. We show that their

vertical separation is I /q. These Imes may be thought of

as providing a channel where we can find x values where the

spread is 1/q. HexC, the relaCionship between the location

of the feasible region vertices in (e,^r)-space and Che

location of points on possible real, line segments with the

appxopriate di;^itization is established. This will ya.eld a

polyhedral reaic+n in (x,y)-space which is the union of aI1

feasible lines. Finally, we show that there exists a steal

number x such ti^st the extent of the feasible region over x

is determl_ned only 6y the lines B and C, hence is of width

1 /q.

fY^e proof that B and C are I/q ^enits apart vertically

ks now given. In the case o£ the infinite _`igital line, the

calc.ulstion Chat the spread is 1/q everywhere ie stra¢i:t-

forward.	 By passing to the finite case, we introduce

boundary effects which cause the spread to be greater near

Che ends of the chain code, but Che following lemma shows

Chat at least one poinC of the l/q wa.dth channel is

preserved.

Lemma 5:	 .Using the notation of section 2 4 let B az;~d C be

Che vertices of the feasible region for a chain code w^.Ch

T:a

w^

.——--	 _	 ^.
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parameters (N,q,p,s} corresponding	 to a straight Line

segment.	 Then the difference of the y intercepts of the

lines corresponding to C and B is 1 /q.

Proof:	 It can be obtained from the way the line C was

defined in Sectioxt 3 or otherwise from a direct compvtaCian,

which we emit, using the ordinates to the origin that appear

in (6) and (7}.

We have established that lines B and C are separated by

a vertical. distance l/q. We have already painted out in

Section 3 that given an x valve and the four lines A,B,C,D

evaluated at ac, the part of the feasible region lying over x

is the convex hull of these fovt ^ values.

The next step in finding a point x o at which the

feasible region has height l/q is to determine the way in

which the lines A and D intersect the parallel Tines B and

C. We will show there is an interval [ a,b] ^ [O,N] such

that the lines A and D lie between the lines B and C aver

the inter^ral ^a,b]. 'fo do this, we establish the following

facts (see Fig. 2.3}:

Let I(.,.) demote tine x-coordinate of the intersection
of the two arguments,
l)	 The y^intercept of A is less than or equal to the

y- intercept of D
2)	 The y-intercept of C is less than or equal to the

y-intercept of D

5) I(D,C) <= N, I(A,D) <- N

From the diagram, we can see that seleatin^ a ^ max ( ICA,B),

I(D,C)} and b ^ min(T ( A,C),I(B,D)), the feasible region has

height 1 / q an thezxon'-empty interval [a,b].

..	
_	

_	
_.^..._^....	 _. ._W...4^....^... ^._	 v_	 • 	
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Lemma 6. The y-intercept of A is less than or equal to the

y-intercept of B.

Proof:	 Denoting the y-intercepts by Y A and Y^ we have

Y^ — YA = ^F{s) p l g7 -^ a(s)p/q ^- ^F(s}p /q1 + F( s)PS /q+

Since F{8) ^ s >= a, we are done if we Show p^ Iq^ -

p/q > 0. Hy the definition of p^,q^,

P^'I q ^'	 p I q = (p q^ + 1)I ( gq* )	 pIq

I/(qq^')

By Proposition ^+, we have q { > 0, hence we are done.

LemmR 7: The p-intercept of D is greater than or equal to

the y— intercept of C.

Proof:	 Denoting the y— intercepts by Y^ and Y a we have,

using the same type of arguments in the previous lemma

Y,b - Yc = F{s^^)(p/q - p / q- ) = F{s+^)/{qq )

and we are in the same situation as in the previous lemma.

Lemma 8: I(D,C) <- I(A,G}

Proof: 8y {l7) and {18) we have that I{A,C) is the abscissa

of the last lattice point of C, i.e. I{A,C} w L(s+Q), while

Z{D,C) is the abscissa of the fi7CSt lattice point of C,

F{s+ Q, ), From this it follows immediately the conclusion of

the ^.emrna. This can aI&a be done by using the dual

coordinates of A,D,C but at the cast of considerable

coxnputatioa.

The same proof yields:

Lemma 9: I(A,S) <^ I{D,D)

From what we have	 just	 said, it follows that

:.

:_

<: s

_ jj	 '^
iJ

ti y

^^

4

.o Y
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0 <= a = max(I{A,B),1{D,C)) <= min {I{A,C),i{B,D})
= b <- N

hence, we are guaranteed that there exists an K ^ [O,N^

such that the feasible region ovex x has height I/q.

Therefore, if we pick . the line L which is the average of B

and C, we have

(21)	 min	 max	 ^L(x) - L A (x}^ <^ 1/{2q)
0 <= x <^ N	 L EEN,q,p^s}

where L{x), L^{x) repre9ent the ordinate of the point ire L,

rasp. L Q , with abscissa x.

The meaning of {21) is that given a digital line with

period q in the sensed image and such that the underlying

real edge has slope between zero aced one, then we can deter-

tni.ne the vertical aspect between sensed and reference images

to an accuracy of 1/2q pixels.

Section	 5.	 infinite	 Digital	 Lines

The feasible region for infinite digital lines is

easily computed using the results of Section ^. 	 This

analysis is divided into two parts. Fox any infinite

digital line of period q, we show the channel consists of

two parallei Tines, which az^e a vertical distance ^./ q apart.

Thus, since the channel extends aver the whole x-axis ,

there is na flaring at the end as in the finite case. If

the infinite digital line is aperiodic, then we show the

channel extends over the whole x°axis, but consists of a

single line. Thus the inaximurn error is 1/2q of the digital

line if the digitai line has period q - and zero if the

,`
e'

a __	 ----
G _.	 ..	 ^	 _	 _	 _	 ..	 _:	 .. ,.,..
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digital line ie aperiodic. The aperiodic infinite digital

lines are precisely those infinite digital lines which are

the digitizations of lines with irrational slaps. Since the

irrationals are a set of measure one in the unit interval,

using the uniform pro^iability measure, we see that the error

is zero with probability one for infinite digital lines.

Before considering the periodic and aperiodic Lines
:,,"3

se parately. we Hate Chat any two infinite lines with the

same digitization are parallel.. T,et y = mx + b and y = nx +	 ^.:,

c be two lines. Then the difference, h(x), in the y values

of these lines at x is given by h(x) = (m -n)x ^ (b - c). Zf sn
	 L J

and n are not equal Chen there exists a Ib>Q such that ^h(x))

>1 for all x such that f x j >iC. Thus the two lixtes cannot

have tkte same digitization.
	 ^!

We now consider the case of infinite digital lines of
r^

period q. By the feasible region description in Section 2, 	 ,^.

the Lines corresponding to the vertices, A,B,^, and D of the 	

^^

feasible re g ion in (e,r}) s p ace have slopes p~ J q- , p/q,
..-3

p^ /q^. Fixing p, q, and s and letting N go to infinite, we

see the above result on the stapes of infinite lines having

same digitization imply p T/q^, and p } /q^ mast approach p/q.

Inserting these limits into the forznul . as for the vertices A

and D, we see that, in the limit A^B and C^D. We have shorn

in Section ^ that S and C are a vertYcal distance lIq apart.

This establishes the result far the infinite periodic

digital. line.	 ._

The infinite aperiodic	 line	 requires a differenk

1)
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approach. We first cite a version of a classical result

[H-W] an lines with irrational slope, Let f(x} = mx + b be

a line with m irrational. Than the set ^mx + b - ^mx + b^:

x is an integer is dense in the unit interval. tt has

already been shot^n that two lines with the same digitization

have the same slopes and can only vary in their y- inter-

cepts.	 Let r>0 be given. Then the digitization,, L, of the

line q = mx + b (m irrational} is aperiodic sa there exists

l.nte gers K^ and Ki such that mR^ ^- b -- ^mR^ + b ,^ <f and mRZ

+ b - ^mK2 + b^ > 1 - r	 Thus decreasing b by more than

E would change the digitization at K^ and increasing b by

more than E would change the digitization at ^. Thus for

any e > 0, we cannot change b by more than without changing

the digitization. Hence b is fixed. Since zn is also fixed,

the channel. is the single line y = mx + b.

Section 6. Invariant Line Measure

A probabilistic analysis of geometric accaracy requires

a probabilit y distribution in the fundamental ob;^ecta, the

lines. It is tempting to place a uniform distribution on

the coefficients of the lines represented in some parametric

form.	 Unfortunately, there is na canonical parametrization

and the measure will not be uniform with respect to other

parametrizations. A customary escape Pram this quandary is

to impose some parametrization independent conditions which

single out a probability measure. In geometric probability

^,	 r-	 problems, one generally assumes the measure zs invariant
	 '^

^.
^^:	

N

®^ 

^,

`^	 .
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under kranslation ar:d ratatian. o£ khe geameCric Figures, zn

our case the 1in^:s. '^hi.s uniquely dekertnines a caard . itaate

system, khe (p,W) polar coordinates a£ a line, in which the

disCribukion is uni£arm wikh respect to the parameters as

shown in fS, p. 28]. °^'Ta write this measure in teams o£ the

dual coordinates we appeal	 to	 the following figure:

We clearly have

p ^ e.cos{ ^' - n/2) and ^/2 - U = ;r .- rp

hence	 p = e.coslJ	 and

dp ^ d rP -	 (cosfl de	 -	 esa. n (^ df^) n d f^ = cos H de dH

Using	 tan Q ^ rr we obtain dfl = cosy fl d rr = ( ^. ^- rr^ )^	 d rr ,

so finally

{ 22}	 d nd	
3^2

is Che invariant treasure. We want to normalize (22} so that

total treasure o£ 0 <= e ^ 1, Q ^= a < l is exactly 1^.	 From

{ 2 3 }	 ^ (l -^ cYZ) 3^Z d a. T x ( 1 ^. az )- y^

we obtain that z, ^	 nor^ralized	 invariant measure i.s:

-	 --..___._.__ __.	 ^	
.^ ^ - --- - _	 ___......._.-,^.--m^-- -



1
	

(25)	 dp. -^2'{1+ 4z`) "rte dedac

It is abw easy to compute f f(e, ^ )d^. , where ^ zs the

q uadrilateral A,B,C,D formed by the lines of cads {N,a,p,$).

TC is just necessary Co recall the equations {19) and (24)

of the sides of this vuadrilsteral:

P^ / q ^	 w1 - ^ 2i	
a 3fd^C =^2	 ^	 ^	 f{e,a)de (doC/(].a^o: )^' )

p / a 	 ^ y — x

	

(25)	 ^'
rti J q	 y^ - cGxi	 a 3/`2.

p- / a "'	 wo - z^

In particular, using the definitions of p^,q^ , p- , qr which

appear after {24):

l3 "

^.^ µ{^)
A / at	 i 3 '^.

_^	 J	 ({w^-.y4)	 ^'	 {xo-z^})(da^J(1^^ ) J )
p/a

^„ p/ a 	z 3/2
c+G^	 ^	 {{y -w	 }	 +	 {zo -x	 )(dt^/1^a'	 )a	 s

P 
/q_	 ^,

p^ / q+

'^ p/a

p J a	 _	 2 ^/x

pYI9
t/z

= V[	 ^ l I((P^)	 '^(q*)Z)^'2 -	 CPPf '^	 ^iq+)/{p^^q^}

^^^ ^-	 1 /{{p	 )^	 +{a') ^ } tax	 -	 {pp^+	 qa^)/ {px^-gZ)`!2^

Regretfully, this	 expression is	 a bit	 complicated.	 One can

^	 ^A compare	 it with	 the F^ebesgue measure 	 of ^	 trithaut	 much
E

difficulty and finds

In	 fact,	 for the analysis	 of next section we would 1i.ke tea
i'
^^ compare	 the ^„-measures	 ar	 th.e I^ebesgue measure	 with the

^^ measure	 an digital	 lines which assumes all	 of	 them are

t^ ^^
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e qually liitely. Computations show that the invariant line

meastnre tends ±:o favor lines with shalt q, es pecially the

harizantal line has a rather big weight; while the uniform

measure on digital lines tends to favor lines with higher q.

The following table . , gives our computations for lines of

Length N = 10.

'CABLE 6.1

DIGITAL LINT INFORMATTON

	

q	 % TOTAL AREA	 % FROBABILI 'CY	 Y DIGITAL LINES

1 18.1$2 I7.469 0.74
2 5.051 5.137 1.48
3 7.684 7.809 4.44
4 6.782 6,868 5.93
5 14.250 14.43$ 14.$1
6 9.524 9.514 8.89
7 19.444 19.626 2b.67
8 8.514 8.552 14.81
9 7.684 7.720 16.30
10 2.886 2.868 5.93

<_

^:
u :^

In the next section we discuss Che error analysis of the

procedure outlined by {21), under the measure that saves all

digital lines equal weight, we leave for later the compar-

ison with ocher error estimates based an the invariant

fneasure.

Section 7.	 Digital	 Line - Probabilistic	 Analysis

A worst case bound on registration accuracy using a

digital edge was developed in Section 4.	 More realistic

error in9ormation can be obCained using probability. 	 In

this section we consider the question of obtaining pxob-

ahxlistic information on the registration error assuming the

real world edge giving rise to the digital edge is generated

^^
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by a natural distribution an edges. We have procedures for

estimating these probabilities, but due to the considerable

computational cast involved in evaluating these in special

cases, we prefer to first seek analytical simplifications.

Many probab^.listic questions pertinent to the geometric

accurac y question can be faimulated. Several of the most

basic are:

1) Given a maximum a1La^wed registration error, what is

the probability that the actual error will i^ot

exceed this?

2) What is the expected value and the variance of the

re g istration error?

3) Given a maximum allowed registration error and a

maximum allowed probability of error find the

largest re g ion of lines (in some sense) such that

lines coming froca this region will result in an

acceptable size error an acceptable percentage of

the time?

We now turn to an analysis of the first question. We

wish Ga determine, for any acceptable error Level in the

estimated offset between sensed and reference ima ge, what is

the probability that a random edge will result in a digit-

ization wh3.ch permits estx.mation to less than that error

Level. Though a simple formula for these probabilities as a

function of digital line length is not ava^.lable a proc-

'	

^

s;	 ^	 ;	 ;..	 ^^k	 educe far calculating these probabilities for any given Iine	 ^^

^.,	length, N, is described and results for the case ^ = lfl are 	 ^'

^^	 !

^...	
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presented. Ln additfon we present Asymtntic upper bounds on 	 '

the error.	 ^_

The basic ap p roach to computing the error probabilities

is quite simple. A-probability density fur:etinn is given en

the set, A, of all lines with slope tae^;Ween 0 an^i ]., 	 going	 ..^

through the pixel with lower left vertex (0,0),	 Since a	 ^^

	

line has only one chain code, the sets of lines with 	 `

	

different chain codes gives a partition of the set A. 	 -

	

Hence the density an lines induces a density on chain 	 '

codes.	 Igor a chain code caith period q, the maximum error

is 1/^q as was shown in Section 4. Thus for any specified

	

error h, we must calculate the probability of the following 	 "',

set, B, of line chain codes.

..,

The act of all linear chain codes of length N can be
14

enumerated.	 far each chain cads in B, the corresponding 	 j`.:^

feasible quadrilateral can be calculated as in Section 2.

	

The density function on lines can then be integrated over 	 ^^
.	 ^_^

	Che quadrilateral and the sum of these integrals over all 	 .

members in B computed.	 This	 sun yields the desired	 _

probability.	 ^^

The problem of enumerating linear chain codes o£ lines

	

through the origin was discussed zn (R"W) where also an	 Vtl

	

algorith;n for generating the set of linear chain codes was	 ^^
l

presented.	 We have not found any estimates in the liter-.	 ^_^

store of the number. of chain codes of a given length.	 The	 ;,^

problem is that the the shortest period of the digiCal line

'k	
t
M

_, i	^	 e
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^'
^. of length N aorrespondi .ng to a sine

^'u
might be	 str9. ctly smal^. er	 than q.	 Since	 such	 iinea	 generate

,--^.

ail	 fire	 possible digital	 lines and we can associate to each

^j
a	 code	 (N,q,p,$),	 the	 problem red^scea	 to characterize	 those

,4

values	 of	 s	 for which this code	 does	 not	 coincide	 math

`^'^ ^N^P:q^^)	 with	 q < q.	 The answer lies	 in	 the	 fallatvin^.

L:..
Proposatian	 i0:	 Given a code (N,q,p,$),	 the	 necessary	 and

';^, au£ficient	 condition that	 it does	 not	 coincide with a	 code
^: .

of	 str^.ct1Y	 smal.ier	 period	 is that	 q^'>	 0 and q-	 > 0,	 where

^T, q'^,	 q` are	 defined by	 ( 9)	 and (l0).

^;

Proof:	 The	 necessity of this condition	 is	 guaranteed	 by

Proposition 4.	 Fn order to go further we have to analyze

what condition on a ensures that q^ > 0 and q- > 0. We have

q" ^ L(s) — F(s+ ) = s + ^.(N-s ) Iq,^q - (s+Q) -^ ^(s +^) /q1 q

Note that i,f N-s >= q then we have that the digital line has

period q, since the digits in the chain Cade corresponding

to x - s+i,...,x = s*q <= N', form the chain code of the

standard line, i.e. of y = ( p /q)x. Of course in this case

we also have N - s - Q >^ q _ Q > 0 hence q^ >=Q > 0 and

q	 >= q - ^. > 0. Suppose now N - s < q then the Gonditaon

q- > 0 implies that s+ ^ >= q and hence we have F'(s+Q) -

s+^-q ^ Note that

since q + > 0 iuiplaes that N-(s+^)> = 0. So we anl}r have to

prove that a line far which N-s <q, and N-F(sa-^.) >= q has

Div
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smallest period q. Notice that this says that the line y

{p/q}x t m/q passes through a single laY.tice paint at x = s,

while the line y = (p/q)x + (m+l)/q contains two Lattice

points, the first one with abscissa F(s+Q) < s. We know

hence that this second line has period exactly q since if we

restrict ourselves to F(s-^^} ^• 1 <= x <= F{s+Q) + , q <- N the

q da.gits in the chain code of the second Line are those of

the standard chain code. Ta prove that the original line

has smallest period q it is enough to show that the same

portion of its chain cede has smallest period q since the

period of a chain node cannot be sinaLLer than that of any

subchain. That is, we have reduced ourselves to show that

the chain code of the digital. line of length q carrespondw

ing tv y ^ {p/q) x + (q-1)/q has smallest period q. Calling

c• the standard chain code and c^ the chain code of this
i	 ^

other line it would be enough to move that the sequence

^c^ ,...,cq^	 is exactly the sequence ^c^,...,c^^ making an

appeal to (1). I3ow, as we have argued in Lemma 1, the code

^c^ ,...,c^^ is obtained from ^cl,...,c^^ by making c =1,

-0, j = c , 1< W j<=q - 1, while ? ^0, c^ =l. To finish the

proof we only need to show that the sequence c^,...,c ^ is
^^

symmetric, i.e.

c, = cQ_3+i

But c^ = ^,( p / q ) j ^	 i( p/q)(j - 1)f and cc^^ -3i 
^ !.{ P/ q)(q - j - L }^ -

{P/q}(q-^)^	 --	 p^- ^-(p/q){ j - l )^ 	--	 (P^- ^-{P/ q )j^	 ).

As long as x is not an integer we have ^-x^ _ -^x^ -1. 	 But,
1

2 <-j<=q-1 indicates that neither (p/q)(j-1) nor (p/q}j are

:tom

_ __	 ^
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integexs, hence

Due to the	 above	 characterization	 o£	 cJ	 we have

which shows that the digital Line of length N corresponding

to Y = ( P /^!)^ '^ ( q -1)/ q has smallest period q, and hence the

same is L'rrxe far tine original Line.

Proposition ZO and its proof gives us a way to compute

the number L(t^,q) o£ digital lines a£ length N and smallest

period q. In fact L(i^,l) _ ^., sa we can consider q>l, then

the situation N--s <q can only arise i£ N<= q^s - 1< = 2q - 2, that

is, (^^ +2)J2 <= q. Hence, i£ q < (N^-2} / 2, s can take

arbitrary values and it £ollaws thaC

(27)	 L(N , q) = grp ( q?	 fcr 2 <= q < (N^2)/'l

where ^(q) is the ^ulerr £unction that counts the number of

valueE p, l[=p< = q, p q = 1. 't"his formula is clearly valid fer

q=l since ^I^(f} = l. In the remaining range of q we can use

that w

M1M1

hen p runs over all the values considered in +^( q ), sa

dies K , where we remind the reader ^is defined •by (4). We

£ix Q and divide	 the	 range	 of s into two classes

t? <= s <= N - q, N - q^-1 <= s <= q-1

^, The second class	 i.s nit empty since we care assuming N-r2<=2q.

^'° In	 the	 first class every line ha.s	 smallest period q,	 this

i'T accounts	 for N-- q+l Ia. nes .	 la the second class we have	 two
L.

subclasses,	 s+ ^ < q and q <= s^^.	 The £ irsL•	 one	 cannot

^'
L:,

introduce any lines of period q .due to	 the condition q^ > {).

In the second one we have to consider whether

14

f+

¢1

?	 4
7^

^..:^1i
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or not.	 Only if this inequality is true we get new lines

{due to the condition q'F > 0).	 Hence we must have

max ^q-^, N-q^l^ <= s t- min ^q-1, N-^^

which gives us I+min ^^-1, N^-q, Zq-N-z, q -Q-i^ lines ( notice

that this minimu^a is non-negative). Therefore, in this

range of values of q we have

C28)	 LCN,4) ^ {N- q* 2} rp(q) +^min^2q--N-2, q- R-1, ^-1, N-q^

where the sum takes place aver all values ^., 1 <^ !^ <= q--1,

^^q	 1. Since this expression is a 'little bit har^3 to work

with, we can use rapper and lower estimates, ^#^ {N,q)

q rPCq), L^CN,q) _ {N-q+2) rp Cq) far q in this range.	 Finally,

setting L{N) = total number of digital lines aE length N, toe

get the estimates

fN / zl	 N

N

a=1

Using the above formulas we can araduce the following table
far N = 10

f{

:^.

--	 r _. ^..._._ _ .. ._	 T	 ^	 _ ..	 _-- --
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TABLE 7.1

q	 (q)	 L (N, q )	 L{N,q)	 L {N^q)

1	 1	 1	 1	 1
2	 1	 2	 2	 2
3	 2	 b	 5	 6
4	 2	 8	 8	 8
5	 4	 2Q	 20	 20
6	 2	 12	 12	 1 2
7	 6	 30	 36	 42
8	 4	 16	 2Q	 32
9	 6	 18	 22	 54

10	 4	 8	 S	 4^

TOTAL:	 2I	 135	 217

We notice that L(N} is fairl y close to L* (N) and very

different Pram L^^(N). L ^(N) would have been the count if

no digital lines drop their period when considered to have

finite length. Since we want to develop some asymptotic

bounds for the error of the choice (21} for subpixei

accuracv We introduce a different upper bound function

L * (N,q} defined as follows:

L^CN9q} = L(N,q)	 1 <= q <= C(N /2)^
(30)	 L^{N,q) = L^{N y q} + (2q--N-2)(9^( q}-2)^ ( N /2)-^1 <- q

L^ {N,q} = L,^(N,q} + (^T^-q}{^{q) - 2) , C2/ 3}N^213 < q
<^ N

The choice is motivated by choosing ^:he smallest of the two

terms independent of ^ in the minimum that appears in (28).

Since the values ^- = 1, ^- = q--1 make. this iainimum zero we

only have ( rp (q}-2) terms in the sum. We also note that

L^ (N,q} = L *(N,q} for q = {N/2) -^ l (if this value is an

integer) and for q = N. For N = lO, we have only three

values to compute

L* (N,7) = 38, L^(N,8) = 20, L^(N,4) = 22

4_	
_	 "y'Q_^	 _...^.-._.....yam__.__—	 – _ _	 ^	 __–_-
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which gives I, (1Q} = 137 in this case, a very food appraxi-

mat ion!	 _-

.-^

i
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^.r
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^. J' 	f 	 ,^
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L.:^^	 ^.
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,-,
i
L;

^ry^;
N

{We have used L^(N)	 = ^ L^(N,q))•
q=1

^^
r,

PROPOSITION	 11:	 The •^xact	 number of digital Lines	 is	 given
t..

by

^^ .n

the	 formula	 L(N)	 _	 £L(N,q},	 L(R,q)	 defined by	 C27)	 and "

^" (28) .

q=1.
It	 satisfies	 the	 inequalities

^.

where the functions L * (N), L^{N) have been defined above and r

satisfy the	 asymptotic estimates:

(31)	 L^(N)	 =	 (3/4^fZ ) N3	 ^-	 f}(N^logN)	 0.076N^ _

"' (32}	 L^ (N)	 _	 (IO/9'^'2 )N^	 + 0(N Z IogN)	 O.112N3

PEt00F:	 We only have	 to prove the estimates 	 {31)	 and	 (32).
.-^

We	 use	 the	 methods used	 in	 [H-W]	 to prove	 the	 Following
^

asymptotic	 foxsnuia: ^	 ^y

N

(33)	 ^(N)	 _ ^^( q )	 =	 3N i /'f}'^	 +	 0{NlogN).

}

`

l i	
^`

The	 idea	 is	 to	 write	 using	 the	 Moebius	 fua^ction^ ^
^, J

^,^

It	 wi).l be	 useful	 to	 find	 first	 the asymntotics of L	 (N}.

'^
1

I^`or	 an3^	 N,

^,^ q=1	 -	 q^l	 d^q
i

`^ We now write q - dd'	 a.nd substitute	 in the	 lasE	 term:
F

` dd'[=N

N
-	 ^	 d	 (d)	 ^	 (d° )Z

d=1	 ^	 d'^^N/d

(
i

` J

_	 ..	 ..	 ...._.	 .^.___.	 .. __^	 T_.^.	 .^_	 _	 __
it	 1^^a.^61._ ^,.

	 ^	 ^.
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The term	 ^	 (d')^	 (i/3)(N /d)^ + 0(N^Jd^). Inserting
d <^N/d

Chas in	 ,

I,^` ^ (N}, we obtain

N

L
*x
^{N) = { 1/3) N^ ^ ^. { d)/d ^ a(N^logN).

d=I

Note we have used

^ d}ti{d)N^/d2 ^ <= N^ f. I/d = o{NZ^.ogN}
d=1	 d= I

But we Izave ^^{d)/d am = 6/qy^ [H-^I] . ^Fence^ ^^.(d)/d^
2	 ^	 ^'

6/^ + 0{^,/N).	 SubsCituting this into ^.^^(N), we get

(35)	 L**(N) = 2N^/^2 + D(N^logN}.

We can now get the asymptotic farmu3^a for L *(N). Reca11.

that we have, from {29),

L^{N) = N3/ {^+'I^^) ^ 0(N^IogN)

	

N	 N

N
We can write	 ^. ^(q} = ^{N) - ^{N/2}

(N/2)+I

= 3N^/^'^ - 3N^f4^1''" + 0{NIagN}

9N^ I{4'A'2 )	 o{N1.agN)

N
Similarly	 ^ 4 ^(^) = L * ^{N} - L^^(N/2)

{N/2}+1
= 2N D /1F^' -- (2/'lY^) {N/2)3 + 0{N^lagN)

= 7N3/{^.'(i'2) + 0(NZIogN)

So that we tirially get L^{N) = 3N^/{4'il'Z) + 0{N logN).

Using the definition (30) we obtain:

	

(2/3}N+2/3	 (2/3)N+2/3

1	 CN /2) +l
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'-^'	 ^	 N
^ {2N a^2)	 ^ ^(q) - 2	 E	 q ^(q)

	

u:	
{2/3}N +2/ 3	 (Z/3)Nf2/3

	

,--,	 N
- 2	 ^	 CN -q }

= L*x((2/3}N+2/3) +2N(^{N) - ^((2/3 }N^2/3 })
L

- Z(L^^(N) - ^ ({2/3}N+2/3)} ^OCN^)

	^ 	̂ We introduce naw (33) and {34} into this expression;
^:

L^(N) ^ (6/fi'^) ((z/3)N) 3 - 4N^ /'^'^ ^ bN^/'h'^

	

;!:	 _(6N/^'t'^){ ( 2/3 )N)^ + 0 (N2 1ogN}

	

r '	 = (l0/(9^1'^))N3 ^- 0(N^'l o$N}

	

.-:,	 We note that l,^(N) =' 0.076N and L^(N} ^ 0.112N if we

	

L '	 disregard the 0(N x1ogN) texm^ for N = l0 these approxima-

	

^	 bons are not very good. Nevertheless for the coming

estimates it is only the leading term that aaunts.

Remark: 4n purely heuristic grounds one can propose an

ap proximate formula L(N) to the correct value i,(N}. It

	

t^	 consists in assuming that the values	 that appear in {2$)

	

,-,	 are uniformly distributed with density ^?(q }/q. 'thenI
L'.^

(2/3}N^2/3

	

^-,	 L,(N) = L^{N) ^	 ^	 (^(^}/q}{za- N-2)(Nwq)

{2N/3)+1
L.^

	

^	 It is clear that L ^{N} <= L{N) and also L{N) ^ L^ (N},
it

	

^. ^,^,	 sa.nce N-qtq and 2q--Ntq a.n both sums.. It is not apparent how	 ,^
c ^	 r.r	 I

	

g ^,	 to find the correct relation between L{N} and L{N} but we	 ^ I^k

note that for N ^ 10 we immediately get from Table 7.l the

	

^	 >,

remarkable value
x

M

i^
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^(^.^)	 135,47

Besides, one can show, by the same methods used in Prapoai-

tian il, that the following asymptotic development holds

which fits right between the values in Proposition 11.	 it

is tempting to conjecture that L{N} has the same asymptotic

behavior.	 In fact, we comput+^d L(N), using (27) and (28),

N
and L(N) for N ^ 1 p0 and found the following values

L(N)	 = 104,359

^,(N)	 = 104, 949

L C N }/N 3 = 0.104359

1/4Y x 	= 0.101321

which clearly reinforces the can,7ecture.

Let S{N) be given by
N

q=1

Then the offset error incurred by using the iine parallel to

B passing through the middle of the channel is given by

C37)	 E(N) _ ( ( 1/2}S{N))/L{N}

when we use the uniform distribution, on. digital lines.

PRQPOSiTION 12:	 Up to terms of the form 0((iogN}/N z) the

offset error defined in	 (37) satisfies tke estimates

(38} {^9I40)(1/N) <= E{N) <= (S4/54}(1/N)

PROOF: We start with the cower bound for E(N). it is clear

that E(N) ^= 1/(2N). To improve on, this we note that up to

4 ^ N/2 the sum of the terms in S{N) is exactly ^ (N/2},

hence

^	 ._	 ___



r ]6F_^^. ._	 _	 ..	 _

J^!

N

. N L^^(NJ2} + (L{N} - 1,^^{Nj2))

Now	 N^ ( Nj2)	 > h'̂ ^(NJ2} because	 in S(N) we divide b y 4,

and	 here are considering	 I c= q	 C- Nj2	 on^.y.	 IC	 is-easy	 to

see	 thae the function	 {a+x)/{b^-x}	 ^.s	 strict^,y	 decreasing	 if

a	 > b, hence the above expression diminishes if we 	 repl.aee

L(N}	 by	 L '̂ (N) and we obtain

2i;(N) >= I N^h{N/2} + (L^{N) - L^^(Nj2))

_ ^(Njz) + {L^ (N) - L*^(N/2}}JN
L (N)

( :̂ j r^}{N2 j4} -F ({(].flj9)N^)jr2 - ^z/^^^)^N3IS))/N + 0(logN/N^)

{(^q/9}N3 }/tt^

_ (29j2d) (1/N) + Q(logNfN^)

^here^ore we get

E(N) >= (29j^0)(1/N) ^ 0(1ogi^ )jN^•

Let us now work an upper boundror E(N). We use a slightly

more complicated method. Tteplacing L(N,p) ^y L (N^t}) i^. the

expression oi: S{N) we have

{2j3)N +2j3 	 N

N

(2/3)N+^j3

...	 _ .	 __ .. ..........	 . _ _ _	 _ _ --	 u..	 _ .. _ .	 _	 .,_	 .._	 _ _ . _....__	 _ ..	 _ ,_ _ ._. __ _	 ..	 ... --
^, r
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The only new difficulty consists in estimating the term

Using the formula (3[^^) we get

N

(2/3)N•r2/3	 q d^q
N

° d^, (^{d)/d7ttl./3}{N/d) -^ 0(^./d)}
_

since by writing q ^ dd', we get ((2/3 }N •t• 2J3}/d <= d'	 <-

N/d.	 By the same argument we used to obtain (3S) we see

that this term is exactly

xhe first two terms its S^(N) can be com puted using (33), and

we finally get

^8	 e

Qn the other hand,

S{N) + {L^K {N) - L{N))/N <= S^(N) 	 :,.
	

,'.I

Dividing by L^ {N)	 we	 obtain	 {up	 to D(logN/N^ ))

{L(N)/L^(N)}({S(N)/LCN))- 1/N} ^ 1/N	 (2$/14){1 /N}

But	 L{N)/L'^{N) >^ L^(N)/L^{N} = 27IG^0

hence	 2E{N} - 1/N ^ {$/1D)C44/27){^./N)

which leads to the estimate {3$).

^►
REMARK:	 Corresponding to the heuristic estimate L(^1} given

aSove far the correct number of lines L{N) we can construct

	

s heuristic formula for	 the	 asymptotic error; E(^1),

E(N) = 112 5(N) /L {N),

where

^,	 N / 2
	 N	 2 x,

	 i

J

J

.J

,,

J

::a
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One finds, using the same type of reasan^.n^ as in Proposi-
tion 12,

S(N) ^ ( 6(1 -1o^2}lie }/^ft'x ^ 0(ZZ1v^N}

^(N) = (3{1- log e)}/^1'z {1/N) ^ 0(Ia^N/HZ)

^ 0.92/N

which is in fact in tune with the upper and lower bounds

obtained in Proposition 12,	 namely 0.72/N and 1.09/N

respectively.	 It would be very inCerestin^ to show that

E(N)	 has	 the	 same	 asymptotic	 behavior	 as	 ^(N).

We remark that though the asympCoti.c behavior of the

expected value of the offset with respect to the invariant

measure ^,, is very hard to obtasst due to the txatnre of the i

formulas from section fi, for an y concrete value ^f N a.t iB

perfectly possible to campsite this ex p ected valae using the

i
explicit naCure of the formulas for the measure ^,^,(^) of the	 ^

i
quadrilateral associated tc^ any digital Tins. We have done	 s

this for N w 10 and obCained:

a

..	 .
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TAIfLE 7.2

ERRQR	 PROI3ARlLITY ( MAX ERRQR) ^ ERROR

O.S000	 0.0000
p .2Sfl0	 €}.0147
0.1666	 fl.429^
0.1250	 0,0735
0.1000	 O.I323
0,0833	 0.2794
0.0714	 0.3676
0.0625	 0.6323
fl.fl5S5	 0.7794
0.5000	 0.9412
0. (30 p 0	 1 .0000

Given an entry, a, in tt^e first column, the

corresponding entry in the second column i.s the
percentage of digital lines of length ken whose
maximum re^istrakion error exceeds a.

Line length = 10

Table 7.2 k:rror probabilities for digital lines
without points missing

540
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Section 8 Digital Line	 Fitting	 with Known Slope

The procedure for estimating the best real edge givi,n^r

rise to a digitization .is improved considerably if we make

use of the fact that the slope of the underlying real Line

is knowne Tn our algorithm from the first year, discussed

in Sections 2-7y we used the point on the 'best edge esti-

mate to match with a caxresponding point on the reference

edge.	 This unfortunately assumed the horizontal offset was

known and the vertical estimate was to be estimated. By

using intersecting lines we wanted to minimize the problem.

In a new version of the algorithm the problem of needing to

k^aw kite x,^ -affseW hex; ^^^n :^lis^ $. n^ted a^sd tFac exrors are

considerably xeduced.

The original algorithm uses the line midway between B

and L where {A,f3,C,D) are the vertices of the feasible

quadrilateral corresponding to the digital Line. This Line

will not in getaeral have the correct, slope so thexe is na

way to map it into the reference edge by a translati.ran.

That is why we selected a point on the midline to use in

interimage matching. Our new algorithm is identical to the

old one except that we sele^.t the midline among alt Limas

with the proper slopes. Tn terms of the feasible quadri-

lateral for the digital edge, since we know the slopes we

know we are an a fixed horizontal line in y- intercept slope

space. Thus we can restrict our attention to the inter-

section of this horizontal line with the feasible quadri-

lateral and select the midpoint of this Tine segment as our

-.	 ^ .	 ,.
^^_	 _^,....:sy,_^^^,.:^,..^.^^..,^....r..,.....,^,^._....... ^...__.:.. ...... 	 _	 . _	 . _	 _	 e	 _
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	best edge in image space. We can now map our best edge	 ^- '	 ^^

`J

	estimate to the edge in the reference image, since the two 	 ^'

	

Pines have the same slope. Since we are mapping the entire 	 T

	

estimated Line and not a single paint on it, we axe oat	 !

	

using subpixel information about the offset in the x-direc- 	 ^• j
.^

Bart.	 The worst-case and expected error bounds previously	 ,,

	

derived provide bou^:ds, which in general are unduly pessim- 	 =^^

istic.	 Geometrically, one can see this as follows. 	 The

worst case error in the previous algorithm is half the ver-

	

Baal distance between lines B and C. For a real edge with 	
K^ '

,: ti
;^

the same slope as B and C, this maximum error can be

	

realized in the new algorithm. Far any other slope, the	 .- ^, "

	

maximum error is half the vertical distance between the 	 ^^,

41{
uppermost and lowermost line of that slope lying in tha

channel farmed by A,B,C^ and D. But this maximum separa-
,:..

tion decreases monotonically as the slope moves away from

that of B.	 ^.^ '.

	The above result an the decrease in error can be 	 -f i
`.b

easily given analytically.	 Assume the line B has slope.	 '^^ ^^^

m^ = p/q anal the real. edge has slope m^ ^ m om .	 The proof
^^

	for m^ < m1 , is simpler. Let the intersection of A and B be	 _

	

(x , yl ^ and let the intersection of C and D by (x , y2 ^.	 ^ ^'1	 ,^	 . r

	

Then (xl ^ yL ) is the le^et end point of the battam of the	 ^-^

	channel and (x^ , yy ) is the right end point of the tap.	 ^^ ^,

	

Since m Z ^ mL , the Iawerrcost line with 'slope m^ and going	 ^, ^^^ "
^.:^

through the channel. passes through (x , y }.	 Similarly,	
I

^	 ^	 ^^the uppermost such line passes through (x^, y^).	 Let B 	 ^.
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{^

have y- intercept b.	 Then B has	 the equation
m

},t^., y = m ix + b

^.,

i^

Since	 ( x l	 ^	 yi )	 is on s,	 we	 sze that h = y a - ma x i	 The	 !^

^. vertical

'-'
^^

separation	 between	 B	 and C	 is	 1/q so C has the	 equation
^^̂_

y = m ix ^- b ^ F/ q

`!.
^.

= m ix ^ y^	 - m l xl + i/q.

The	 lowermost	 line	 with	 slope	 ml	 has the	 equation

=	 +y	 m i x	 y^ - m 2x^

since	 it	 has	 slope mZ anal	 is	 constrained to pass	 through	 ^,

E: x
(xZ	 ,	 y^).	 In a similar	 fashions	 the	 uppermost	 line	 with

r
jf

13
slope m^ has	 the	 equation

,^'u The	 difference	 in y intercepts between the two	 lines	 with	
k

^j' slope	 m	 is: '^.
P

{^
r ^

;^

hz - yz _ mz^z - (y^	 mlx^)
'^

f

=	 m i x^	 ^	 y^	 - m l x 1 ^ ^./q - m zx^ -	 y l	 ^- m l	 x^^
I
^_	 ^./q	

{x2	 {xI
-^ m^--	 xz)	 ^ m2-	 x z )

`^". Since	 xx ^ x S	 and m 1 < m^ y	
{ m1	

- m^) {xZ -- xl ) <	 0.	 F^enca
t

?^
'^;

hZ	 <	 h an•^ we have shown that the maximum error
1

goes	 down

as	 ( m y	 -	 mZ} {x2 -- x l },	 The quantities x and	 x y	 can	 be	 ^	 i^
^

'

Z

^	 ^
,^^; calculated	 in	 terms	 of the vertices	 of the	 feasible quadri-	 ff'

1

lateral. ..

^{{

f
f

_.
,.,^_	 ^

_	 ^	 ^	 _	 ^.	 _.	 -
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Section 9. expected Error £or Vertical O£fsct f',sti.mation

1Tsing Slone

This section provides further prabablistic analysis of

our procedure fox estimating the position of real lines.

This procedure made use of the known slope of the real line

to restrict the set of feasible lines to lie on a hori-

zontal line segment in the feasibte quadrilateral. We now

describe various error expectations associated with these

procedures. First we examine the expected error given the

digitization and real line slope. Next we integrate this

error over the quadrilateral corresponding to the digital

line to obtain the expected error over all real lines with

the specified digitization. Finally this is summed aver

the entire image.	 if we view the horizontal offset 2s

known, this gives the expected error in the vertical off-

set.	 if we do sot know the horizontal offset, the compu-

tation gives the error in the linear relation between x and

y.	 A second line is then required to solve for values of

the x and y offset.

The expected error given the correct digital line and

slope a = the real Tine is a triv; .al computation. Ws have

shown that the scat of all feasible lines is a horizontal

Line segment in y-intercept, slope space and that our esti-

msta of the real line position is the rreal line in the

image space corresponding to the midpoint of the 'Line

segment.	 Since the i .n'variant	 measure an lines, when

restricted to a horizontal line in y- intercept, slope

space ' is the uniform measure on the line segment, 'the

__
.	 ,..	 _	 .-^
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^[

^:

expected	 error	 is	 merely	 the	 expected distance	 of a	 point

on	 the	 line segment	 from the center of	 the	 line	 segment.

The	 computation of the expectation is	 a simple	 computation ,^

u: using	 elmentary	 calculus	 and	 the result	 is	 r/k^ where r	 is

the length of	 the	 line segment.
3^

'- The	 next	 problem is	 to determine,	 for a given	 quadri-
^.

^,

^' lateral	 corresponding	 to	 a	 digital	 line = 	what	 is	 the
^:

expected	 error	 in vertical	 offset	 estimation.	 This	 is	 the

1 i -. expected	 error	 in offset estimation given	 that we use	 the

known	 slope	 of the zeal	 Line	 to restrict ourselves	 to	 the

'^ appropriate	 horizontal	 line segment.	 Mare	 precisely,	 let

yQ	,	 y1 denate the y-coordinate of the	 lowermost and	 upper-

most	 vertices	 of	 a	 feasible	 quadrilateral	 and	 let	 h(y)

Lf:
denote	 the width	 of	 the	 feasible quadrilateral	 at height y. `

h

I'
Then	 the	 expected error	 given that we	 are at	 height y	 is iI	 '

t -^ h(y)/4	 and	 the expected error over	 the entire	 quadrilater- '
j

' al,	 Q,	 is ^

^:Y

EEQ)= (1/k )	 y^'(hC y)/(l + y^)3^x}dy }

^o t

^-; where

`t

`^	 ^ -^1 z^

^,

k-	 l ^y	 )	 dy .

^a ^^I

';^.,
Values	 of ^(Q)	 for	 the various quadrilaterals	 are given ,	in

^; Table 9.1,,	 columns	 l	 and	 2. ^,

Next	 the	 expected	 error,	 ^,	 over	 the whole	 image	 is

M

r^^.

..... 	 _.
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computed by multiplying the error associated with each

quadrilateral, Q, by the probability a£ Q accux • ring (using

the invariant measure}. The value was computed to be .OS6

gixels. Thus tihe average accuracy in vertical intercepe

estimation given tha correct digital line is approximately

1/20 pixel.

Table 9.1.

Slope

a.00000
D.ol000
a.DZDDo
0.03000
0.o400a
0.05000
O.ObDDD
D.o7ooa
o.nsaoD
0.04000
o.l0000
0.11000
0.1204D
0.13D00
0,1400a
0.15000
D.1b00D
0.17400
0. 1.8000
O.1900D
o.z0000
0.21OD4
D.z2aoo
0.23ooD
0.24000

0.25400

D.2b00D
0.27000
D.28000
o.z9DOD
a.30000
0.31000
0.32000
0.33000

Expected errors vs Slope	 for bigiCal	 lines with -.
zero and	 tvra missing pixels.

^^

Number pixels	 ►rtissit^g
D 2

o.000aa o.00000
o.00lbl a.DOlss

'^
_r

0.0027 D.00326 -^
0.00282 D.00425
0.002G5 0.00494
D.00244 O.00SbO 'F
O.o01s8 D.DObz4 =,f

o.oDlsl o.oa71^ `:;^
o.oa147 o.oD$4o

r^

o.00z2z a.DlD47 G,
D.DD22z a. o119D
0.00281 D.01339 "^
0.00258 O. D144/+ ,:-^L i

D.00384 O.D1499
0.00321 0.01b1$
0.00415 Q.OI660
o.oa4b1 0.01730
0.OD393 0.01756
0.00448 x.01977 ^{
0.D0847 0.02447 --^
0.0049b 0.022$2
0.00512 D.022b2
0.00467 a.o2371

^^

a.0075s o.oz395
o.ol2so 0.o2^9z ^
0.00804 0.02504 ^
0.00500 0.02529 -1
O.00b5l 0.02556
0.00613 0.02723 .
o.oD^^z 0.x3094
a.00s^^ o.azss9
O.Q1l3S D.02734 ^•_
0.01$77 0.02472
0.01654 0.02651 ^
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0.34000 0.00981 0.02937
0.35000 0.00718 0.03I4G
0.36000 O.D0633 0.03304 .^^
0.37000 0.00815 0.03376
0.38000 0,00801 0.03684 r."
0.39000 0.01545 0.04415
0.40DD0 0.00797 0.03730

'^ 0.41D00 0.00812 0.03576
0.42000 0.01043 0.03772

'	 ^' 0.43D00 0.00840 0.03977
0.440D0 0.00786 0.03755 '
0.45000 0.00826 0.03590

^^ 0.46000 O.D11I4 0.03732
0.47000 O.D1909 O.o3996

`° 0.48000 0.02$59 (3.0.4245

^,.9 0,49000 0.04435 O.t34435
0.50000 0.02909 4.04325

^;^ 0.51000 0.03.976 0.04143
0.52000 D.D1173 0.03940 t

,{a 0.53000 0.00885 0.03850 '
0.54000 0.00857 0.04091.
0.55000 0.00932 0.044-I0 ;;
0.56000 0.01179 0.04263

^i^
0.57000 0.00934 0.04111 i
0.58000 0.00935 0.04374
0.59000 0.01885 D.05277

l^ 0.60000 O.DIOI8 0.04502
^^ 0.61000 0.00983 0.041.$6 k:	 -: ,^

0.62000 0.008D7 0.04183 `
'	 ^° 0.63000 0.00901 0.04075 1	 `j

'^'u:. 0.64DD0 0.0127D 0.03893 1
0.65000 0.02283 0.03590 ^	 :,
0.66000 0.02505 (].03430

^•
0.67000 0.01613 D.D3892

'_^

0.68000 O.O^i865 0,04199 ^
0..6900£3 0.00962 0.04532

'	 ''" 0.70000 0.00943 0.(34195 ^	 ^^
^^, 0.71000 0.01032 0.04049 ^

0.72000 0.00816 0.04133
0.73000 0.01354 0.04216
0.74000 0.02229 0.04167 j

0.75000 0.01367 0.04324
,,^ 0.76000 0.00917 0.04453
^^; 0.77000 0.01023 0.04416 {
^'^ 0, 78000 0.01010 0.0463.2

0.790DD o.D187a 0.05317 ^
0.80000 0.01025 0.04422 ^	 ^'

^; 0.81000 0.00874 0.04074
0.82000 0.01134 0.04258 ^

.	 -, 0.83000
0.94000

D.D1104
0.009.01

0.04315
0.04484

0.85000 D.01158 0.04749
0.86400 0.00825 0.04599
rJ.87000 ^	 0.0097.1- O.^i4S88

.	 _._. _	 -
•	

..	 -	 - .,_	 _. __ ..._	 ._-	 -	 ---_ R	
-	

_	 __
"Y..._`	 -

^.
_	 -

^
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0.88000 O.fl083$ 0.04490
0.89000 4.00927 0.04370
0.90000 O.D0654 0.03915
0,9i0D0 0.00957 0.03792
0.92000 0.01155 0.03836
0.43000 0.01.789 0.04105
D.94000 O.flZ418 0.04498
D.9S000 0.03^E03 0.05119

0.96000 .0.04451 0.05874
D.97000 0.05776 O.Ofi730
0.9$ODO D.0723D 0.07740
0.99000 0.08$83 0.08883

Total <error^ 0.04291	 0.11799

Section 10 Expected	 Errors	 with. Pixels Incorrect	 1	 ,^
_..

Much of .the theoretical analysis in the present study
f

deals with the problem of edge location when a digital edge

is known, but the position of the underlying real edge is ^'

unknown.	 In thus section we consider the analysis of ,edge 	 L

`^

	location estimation in the presence of incorrect pixels in 	 ^^	 ^
z^	 I	 3

	

the digital edge. We have been unable to derive general	 '^i

formulas for the effects o£ these errors sa sampling was

required to develop an expected errox.	 Our expectation	 ..-,

calculation assumes at most two pixels are incorrect in our ...	

^.

estimated digital edge where the length of the edge is ten

pixels.	 At the time these computations were performed, tae 	
,..

weren^t certain how accurately we could find the digital

Line ? but computational consideration .;; made the e^;amination m^

of	 addikional	 incorrect	 pixels	 rather	 expensive. ^`

	The expected error for this phase of our study was	

4_
defined as follows. Assume a given digital edge has been

decided to be the digital. edge corresponding to a real

^.

....x ..
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'^

T

' edge.	 Since we know the	 slope o^ the	 underlying	 real edge,

;3. this	 constrains ,	the	 pasitian of	 tFze	 underlying edge	 signi-
^,

€scantly.	 Tn	 y- intercept,	 slope space	 the	 point	 carres-

LL pending	 to	 the	 'real edge must	 lie	 on a	 horizontal	 line

^^ whose	 height	 ss	 the known slope o€	 the	 line.	 We	 consider

u ' as	 €easible	 digital edges,	 those which	 intersect this	 line

^^Y

^..

and	 da. f€er	 in	 no rsare	 than two pi. xe^.s	 €rom	 the	 correct

quadrilateral.	 An	 expectation	 is now	 taken	 over	 these

^`
^

^^	 .
digital	 edges.

,..^ 'We	 now	 describe	 the	 above	 ideas	 more	 €ormaily	 and
,',.

define	 the	 expected	 error.	 Assume	 a	 quadrils,teral	 Q^

'"
.;

corresponds	 to the computed digital	 lsne L.	 Let	 the under-
L'

no

lying	 real	 line in the reference image have slope ^.	 Let

^ ^ Q1	 ,...,Q^denote	 the	 seC	 of all	 quadrilaterals	 such	 that	 the

^
digital	 line	 corresponding	 to each	 Q.,	 s W ^,...,k,	 differs

^

^^- from	 the	 digital line corresponding to Qi b y no	 snare	 than

^- "" two pixels	 and such	 that	 the	 line y = ^ intersects	 Q.. The
G	

T

'r ^ :.
`

F. set

4
' f.?`"

^ ^ ^..
K

t

^, S= U Q ^^ L

^..
i

i=].

F
^: ^ ^

r

^'

is Cb[iR e Cte d. Bence	 5	 is	 a.	 3.ine	 segment. Relabel the
1

sub--
,	 -

;_
^,

scripts an the Q	 's	 sc	 that Q^1 L is	 to	 the Le€t	 of	 Q^^1
i

L	 if	 ! ^^
^'

i< .j. Let i o	 denote the sndex of the computed digital
.^

l .̂ne.	 ;^^
^.^

^	 ^
. The estimated gasition of the real 	 line	 is the	 mid^aaint,

^
;..^.

,^^ (xc ,0.')	 of	 Q ' fl L.	 The error	 in y-^xr^tes;cept locatioci	 if the	 _	 j }^

^--^
1

real line . was some other point	 ^x l ,a,)	 on S $.s	 just	 ^^ A
;#

-x	 ^ .	 ^ ;^^u
'

i.
^^ ^

4	 ''
^^ ^ ; ^

^

^1
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the expected error as obtained by multiplying ^x-x o l by its

pr^ba'oility and integrating aver S. Since tt^e invariant

measure on lines in x-y space is uniform an horizontal

lines in y-intercept, slope space, we need only integxake

jx-xo ^ with respect to the L^uclidean measure and divide by

the length of S. This calculation was dame Ear each of 1QQ

stages between U and 1, The expected error was U.12 pixels.

Results are given	 in	 Table	 9.1,	 calusnns 1 and 3.

Section	 11	 One - dimensional	 Edge	 Projections

	

The fitting of a continous edge to a digital image is	 ;;	 ;^

a promising approach to subpixel edge location, In [Ha],
T

	discrete orthogonal polynomials are used to fit a continous 	 ^r	 ;

	

surface to an ifnage and the vanishing of the second direr- 	 - f	 ^^- ^^

	

,;	 i
	tional derivative is used to locate edge points. Under the 	 `"	 S

	

assumptions of our c^srrent research, we are using a high	 -	 !	 ^^^

	

resolution reference image with a straight line aE known	 V	 1
^^

position.	 In addition, it is assumed Chat no rotation is 	 a^	
s^

i
present between sensed and reference images. 	 This con--	 ^

stains the fatting problem cansidexably. 	 °'

	

Twa basic types of fitting approaches can be applied 	 u	

3^
to this problem.	 First, we can fi.t a two-dimensional 	 $

	

.	 ^

surface to the ar^age near the edge and then find 'the best
';

f^.t of a straight edge with known si.oge tc^ the outface. i
	'phis problem is campliaated by the unusual shape of the 	 ^-

region near a straight -edge in a digital irnagA.	 I}iscxete

^^

_-_._.^... ._ _.._-..._._._.r: . 	 .^,^., ^,.,	 _	 _.	 _.	 .. ._._. _._._... .. _ ..	 _-

^r ^
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orthogonal polynomial are most easily fit to r.ecLanguIar

regions in which the sides of the rectangle arP horizontal

or vertical.. Square patches could be fit to neighborhoods

of pieces of the•. edge neiphbarhoad and edge points

extracted, but the computational costs would be mach higher

than in the second fitting approach, the one - dimensional

fit..

	The cne-dimensional fitting which	 we adopted for

experimentation uses heavily the £act that we know bath the

slope of the edge and its approximate position.	 The

fitting procedure is quite simple, but the present computa-

tion has not been optimized.	 Pixel centers for all

pixels near the edge are l+rnjected onto a line per.pen$i-

color to the known di..;: : c: t ion o £ the edge . Ta each pro-

jected center we associate the grey level. of the pixel.

Thus we end up with a possitsly multi. -valued function an a

£finite subset o£ a line. We now fit an edge projection to

the line. By performing the above operations on a number

of digital edges without noise, we nbserved that the ane-
E`

^..
	 dimensional projection of an ideal digital edge could be

^^
	 represented by a continous curve consisting of twn hori-

zontal line segments connected by a slanting Line segment.

Ta perform the fit on the projected points we used the

mean grey levels in the regions above and below the edge to

estimate the h-eight of the two horizontal segment, for the

fitted l -d edge.	 The only remaining quantities to be

estimated are the horizontal coordinates a£ the ends of the

...
^J

yam.. ^	 ^	 ._,	 .^	 .^ ^

•	

^	

_	 _	
3
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slanted segment. We are presently using p xh3ustive search

to compute the best, in the sense of least squares, fit of

the three segment piecewise linear edge to the projected

dace. Since the only variation in the fitting of the hori-

zontal pieces results from the varying end-points, the

square errata for the two horizontal segments, separately

with all possible endpoints are computed prior to computing

the total error of a fitted piecewise linear edge. 	 This

greatly facilitates the computation since the square error

obtained in using a piecA of the harixantal line segment to

represent the data is obtained by a simple updating of the

corresponding calculation For shorter pieces.

We now describe the algorithm more precisely, discuss

theoretical considerations affecting the performance of the

algorithm and give experimental results. We assume an

initial esimate of the translation offset is known to

within about a pixel. In particular we assume we have a

real translation from the high resolution reference plane

to the image plane. Thus the transformation can be used

to map the reference line into a real line in the image

plane.	 We assume that each point on this mapped line lies

within about a pixel of the corresponding current subpixel

location an the image plane.

The mapped real line segment is now digitized. 	 We

differ from our previous definition of di g itization only

for this section, and assume the digitization consists of

all pixels which the line intersects. A neighborhood of

i
f
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the digitization is now grown.	 We defined	 our neighborhood

tv consist	 of all pixels	 L y ing on	 the	 assumed	 digitization

ar which	 were	 8-neighbors	 of	 such	 a	 pixel.	 Let	 (x^,	 y^	 ),

^'
i = L,...,N denote	 the	 coordinates	 of.	 the centers	 of	 these

'^' pixels, and	 let ^ denote	 the slope of	 the	 reference	 line.

t:._:
Let L	 denote a line with	 slope	 f^ =	 L/CG	 and	 going	 through

1,^ ,

the origin.	 Then	 the	 perpendicular	 projections	 of	 the
L-

^^
(xi ,y ` 	?	 ore	 L	 are	 given	 by	 S =	 ^x f si nY +yl ,	 cas^^,	 i=1,...N,

i	
I.,; r = arctan ^	 We are onl y	specifying	 the	 coordinate	 along

j	 ;^

I{

I,. Note	 that	 the	 points	 of S are not,	 in general	 unique,

I	 `^
E

as can	 easily be	 seen	 if	 the originat	 line	 is	 horizontal,

'^	
i^_

and L	 is	 vertical.	 Let	 al ,...,a N 	denote	 the	 points	 of	 S
^'-

^,
in non descending	 order	 {duplications	 are	 allowed).

i,

^, We	 now	 describe	 the	 fitting of	 the	 piecewise	 Linear

curve	 to	 the data.	 Let ml denote	 the mean grey	 level	 on
^.^	

i "
^

the side	 of	 the	 edge	 corresponding	 to	 the	 smaller r^.'s	 and
^^,̀ 3 k

i,;
^.

let m Z	 denote the mean grey level on the side of the 	 edge

.^ corresponding	 to	 the	 larger	 a. 's.	 One	 approach	 t+p	the
x;	 ^'

I^

i

^w estimation	 of	 these means	 is	 to begin at	 the	 midpoint	 of

^^	 ^-- the mapped real ed^7 p and move several	 {5 or	 6)	 pixels	 from
^'.

^^,^	 ^'"' this	 paint in each direction away from the mapped real edge

'3	 ^ and
LI

use these pixels	 as	 the centers	 for small windows	 used

for estimating	 tt7e	 ;:r;gion means.	 Due	 to	 an	 experimental

I^_ set up,	 we	 avoided	 this issue but	 many	 approaches	 are

^`	 ,,

s;

available. The	 regions abutting an edge in the 	 reference

^Y
,`^

image	 can	 be roughly outlined when the reference 	 edge	 is

I firsk delineated. - Alternatively,	 a window in each abutting

t	
w	

(1

^`	 t^_
i

9KL	 ..	 , ,

..	 ^	 _	 ^	 i^^
ez^_....___._. _...1.-''^____ala.c:	 r_inn..^.r^^ea.vs.Y....-wrnre....«-.......,..,._...^.:.__._._ 	 ......	 __	 _	 .. .	 ....	 .... .. .. .....	 ..	 .^
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re g ion which is not close to the region boundar y can be

outlined.	 The mapped versions of these windows in the

sensed image can then be used to estimate the means.	 mote

Chat we are not comparing the grey levels i.n the sensed

image with those in the reference image.

Once the region means mi and mZ have been computed we

can compute the best edge fit. For each 1 <= i, j < = a,

with i < j we computed the merit of the fit obtained using

a i 	and a. as the endpoints of the middle segment o€ the
J

fiL.	 For each (i,j) as above we define the error e(i.,j)

assoei.ated with (i,j) by:

i	 j

e(i, j? :	 F (g(a ,^} -m^)^ . ^	 ^ (t^( ap)-(mad, a^b) )a

p^i	 p=i

N

^	 £	
(g{a^ 

)-m 2)x

p=j +1

vrhere

and	 b = -^ ma^^ t g(a i }

The middle of the three summands represents the qualitp of

fi.t for the slanted segment. We define the .optimal piece-

wise linear fit to be given by these fallowing segments

n n
(where (i, j) minimum e(i,j}):
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i} the segment from (a^, m^} to (a^, m1}

L._:
2} the segment from { ati , m i ) to (a^, m^)

,--.
3) the segment from (a+;, mz ) to (a^, m^)

^-	 J

^!', We	 are	 currenCly	 using	 ati ^ ay as	 khe	 estimate	 of	 Che

^^ intersection	 of	 the	 real	 edge with	 L.	 This	 estimate

provides	 an estimate of	 the	 Cranslataon offset between 	 the

^--
^ sensed	 and	 reference	 image	 in	 Che	 direction	 along	 I.,.	 A

second	 estimate	 in another direction (preferably	 perpendi--

cular	 ka	 L)	 is necessary	 to obtain an	 offset estimate	 for

., the	 x	 and y transLa C ions.	 The procedure	 far and	 analysis

^^_ for	 combining,	 such	 estimaCes	 into a single	 estimate	 is

i described	 in Section	 13.

Several.	 factors	 o££set the accuracy of	 the	 estimate

^;
!^'
^a

obtaitted	 using	 the	 above	 procedure.	 Firsk,	 we	 must

consider	 the	 distribu4:ian of	 the	 points	 a^	 an klte	 line	 i..
^^i

^^ 'sThe	 Pack	 that	 the	 line segments began and	 end	 on a l

'^"
^ 4,

presettka	 a Limitation on the accuracy attainable using this
L..

procedure.	 The a d 's are of the form x. t sinr + y i cos^	 where

^^ (x^	 ,	 y +	 )	 is	 the	 center of a pixel near	 the	 edges.	 For

simplicity,	 assume	 trine real edge goes 	 through the	 origin,

^: Then,	 in order for	 the point	 (x,, y.)	 to be within a	 pixel
r	 ^

'^ of	 the edge tae must have	 socaething	 Like	 ^yi	 ^. atx i ^< 2.	 The

exact	 .inequalities	 appear rather complicaked buk khe	 above

approximation	 is	 based on the fact that of we look at	 the

vertical	 separakian	 between	 the	 edge .and the point	 (x.	 ,

y^	 ),	 the vertical	 separation must be	 Less	 than 2	 if	 (x:	 ,
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r^

J

s^

::^

,, d

p^
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a

^^
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^,

.. ^	 J^

,. 9

i.

y.` ) is t o be adjacent to an edge pixel. Points (x i yl )

can actually be further away vertically and still be close

to the line since we.are really interested in the pPrpendi^

color distance to.the line. Thus the above approximation

become3 more accurate, the closer oi.is to zero. 	 We can

approximate the yr by ^^+Lx ! + k^ where -2 t= k <= 2.	 This

gives us the following expression for the prajecCion points5:

x ^ sinr ^ y^ ^0.r x ^ ^- k^ cosY

where --2 < : k ^= 2 and 0 ^= x ^= hcosY where h is the length

of the edge. While this gives an explicit expression for

the pro ,jectians of pixels ciose to an edge, we have not

been able to analyze the ;^rajections, even under this mare

restrictive tnodeia	 ^'vt^b^^ tlieoietic results related to

integer linear combintstions of irrational numbers offer

same promise at shedding mare light on this p roblem. An

alternative approach is to compute the projection points

for a large number of ang;l.es and lengths.

The exact manner in which the distribution of gap

between aF 's would be used is not entirely clear though

error bounds can be readily estimated. If we know thati

the maximum separation between any two consecutive a.'s is

d, and we further assume that the algorithm is accurate to

the nearest a^ then the maximum error due to the spacing of

the a ^'s is d.

One approach to improving the above algarithro might be

	

°^	 f._	
N_ - -	

^1_	 - ^"^ ^i.
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^L to better model the form used to fit the projection

points.	 The model consisting of taro horizontal segments

	

l ..	 r:

separated by a slanted segment was based on the observation
rn

^i

	'^_	 that this behavior occured in projecting an ideal edge.

	

,,	 'Two types of refinements could be explored. First, for a
i^

given paid of mean values for the twn abutting regions and

	

,^	 for the given slope, one could compute the beFt fitting
^:.:

piecawise Linear ae^ment fnr an ideal image ^E: ith homo-

^"

^:: geniaus re g ions using the twa means. In this situation,

only the y-intercept oft the real line could be varied and
-y

	^^	 the corresponding variation in the slope of the slanted ;,^

line segment could be recorded. Onl;r r^l^spes in that range
k,

would then be ^;^ed i+3 Fitting to the noisy image data. The

best fit, in the ].east squares sense, as currently done in 	 ^	 '
a

the algorithm may be better than the best least square fit 	 ^	 ^^^

^#in this new approach but it would then represent an imposs-	 '^

	

(^''	 ible edge digitization. Thus the proposed procedure could 	 '^

both reduce compukatian by reducing the namber of middle-

	

{{^̂ ''	 f l

	

'ti:	 section end points pairs escamined and increase the accuracy 	 ''
I

of the procedure.

A second possible refinement to the current algorithm

	

'^"	 is to find the best estimate for the interseckion of the

real ed;^e and L given the fitting projection edge.	 ^Ie

selected. the mid-point of the mid section for computation3?

	

a	 1^

simplicity, but it may not be op tir^ai for all combinations	 '

of slopes and mean grey levels. Both refinements could be

investigated by extensive sampling but theoretical compute-.'	

1

i
'^^_. . ^,
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tions.would be preferable.

The effect of noise on the above algorithm Ras not

been modeled. Since the effect o^ noise seems to be

strongly coupled with the geometry of projecti.ohs, the

problem appears to be quite difficult. RemavaT. of outlying

grey values may improve the signal tv noise ratio but

dzsturb the geometry.

Experimentation was pert°armed using tie above 1-d edge

fitting method.	 As the ini::'al results were promising,

mare extensive experimentation is planned. In order to

perform the above experiments, it was necessary to have an

image xn which the position of an underlying real edg a was

known to very high precision. Twa windows, an 8x$, and a

4^:4, were selected from two agrigcultural fields in a

Landsat image and each was repeated to provide two' 32x32

windows, each representing a ^?ifferent type of field.	 A

procedure was developed to splice the two images to form a

third image with an edge whose position is lcno= •n -.o very

high accurac%r. The procedure accepts as input a r	 line

with slope between 0 and 1 which hits opposite a:.^as of

the 32x32 window. All pixels lying entire^.y below the edge

are taken Pram the corresponding positiUns in window 1.

All pixels lying entirely above the real, line are taicen

Exam the corresponding position in window 2.	 Each pixel

intersecting the real line is given a weighted average of

the corresponding pixels in the firs* two windows, 	 The

j

-,?,

s^

:i

^	 ,^

_^

^^

a. {

ms

weights axe simply the areas of the parts of the pixel 	 ^^
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lying	 above	 atad ^Ze1^w the real edge.	 A real	 edge	 length

i
o£	 10	 was	 used.	 Fourteen	 angles	 at	 equal	 increments

between	 1	 and 25 degrees were used.	 Table 11.1 gives	 the^

^^ magnitude	 o£	 the error for each line.	 The	 average	 error

^' is	 .3fl pixels.
[s

,-.,

Table	 il.l Errors	 in one-dimensional	 lute	 fitting.	 i,inea
are at angles varying between i and 2S degrees fin equal
increments.

,^

^.:
Line ^	 Error

.ab5
S/

l̂
F 2	 f ^ ^ J

^f 3	 .239

5	 .125
^	 '^'

^^
6	 .215

^:. 7	 .365
8	 .3b0

^^ ^- 9	 .360
`^ 10	 .3^4
u:, 11	 .410

lz	 .171
^° 13	 .3^a

^	 ^ .. 1G^	 .324

^°

E'
Section	 12	 Fitting	 a	 Digital	 Edge	 to	 an	 Image

^^

^.
This	 section	 describes	 a grey level generalizatfion	 o^

^,	 ^^ our	 digital edge	 £fitting procedure.	 From the beginning	 of

..	
'E
'"

^.
our	 wank in the area of subpixel accuracy,	 it was	 felt	 that

grey	 level	 information	 should ultimately be used	 fin	 the

E locating	 of	 edges	 to subpixel accuracy rather than 	 merely
^:^

`_ using	 the	 grey	 levels	 to get	 the digital	 line	 and'	 then

L. using	 the	 geometric	 methods.	 The analysis	 of	 the	 grey

,,, level	 approach	 appeared	 formidable,	 so we restricted	 aur--

!	 ^

^-

^	 ,^.
'	 -	 -	 _ r̂ ' ^^. +''•-'S ^' iii.,'

	 ...,	

...^_..
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selves initially to the investigation of the geometric

methods.	 In Section 11 we studied one means of incorporat-
1

ing grey-level information, namely 	 by pra .jecting grey	 i^r

	levels onto a real line perpendicular to the known edge	 ^,	 .^

direction.	 A pieCewise linear ideal edge was them f.it 	 to	 `-^ '.

	

the data and the o-ffset in a direction perpendicular to the 	 `^^'	 `''

edge was estimated. We nora describe several subpixel edge
i.:!1

procedure directly	 using	 the	 two--dimensional	 image.

	

The basic idea of our first fitting procedure is to 	 ,.,

generate ideal two-dimensional	 edge	 images	 based on ^. ^.

	digitizing various real edges and find the one which best 	 `^^' ,
^^

	fits the sensed image. 'fhe means for the areas above and 	 ,	 ^^
:_1

	below the edge in the sensed image are first computed using 	 ^^^
^ri

the techniques outlined in Section 11	 Next the approxi- ^,

	

mate pixel iocation of the edge is determined. An estimate 	 ';`';

^	 ^

	of the correct pixel from a digital^registratian procedure 	 ^^^
j	

.^ y

	is assuL2ed available. Without loss of generality, we may	 ^'

assume the lower left--hand corner of the pixel has coordi-

Hates CO 3 0).	 A real line with the correct slope and a y-	
n-

^ ^ ^.^ .	 ,

	intercept of U.5 is used to generate an edge ima ge. Grey	 r...
;^

	levels for all pixels intersecting this edge are computed. 	 ^^

	

The gxey level for an edge pixel is defined to be th.e 	 ^^,
^.

	weighted average of the average of the grey ievels for the	 ^_

regions above and belasr the edge in the sensed in^age. 	 As	

11`

x,.li

usual, the weights are the areas in the mixed pixel above ^.

and below the real. edge.	 ^-	 is,;

'fhe algorithm compares the generated digitization of an

.^

,,



°^	
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^` edge	 with	 the	 corresponding	 pixels	 in the	 sensed	 image.

The	 generated edge is	 in	 the same coordinate system as 	 the
L1

sensed	 image	 so it	 is meaningful	 to compare	 corresponding

i

^,^, pixels.	 ^'or each pixel,	 we	 compute	 the difference	 between

,^^ the	 sensed	 and	 generated grey level.	 The	 sum	 of	 these

i
differences	 is	 used	 to	 Locate	 the edge.	 'Cf the	 real	 edge

r ^
^±

is	 correct	 then	 we	 expect	 this	 sum to be close	 to	 zero.
^::

r^
In	 general,	 the sign	 of	 the	 sum can be	 used	 to	 guide	 the

^, search.	 From	 the sensed	 image we know whether	 the	 lower

,!
or	 upper	 region has	 a higher	 avez- age	 grey	 level .	 '̂ Ti thout

^{
'- Iass	 of	 generality, we may assume	 the	 upper region	 has	 a

higher	 average	 grey level.	 if	 the sum is	 a large	 positive

number	 then	 the mixed	 pixels	 are producing,	 an the	 averages
^^

^^
L

too	 low	 a grey level.	 Thus	 the estimated	 zeal	 edge	 posi-

flan	 should	 be	 shifted	 down.	 Similarly,	 with a	 large
i

^,„

^^^ negative	 value	 for	 the	 sump	 the estimated	 real edge	 should

be shifted up. This procedure is carried out in increments

of a pixel until the sum changes sign. ^Ipon termination we

have a refined estimate for the pixel Location of the edge.

The next phase of the algorithm attempts to locate the

edge to subpixel accuracy. A new real edge is generated

with an intercept which is the average of the current

intercept and the nearest previous intercept in the direc-

tiara indicated by the sign of the merit sum. As in the

pixel level edge Iocation method, the sum of differences is

computed for ;orresponding pixels and the search is term-

inated when the possible change in y-intercept is less than

_.	 _ ...

^^.	 T	 '.c{.	 ..	 •^



V ^ 4

a specified tolerance.

	

The above procedure was	 carried out on simulated

ima gery formed from LANOSAT data as described in Section

ll	 Real lines of slope ranging from 0.0 to 1.4 in incre-

meats of 0.47. were used. The resuits are given in Table

12.I	 ^f the 140 slopes tested, only 5 were worse than

0.2 pixels.	 Seventy--seven percent of the cases were 0,1

pixels or better.

A second procedure was based on the idea of fitting a

digital edge to an image. Note that in the previous proc-

edure, the digitization of an edge, not a digitial edge

was used. Recall that the di g itization of an edge con^.^ins

ail p ixels intersecting the edge while the digital edge

corresponding to a real edge contains the bottommost pixel

in each column of the digitization of the edge. Tn the

second procedure, the set of al.l digital edges which could

iae generated by an edge with the specified real edge slope

were generated. For each such digital edge, khe quality of

fit of the digital edge to the image was computed and the

digitai edge with the best fit was selected.

The quality of fib measure is a non-negative real

valued - function which provides a rough measure of the edge

quality of a set of pixels. Larger valaes indicate that-

the pixels are likely to lie on au edge. The merit m(S),

of a set, S, of pixels is defined to be

m(s) =	 1^(^) -^- ltl')1^(1-min {E( low^-high) /z°g {p)I,1)

_	 _.^^ _ _.._ _ . _	 w_	

-	 .___ _ ^...x'	
^	 ^	 --
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where the sum is over all pixels, P^ i.n the set, u(P) and

1(P) are the ,grey Levels of the pixels immediatAly above

and below P, g(P} is the grey level for the pixel P, and

low and high are the means far the regions below and above

the edge.	 This approach led to subpixel accurac y but the

results were much poorer than for the digitization of the

real edge.	 The results are	 given	 in Table 12.1

The procedure using the digitization, of the edge, as

opposed to the digital edge, has the advantage that it is

extendable to region with curved boundaries, since the

digitization scheme can be applied to any boundary. We are

not pursuing this in the current study since the investiga-

lien of the straight-edge method still re q uires consider

able investigation.	 We are beginning the stud y of prob-

abilistic modals fox straight-edge error anal y sis using the

methods of this section.

Several basic sources t^f error should be considered in

our edge--fitting procedure. First, the performance o£ the

method deteriorates with an increase in the noise in the

abutting regions.	 This noise has two facets.	 It can

result in inaccuracies in the calculation of the means for

ad3acent areas and it can result in poor fitting due to

noise in the edge pixels themselves. Another source of

error is quantization.	 Zf the	 two regions each had

constant gra y levels and	 the	 grey	 levels were not

quantized, then at is easy to show the edge positions could

i

t
x^
.S
,,

_	 _	 i
'	
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be deters^iA.ed exactly. As sown as quantization is intro-

duced,	 thr^ results deteriorate, since shifts in the- under-

l^*ing edge position do n,ot necessary result in shifL-s in

the ^uantixed grey Levels. Analysis of this source of

error is planned for future work.

The' edge fitting methods discussed in this section

represent an initial effort at sub p ixel Qdge estimation

using a mixture of gre y level infarmatian and digital geo-

znetry.	 In the very preliminary experiments performed in

this section, it appears that a high level of subpixel

rexistration accuracy may be possible using this basic

approach.	 Considerable refia*ement of these methods is

Aossibie by refinement. ref the merit funcCions and search

procedures.

Table 12.1. Comparison of ewo sub p ixel edge dectection

algari^thms. Although the number o£ incorrect pixels can be
lame, the real. intercept difference can remain small. The
heal Line Digitization proved to be the most accurate of
the algorithms, where the directly estimated intercept is
used.

Errorl ^ distance between estimated intercept and the
correct intercept

>arror2 ^ distance between a^ve^ra g e digital. line intercept
and L-he correct intercept

Pix

	

	 = number of pixels generated that are not exactly' an
the ed ge generated by the underlying real Line.

	

Real Line Aigztizaeivn	 Digital Line Mash
Slope	 Errarl ]?ix	 Error2	 1'ix	 Errorl

a.oaoao	 a.o9^57 4	 a.o95a0	 io	 o.blaoa
a.oloot^	 O.a5584 a	 0.^80. oa 	 3	 a.I70Do
a.a^zaaa	 a.a^isa	 a	 o.l7aoa	 s	 o.zssoo
a.a^aoo	 a,os^ g2 a	 o.a^aoo	 io	 o.sa000

:^

^^

;^

fi.
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^.	 ^

Y

a.0^aa0	 4.a52&a 0	 o.05aoo	 T o 	 a .32 5oa 	 ^^^

o.a^aaa	 a.a4^84 a	 o.i6aao	 t o	 0. l 900o	 u•



0.06000
a,a7oao
o,oaox0
O.D9000
0.10000
o.iloao
0.12000
0.13000
0.14000
0,15000
a.lbaxa
x. i7afl0
0.18004
0.19000
o.2axxx
0,21000
x.22000
0.230x4
0.240x0
4.25000
0.260x4
0,27x00
0.28000
0.29000
0.34x04
0.314x4
x.32000
0.330x4
0.34000
0.3SOQa
0.36000
0.37000
0.38000
fl.39000
0,4aaxa
0. 410 00
4. 424x0
0.43000
x.44000
0.45000
0.46000
0.47000
0.48000-
0.49004
x.50000
a.Slaxx
0.524x0
0.53040
0.540x0
0.55000

^^' ^^ 0.55x00

x.57000
x	

> ,^ 0.58000
^'i ^ 0.59000

^E j

J

L.

€_
f

u:^

5b5
y

a.aa^ss a a.nl5aa l0 0.27000

0.00266 0 0.00000 10 x.38000
0.x0055 a 0.03500 10 0.49x0o
a.x2io9 0 o.xsxxx la a.45oo0
O.o0465^ 0 0.0450D !a 0.29000
0.00090 0 x.02000 la 0.30x00
a.ox984 •0 0.00500 2 0.13500
0.01391 x 0.04000 i0 0.25000
O.a33S9 x 0.00000 i0 0.62500
0.03180 0 0.02000 ix 0.50000
x.ol7so x a.o5sao is a.29xoo
0.03992 1 0.07000 Q 0.03000
0.04x73 0 0.030x0 i0 x.11500
000x257 a o.l000x to o.2aaxx
x.03258 a O.o2oxa 10 4.415x4
O,Q0734 0 0.x3000 lx 0.53000
0,02326 0 0.x3000 1 O.I45x0
0.x3141 0 D.020ax 2 0.26000
0.x4974 i 0.12500 2 0.25x00
0.x7797 a 0.01x04 o 0.010x0
0.02547 0 O.OlOxx 10 0.375x0
x.01516 o x.azxax la x.5nxaa
0.01841 0 0.03500 LO 0.69x00
x.00990 0 0.05004 1 x.05000
0.02055 x 0.0x500 z x.13500
4.x1193 x x.02000 ix 4.220x0
0.043x2 0 0.13000 i0 0.3050
0.x3505 0 x.10000 10 x.58000
0.x3555 x 0.0x000 4 0.350x0
x.02758 0 0.04x00 5 0.46000
0.02807 0 0.01500 4 0.38500
0.00984 0 4.x1000 10 0.490x0
0.03297 0 0.x1500 10 0.40000
x,02355 0 0.10000 10 4.4x000
x.09234 1 a.lasa0 is x.62504
0.01427 0 0.x1.000 3 x.33000
0.03234 2 x.09000 6 0.5],540
0.0x484 o 0.00x04 is 4. 46 0x0
0.00859 0 0.00000 1 0.10000
0.00035 0 0.02x00 2 O.I8000
x.1059$ 0 0.06500 10 4.55x00
0.00359 0 D.04000 4 0.34000
0.03141 0 0.145x0 4 0.42000
0,o15^x 2 0.254x0 3 0.250x0
0.04802 4 x.14500. 10 0.36500
0.040x5 . 0 x.04000 10 0,48000
0.045$5 0 O.ObS00 10 0.59500
4.x3453 i 0.064x4 io 4.714x0
4.03270 0 0.00000 5 0.45000
0.fl4i38 1 0,10000 6 0.54000
x.02547 0 0,05540 1x 4.634x4
0.05051 a 0.01x00 3 x.25000
0.01617 0 0.01000 3 x.28500
0.(]3880 0 x.10000 3 0.40x00
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Fable 12.2. Summary of subpixel edge detection algorithm
errors.

Real Line Digitization 	 Digital Line Mask

	

Srrorl	 Pix	 Frror2	 Pix	 Crrorl

Maximums	 0.1.3352	 6	 11.50000	 IO	 1.27500
Avera ges	 0.04741- 4.x+6000	 0.07570	 7.52000	 0.4&450
St. Dev.	 0.03832	 0.92^^bn	 0.08155	 3.50280	 0.26417

Section 13 Pairs of Lines

Tice matching of a line in a reference ima g e with a line

in a sensed image onl y determines a linear relation between

the x and y offsets for the tensed image. A second linear

relation resulting from a matching of a second line between

reference and sensed images can then be used to het an

estimate for the x and y offsets, In this sect ion we

examine the ot'£set estimation accuracy resulting from this

approach.

We consider an image in which two perpendicular edges

are used to estimate the offset betcaeen aenaed and refer-

ence images.	 Let Tine L I in the images Lead to a linear

relationship y=mx+b between the offsets. Note that this is

not the equation of the real Line Ll but the equation relat-

ing the x and y offsets resulting from tr y ing to locate L^

in the reference image. If L^ is perpendicular to L^, then

the corresponding relationship between the offsets for x

and y using Lz is given by y+^ 1 /m}x+b2. The knowledge of

the correct digital Tines for L 1 and LZ give rise to error
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bounds an b; and b?	Thns the correct offset relations are

aGtaally 1n the 5Pt

and

	

s^	 - ^(x,{I/m)x^-Iii ^k)1P	 <k<e^	 ,

where e^ , eZ , e3 , and e^ are tAe error bounds on the linear

relationship	 bett,^een	 the x	 c.nd y offset esti.mates..

The set of feasible offset estimates is the intersee-

Sion of the two infinite strips, 5 l and Sx . The interrec-

tio n of these two strips is a quadrilateral in x-offset,

y—offset space. ^n the event that the real world edges are

per pendicular, the resulting quadrilateral in offset space

will be a rectangle. The error in the x and y estimated

offsets i.s a function of the angle between the image .edges,

the slope of the edge and the error bounds an the linear

relationships between the x and y shifts resulting from the

individual. edge matchings. As an idea of the magnitude o£

tkie error, perpendicular edges with equal. bounds, sa y r, an

the error in the x- y offset linear relation estimation and

wi Rwh slopes l and -t wilt have a maximum error of r 2.

Keeping all parameters but the slo pes fixed, the error

increases as the	 slopes	 move	 away	 from I and -l.
0

Intuitively, we are considering a square in offseC space

where the sides of the square are parallel to the ed ges in

the image. The sides of the s q uare represent the ers"ar in

the linear relationship and the horizontal and vextical

^^	 ^'^
	extent of the square f2ive the variation in the passible	 w_

i
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correct x and y offsets,

Fiore detailed error analvsis has been c^zrriecl out but

this analysis is not directly useful until more extec^s^.ve

analysis of the digital edge f^.tti.ng methods have been

performed.	 'phis section has described a procedure for

tailing the bounds from individual edge matching and pro-

doting bounds on the offset estimation error. resulting

from a pair of matching edges.

Section	 14	 Geometric	 Registration	 Summary

The previous fourteen sections give an overview of our

worst on geometric methods in registration. in the laCCer

sections, grey Ievel information +was directly incorporated

into the edge location process.	 In this section, we

attempt to put matters into perspective.

Subpixel edge position estimation can be used far

registration and scene analysis. Strictly geometric

methods based on the observation; of the correct digital

line can bs quite accurate (averaging about 1/20 of a

pixel}.	 As the nu miser of incorrect pixels is allowed to

increase the estimattion errors, of coursL, increase. 	 fihe

avera ge error oven all l^.nes, given that the digitization

has at most twv incorrect pixels is .118. To make these

figures useful, we must know how well we can find the

correct digital line.

7n the process of developing methods for finding the

b. . _,
	 _	 ^ ^-`-^_	 r	 -°	 .. ^...
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correct digiCal tine, we came up with metYeods which gAner—

alined our original atgarithms and directl y estimated line

positions.	 ^n limited	 experimentation,	 one of these

aaethods resulted in an average error of .U^7 p ixels with a

standard deviation of .03$. This approach appears quite

promising though experimentation is in a very early stage.

This work atas lane on grey Ieve1 simulated images. We hope

Co extend the analytical study of gEometric registration

error to this procedure aced perform more comprehensive

experimental studies. If the algors.thm continues to appear

pramisings was will examine various means to improve its

efficienc y and reliability.

^^

	

L-^	

i	

9

^'^

^.
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Section 15	 Random	 Melds	 and Subpixel Accuracy
^, -	 _.	 ..

In the previous reporC [Lai the pro blem aE subpixel

translation-rei^istratian was posed in the context of sensed

and reference random fields in the plane for which the

correlation statistic {C( •) defined below} farms approxi-

mately a Gaussian random field. For such sensed and

reference fields, a theoretical upper hound was Enund for

the probability of local misre^istratian by 'C pixels or

mare.	 In this section, we summarize briefly and specialize

the most useful models and results from that previous report

for	 further	 comparison	 with	 empirical	 results.

All our models are based an the assumption that a

nonrandom reference field Z A (x) is specified at all lattice
2

coordinates x = (x,y} ^ h 7l{i.e., integer multiples of the

	

fixed pixel-dimension h), and that the sensed image Z S (x)	 '

{again at all x € h ^2) has -the form

Z ^(x) = z R{x ^ 8 ) + Z^(x)

where ^ is the unknown offset vector, not necessarily in

2
h 7l , which is the object of inference in registration

problems; and where Z (•) is a strictly stationary mean 0

random field which is also assumed to satisfy the ^-mixing

condition of ^De] mentioned in [La].

Further. assumptions are required 	 to describe the

continuous vari.atian of the fields Z^, Z^ , ZS between pixel

corners.	 First of all, we assume Cdextnti.ng ( { t! i , i t 2 [ ) by

iti	 and ^t^ =t - [t[)
3

(^^)	 z^{ t.) ^ { 1 —^t^ )(I --^ t 2̂ ' ) Z^(iti) -^ (i—^t^'^ )^^z^•z^(Iti

Ij

.._.	 .	 _	 __..
.. ^^

,;	 ^ F,,	 x..
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+•„ ''

^s

^;

—1	 3

^tZ^ z ^ ( ti ^- 1 }

where we have defined units by letting h = 1 and e,t - {1,0),

e^ ^ (4,1), 1 ^ (1,1). This assumption means that z N at a

point t interior to a given pixel J taices value which is a

weighted average of the values at the corners of J with

weights propartianal to the area of overiap of a unit square

with Tower - left corner t with squares the lower-- left corners

of which are the four corners of J. In addition, we maize

one of two model assumptions on Z^:

(40)	 with respect to the given pixel - Lattice, Z R( )

satisfies (39)

Z
(4l.)	 ZR {t) - 2^ (^tlJ	 for	 t -	 (t^ , t Z } ^ ^	 .

Assumption (4I) means that we regard the geference-image

grev-tevel as homogeneous within each pixel.

idext suppose that based nn a Iarpe "window" [-T, T]

x [-T, T) in our plane coordinates, we form the "correla-

tion-statistic"

C(t) a 1/( 4Tz) S f Z (̂ x)z {x--t } 8x	 , t£(it x 	J^ ' ^
.^,	

-T _T	
^ _. ,-	 -	 ..,r

which will have mean	 ^' 1_^

Z	 T T

-^T -T	 ^	 r
Assuming that Z^ itself, although known, arose from a reali- 	 `'^

	

^^^	 a
nation of a strictly stationary ergadic random field, then 	 '

;:

D(t) has a well -defined limit . as T gets large and it follows	 ~"
^,

^^

from work of [De] that C ( • ) considered as a ..plane random	 ^.
of

field is approximately Gaussian. The main result of [La]

was the following { Lemma 3.1 and Corollary 3..2 specialized 	 ,
^^

"l':. .

	

-	 _ .	 _ ._..__..^e.--^- -
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,^,

^:	 question of subpixel estimation by boundin g the accuracy of

r"-'	 interpolation passible for A(t_), i.e. by des cribinz the
Jf
^.

features of Z^{assumed to be a fixed reaiixation of a smooth
{-^'	 .
,'. 	 strictly stationary random field) which in the absence of Z^
^a

r^ limit the accuracy of recovery of 9 from observations of
^ti

^':	 D{	 ) at pixel. vertices.	 Cinder a further regularity coed i -

^'	 tion an the stationary random field generating 7.^ (existence

^
I
^

of second specral moments), [Laj fa^a^nd that as T bets large

^^	 the error in determinir^^ 8 by maximizing the ivcal (Taylor
^^.

series) quadric approximant to D( • ) is at most the smaller

^'^.^	 a f

,.	 ^	 ilx	 ,.
K 1 = h ((Z/l2){^ h Ja1 )	 min ^sec^, csc^^

1^

	

^"	 and

	

^'	 Z	 ^.	 h	 l

where h is	 the	 pixel-width	 as	 before,	 L W [T/h],
^'

^`	 L	 L

	

^^w(2L^-l)^ ^	 ^ [(`7 l ^ D) Z R(jh, kh)]^
] ^--L	 lc=-L

C1x 
z(x , y) = z(x,v} VzzCx-h, v}, 172 Z(x,v} ^ z( x,v) - z{x, y-h),

and ai is the smallest eiQenvalue {with ^ the ankle the

corresponding ei^envector makes with the horizontal) of the

quadratic form

..^ L U
,tT q (Y)	 =

-
{2L^-1} `^ ^ [ {y^D	 + y^D^ )Z^{ jh, kh) ]^

,^ a j ---L k--L

The size of min{K^, Kz } might a priori be	 expected	 to deter-- ,^ Y

wine	 how much mare accurate than ^	 it	 is	 to estimate	 6	 by
^ ^r^^

^^ the	 maximizer ^^of the local

^	 ^

least - squares quadric	 surface
i

appraximant to	 C( • ) interpolating a 3x3 array of nei^hbarin^

L.

^,:,`
_.. _

^^:

. - r. ^	
^ttl^y "rte	 ; 	 -	 T	 ^	 .'ice...	

.-.:..._.
_ -
	 ^^
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p ixel vertices,

Secti©n I6. Objectives of the Sirnulatiran Study

the present simulation study had the f.al.l^wing major

objectives:

i) to compile "empi.rzcal." results concerning rerform-
GS

ante of ^ and ^ on real and simulztPd reference i^ta ges, in

,+	 G.5
the form of histograms of I^8 -9^ j and III — ^^^ for various

values of offset @,-

ii) to compare the performance of S chosen among pixel

vertices to give the largest value of C(^) with that of the

continuous-valued estimator ^^$, and to check whether, the

is
	greater	 accurac y can sim^rly he ascribed to allowzng $	 to

Cake values inside pixel-squares;

iii) to gain information on how large the standard devi-

ation of additive noise must be com p ared to grey - level

standard deviation in various reCeren^^ p images before ;si^cel-

Ievel and subpixel	 registration	 (estimation of 6) is

seriousl y degraded;

	

iv}	 to check the validiCy and usefulness of the

theoretical results o£ [l^aj for 35x35 reference images,

window sine T = l.O, and T p = 5.

lrn the remainder o£ this Section, we specify some

notational conventions at^d tell. what ex.actlY was computed in

the simluation.	 Ta begin with, each (of six) refereece

t

tr

r

^.
;r

,: s

^^

i'
.ti

r-r
i
a

;.

,^

t
4

,.

..,	
f

_,^^ ^^

imaae used was standardised to a 35x35 array (j,k = -17,...,
Fk

^,
`.
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^,j' ^I

^_ i

,-,

^- ^l7)	 with	 average	 0	 and	 sample variance	 l	 (thus

i"^	 1'i

'^ ^ =-4l	 K =^f-^
where we have ado p ted pixelwidth h^l). The	 offset-vector	 B

^^
for	 each	 iteration	 in each simulation was	 chosen uniformly

in	 O,l	 x	 O,l	 .

{!:l
^: The	 correlation-statistic C( • )	 was	 computed,	 far	 each

2
lattice - point	 in	 the	 square	 [ - 5,S]	 ,	 as follows.	 Fixst,	 the

,^

expectation-	 term	 D{t)	 was	 calculated a5a sum rather	 than
,,^

^
e:.

the	 integral	 in	 its	 defi.niti. ai^	 above:

to	 to
_	

,,jr
(42)	 D(t}	 ^	 { 1 /2Iz )	 ^	 E	 Z^{,'̂ ,k)7.^ {{ j,k}	 -^ 6 ^-	 t)

..	 ^	 isr- j^-10	 k=- 10
_.

^-	 ^
L^r-

This	 modification was made 	 for	 two reasons: { 1)	 althvu^h

[_ the	 integral could,	 under	 either assump tion { 4{l)	 or	 {4l),	 be
^,^

^= exvressed	 as	 a	 wex^hted	 sutn of	 terms Zp, {x),	 7 
R 

{y),	 the

^^ weiZhts	 would depend on $,	 and it was comt*^^tati. onally	 much
4

easier	 to	 make	 use of	 the	 equally plausible	 definition
_	 ,^-<

{4Z);	 (2}	 in	 acttEally	 practice,	 in the	 absense	 of	 a
tl

^n
validated	 model	 assumption	 like	 {40) ar	 (4l},	 {42)	 is	 the

^, definition	 one	 would	 use,	 with	 sums similarl y	replacing

""' i.nteerals	 i.n	 the	 definiti . vn	 of	 C{ •) . In each	 iteration	 of

each	 simulation	 Z^( • } was	 simulated at lattice	 points	 {i.n
^,
^^ 3Sx35 array}	 asr

i	
I

^'^. j^-i	 k= — 1 	 ^i 3! {z^,j
L^

la

where	 is	 an	 array	 of	 independent.	 identically
`ZXtk^
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',

variance ^ , and the W ( ,} , k) are fixed weights which took one

of two farms:

I/36	 1/9	 1/36

W^ - I/9	 I/^+	 1/9	 when {40) was assumed, and 	 -	 '^

1/36	 119	 1/36

0	 ^ 1/4	 114

W2 -	 0	 1/4	 1/4	 when (41} was assumed. 	 -

o 	 a	 o	 --

Then C ( t) - D(t) was calcuT . ated as	
^r

i'

	

10	 l a
{43)	 C(t) - D{t) = {i/{2l} z )	 ^	 ^Z¢¢,,{j,k)Z^ {i,k) -t)-	 ^=-10 k^-10^	 ^'	 ^,	 ^^^,.^

_ti

Ira this definition we have replaced (4TZ )	 by {21}
Z
	and	 -

^1

	tnadified some boundary terms, but (43) is otherwise the 	 ''^!

	

same as in its double-integral definition if Z^{ • } had been	 :.>G	 fr

	

made up of independent N(O,G^} variables at lattice points	 °^;	 ^
;;

	

w^	 '^
and had been interpolated sr.tording to (39) while 7.^ was

,--„
inter olated according to (40) or (41).p	 {Fur example, under	 E

	

z^	 ^

{40),

	

1 /4T2 ^^Z^{^}Z
N

{x-t)dx =,' I/{2^rJh^+1)Z ^ Z R{i)^{4 /9
} Z h3

( i—t) ^	
u

'^	 r. r

^. /9{Z^(x— t^-e^ ) ^ Z^(i—t — el)^ Z ( z—^^e^ ) ^ z^(^—^— e2}) +—	 —

1/36 (Z^(i — t^I)+ Z^(i —t-1)+ Z^{:.—t^-e^—e a ) +	 ;-°

^a
z^ (i— t^e^— e ) )^ ]	

^

—^	 ^i
Two simulation experiments were performed on the DEC

	

2060, one with 450 iterations usinl^ weight-matrix W^ and 	 L^!

the other with 250 iterations using weights WZ . For each	 ^,
?^

iteration, one offset- ^ and oae array ^ Z ,k̂ 	 was generated,
^	 ^I^_^

^:^.	

.I Syr

._ ^	
_	 R



^ :^^ _.	
a^

a

^,	 5^7
1 i	 F~^

:;

`^; and	 fnr	 each of si.x reference	 images	 Aft}	 and C{t)	 -	 A(t)
ti	 ^	 ^

;,' calculated	 according	 to	 (k2)	 and	 (43) with ^ = 1.	 Then for`;
L' _

each	 of a number of d^.fferent values 	 of ^,',	 the arrays ^A{t)
I..^

^'" ' +	 ^(C(t}	 -	 A(t})^	 (correlation-statistic	 arrays	 corres^-
L. ^.	 ,.

ponding	 to	 the noise--fields ^7^ { • }	 generated	 from fire	 same
'j ^

L.;,

n

random"	 n.umbera)	 were need	 to calculate	 estimators	 ^	 {the

^. lattice-point	 t	 corresponding	 to	 the	 Iar^est	 array element)

1i '
1.5

and	 ^	 (the	 maximum-point	 Cx,v}	 far	 the	 least-squares

a quadxic	 surface	 for	 the	 nine array values	 at	 9 +	 (.j,k),tiJ

"±
^	 ro

j,ic	 _	 -1,	 0,	 1).	 In	 addition,	 a	 third	 estimator	 wras
'!	 ; {

defined as^^ ^^

t -	 ^	 l.5 	-	 ^	 ^5	 -	 ^^ ^	 -	
f^	 y	 /	 /	 ^Q

^2^	
1	 Z

r!
^:	

^

^'or each of several values	 of	 ^	 and each reference image on
^^.

^

r-^

^	 ^~
I

each	 iteration,	 the	 distances	 !^ f} - ^^^ ,	 ^^ ^^ ^}^^,	 and ly $*- ^^^.
^	 ^:^ -	 -	 -	 d

r were	 recorded.	 Output	 for	 the simulations	 consisted	 of
r.+

^; histograms	 of these	 distances,	 with bin--width	 .1	 pixel	 forL' a

r ._, simulation	 I and	 .125 pixel	 for simulation	 2.	 The	 outputs

'.I
-^

i
are tabulated	 and interpreted	 in Section l8 and	 l9•	 Section

'^ l7	 describes	 the six reference	 images	 {three	 artificial,

..^
three real}	 along with the corresponding quantities r , ^^ ,

^^ K^	 , K2	relevant	 for	 the	 theoretical predictions	 of Section
r^	 u^',

15.

m

^.

^	 Section 17. The six reference images
^ ^	 rF-+

Six reference images were used in our simulation study.
^^ i

':
Three of them (those Numbered 3,4, and 5) were real 35x35

4^
^ ^^

^	 ii
^^ ""

_....	 _
.:.^
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1

, f 	^

grey--level	 arrays	 chosen more	 or	 less	 arbitrarily from	 an '

80125	 LAI7ASAT	 image of a rural. area	 xn	 the United	 States

including	 culkivated • .fields,	 some wooded	 areas, and	 some ^	 ^^
.:f

roads.	 ^'he akher	 three	 images were arti.f.icially construck-

ad,	 as	 follows: ^	 ..:,

Far	 image	 1,	 Z^(j,lc)	 =	 55,0	 -	 i . 5 +t (I j I	 +	 jicl ), 17, - 1G,.j,k=-

• • ^

For	 image	 2,	 0	 iE	 max(I7I, IkI)	 >=	 3 ,i
Z^	 (7,k)	 --	 40	 if	 max(I :1 I ^ IkI }	 ^=	 2

..._

Far	 image	 6,	 20	 if	 max(j, k)	 <^	 0 ^^^.
^..	 J

Z^	 (.l ,k)	 =	 l.Q	 if	 max(J, k)	 >	 0
"';,	 ^^

'fable	 1. 7.1	 contains	 the values	 of H,^	 Kl, and K 2	 for ^.:.

the	 six reference	 images.	 We recall	 that	 khese quantities

depend	 only	 on the reference ir^ape and not on the	 noise- ^^

covariances.	 On	 the ether hand, ^ and	 ^J(^x) do depend	 on ^	

`.

f	
i^

the	 covariances	 of ZN {*):	 kheir	 cralues	 a.re	 displayed in

^I

^I^	 E

Table	 17.2 for	 all	 eix reference	 images	 undex	 the assumpkivn ^^^	

;,,I

{44)	 wzth weight--matrix Wl	 and	 Z,jk ^^ ^ (0, 1). '"^
n



w... ara..	 -	 ..	 -	 .

r, I.

;, ^	 5 79
^..

^-	 ^
y., 1 	r ^

ii

i^

4.1

TABLE 17.1

``_̂	 (A) '^ vs. H	 £or six reference imagesL
r`

,-,	 Image	 1	 2	 3	 4	 5	 6
^,

'f	 ^-°'	 ^'	 H.0
.7	 .OI4	 •212	 •197	 x187	 •244	 .034

'^	 1.4	 .027	 .382	 .461	 .401,	 .434	 .Ob9
^,	 2.1	 .062	 .551	 .bbl	 .518	 .530	 .103

2.8	 .09$	 .636	 .662	 .518	 ,608	 .1D3	 ^^

Iy	

3.5	 .ISD	 .$06	 .669	 .580	 .643	 .137
^^	 4.2	 .202	 .890	 .669	 .590	 .678	 .172
^^	 4.9	 .235	 .975	 .669	 .59D	 .678	 .172
_^	 5.6	 .329	 1.0	 .720	 I.0	 .734	 .322

^,(	 6.3	 .399	 i.0	 .850	 1.0	 .77D	 .372
^,

ti^	 7.0	 .464	 1.0	 .895	 1.0	 .866	 .422

^^`^ i»
	

CS) K1 and K^ for reference a.maaes

i	 Lo

Image	 1	 2	 3	 4	 5	 6
^^	

.183	 .816	 1.26	 1.30- ^ 	 ; !

r	

K3 	 I.54	 .60	 `^^
^"	 K^	 5.48	 1.22	 .8I3	 .784	 .747	 l.bb
r•

!_
!^ ^

^.^	 TABLE 17.2. r, 1^(1), and	 ( 2) values
^'

!1',	Ema a	
/(1,414)	 ^

I 
g	

.0453	 .0075	 .0105	 ^^
.	 -^	 2	 .0615	 .0207	 .02134^	 ^^	

3	 .OS68	 .02A	 .034
^-^ ^ 3̂ 	 4	 .D6D3	 .030	 .035	

i

S	 .0581	 .025	 .029
^-	

r=	
6	 .0536	 .OIb	 .022[.• `s

,•	 ^:,	 ^
i
r'

^^	 TABLE I7'.3. Smallest '^ (in multi 1es of 7) for wi^ich
i	 ^	 x*(^e) >= 4.5, for six reference pmages and four values ofd'.
4-	 ^^

F'	 -z 1

t-	 ^'	 ^ ^	 E

^I^	 Imaee	 I	 'S	 .25	 .125	
4,

t •. I	 4.9	 3.5	 2.1	 2.I	 ^^
^'	 2	 I.4	 !'

,^	 l i	 3	 I.4	 •7	 •'	

. 7

'^	 4	 l.4	 .7	 .7	 ^7^.	 ,

.7	 ,7	 ^	 '
^^'	 I	 6	 5.6	 4.2	 2.1	 1.4_	 LJ

^:	 We have given values for ^/(I) and ^(I.4I4). Actually, only 	 ^ ,r

^'
	 ^,,
	 ^

!^^	 values of	 (u) fvr 0 <_	 <= 1/3 are relevant to estimat':^^	 1	 zng

x^ ^^

'A^ ^a

^_.	 -	
k'	

A

^r"'	 ^^



x('C ),	 for	 purposes	 of	 ap p s`oximate	 calculation,	 we	 treat
ab

'^I( ^ )	 as being linear on	 [O,l],	 in which	 case 2(^ -	 1)^ f ^

".

1
z	 1

(3^^	 )du	 <	 .75^{l).	 . In	 further	 ca^.culations,	 w e 	therefore °°

replace	 x('^')	 by

Now	 according to	 the Proposition of Section	 1,	 with	 to =	 S,

T =10,
^	 *	 z

P[^I	 $	 -	 QII	 >^'C ]	 <=	 1..35	
(e"tx <'t'1)/2	 Ix('C })	 1D 4 ,-.,

The	 right -hand side of	 ti^is	 inequality	 xs	 approximately	 1.1 .

for	 x ^	 .-	 ^-^.^..l2	 for	 x^ =	 4^.5	 and	 .O1	 far	 x * =	 5.	 Thus	 we ^	 r

have	 tabulated	 (in Table	 17.3)	 for	 all 's' .x_ reference	 ima;^es,
•...

the	 smallest	 ^ (in multiples of	 .7 pixels)	 for̀^:^ich x^ ` ('C)

^^	 4.5.	 Note	 that	 reducing 5 by a	 factor	 112	 does	 not ,._

chan g e	 H^	 but multiplies	 both ^and^by	 1/2,	 sa	 that	 x'^	 is^^, ^^	 ,,^
inversely	 proportional	 to ^.	 Also note	 that by our	 defin- ^^'=	 yy	 !	 ,^

itions ^C(t}	 -	 D(t)	 = t, ^ h71,	 i	 =	 1^2^ is	 a	 strictly	 station- "^.^

ary Gaussian random field not depending on ^.

^!	 ^

``'	 '^'I4

T;	 ,k

ti
L 1	 ^	 /

Section 18. Simulation Results	 `^"

The histograms produced for !16 ^ B11 i^ 0^`'- @ {^	 ^ and II @^.. 8 ^{,	
:.:^ ,,	

jj

i
according to the simulation design described in Section 16, 	 ^	 '

are tabulated in a slightl•^ diffetYent form i.n Tables 18.1 	 ,-:;,

	

'^^	 ^

and 18.2 ,	 °^,	 L:a

Defining empirical distribution functions^^..for each simula-	 r^
i

^^^	 ^_.:
flan by	 °._

", :,

	

n	
\V	 '`

F(x)	 ,^	 {^Fiterations for which ^^8' ^ ^^	 <^ x) J (^^ itera--

r

t

^^

_	 ^ ^ —	 ^	 _

^	
-- -. ..... ^ _	

^	
..,_..^o---^------._
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'^ ^

581	 ^,^

^,
tion;^)

^'	 FMS (x) ^ (^'^iter ations far which IIB^'^ @^^ <= x)!(^^itera-

^,	 k ions) ,

we display for each simulation and each reference image,	 for

^l, Chree	 selected	 values	 o€ s ,	 the values ^{x},	 F CS	 {x)	 for

^.,,. .I	 <^	 x	 ^=	 1.7 in	 incr.emenCs	 of	 .1	 in	 simulation	 1,	 and

ti. .125	 <= x	 <^	 1.S	 in	 increments	 of	 .1Z5	 in	 simulation	 2.	 We

`j^
have not	 tabulaked	 the	 results^wiCh	 Cane artificial estimator

L^ , ^^	 ^5
^,	 which	 was	 introduced	 to 'S^e if ^	 derived	 its	 accuracy

^y
^ ,^

simply	 by	 allowing values	 inside	 piKeYs,	 because ^	 kurned
..

,^ N

„

^

!.5	 ^
,.out	 to be	 so	 conclusively	 inferior	 to 6	 and	 Ca ^.	 To show

i

Ch is vividly,	 we	 consider Table 18.3,	 in which	 pare	 displayed

^.~
the	 empirical	 upper	 quartile paints	 (75th	 percentiles)	 of

^` ^

_

I! @	 ^ 911	 ''S-	 (C9	 - 011	 and	 j16	 -^ it	 for	 each	 reference	 image
g^;
ff'
^ ,

anal	 each	 of Chree values	 o^ Fs	 These were	 calculaked	 by ^	 +

linearly	 inkerpolaCing	 the empirical distribution 	 zunckians
^	 ';

^^^
'' ^

^	 ^€rom	 simu.latiun	 1	 Co	 find	 the x corres p onding	 to	 distribu-.
s

^"	 ^ tion	 function value	 .75. ^	 ^i,
of __

^^ TA3F,E	 18.1.	 Empirical	 distribuCion	 functions ^'	 and
^ ,

1. ^`^5 (in	 pasenCheses}	 foz	 each	 of six reference	 images	 and

{`

^	 ^r;
r ^,

^^^^, three	 values	 of	 G,	 €rota	 simulation	 1	 (450	 iCerations)
^}

;^., {1$.la)	 image	 1
^.

5	 -	 . ]. 0	 .2 0	 .3 0 ',

.1	 .016	 (.038)	 '.007	 (.009}	 .004	 (.004)
:, .2	 .091	 {.173}	 .027	 (.03b}	 ,07.3	 O.OIb) ^

^^ .3	 .207	 (.278)	 .057	 0.093.)	 .038	 (.036}
.4	 .318	 (.464)	 .107	 (.7.31)	 .058	 (.064)
.5	 .429	 (.573)	 .173	 (.200)	 .102	 (.098_)

^,
.6	 .5.60	 (.711)	 ,224	 (.278)	 .127	 (.131)
.7	 .660	 l'.^302)	 .267	 (.351}	 .169	 C.17$)
.8	 .724	 (.884)	 .336	 (.431)	 .193	 (.236} j
.9	 .800	 (.93$)	 .400	 (.500)	 .244	 (.291) i

x.
r tl ^:^

,.

^.,

L.,



5$Z

I.0 .840 (.969) .458 {.569) .2$9 (.311)
I.1 .896 (.987) .540 (.609) .349 (.393)
I.2 .927 (.993) .b22 (.678) .400 (.442}
1.3 .956 {t.0) .6fi4 (.74{1} .440 (.480)
1.4 .989 .724 (.804} .484 {.522}
1.5 .993 ^^^ .776 (.849) -.527 (,567)
1,6 .996 .824 (.880) .582 (.516)
1.7 .996 .856 (.907) .fi16 (.b6)

+ ^ ,^

____	 ;^

^.	 ^

J

.,

1.0
1.1
1.2

.9s7 (.982)

.991 (.987)

.993. (.987)

^fi	
^

w ^	 I	 '

n A	 W

{18.1b) Image 2 Z{x)	
{FLS

{x)	 i.n parentheses)

^s r^ . 4 C. fi
x

.1 .p29 {.247) •029 (.100, .024 (.0?.2)

.2 .142 {,664) .138 (.293} .109 (.171)

.3 .322 (.878) .304 (.515;1 .229 (.284.)

.4 .524 {.969) .462 {,6:8) .3;8 {.411)

.5 .753 (.998) .644 (.793) .461 (.522)

.6 .907 (1.0) ,782 (.364) ,564 (.598)

.7 .980 .9p0 {.927) .669 {.b96)

.R .993 .940 {.958} .729 {.747)

.9 l.p .967 (.969) .767 (.773)
1.0 ,976 (.987) .796 (.813)
1.1 .980 (.989) .820 (.827)
1.2 .984 {.4899 .82a (.856)
1.3 .989 (.989) .851 (.880)
1.4 ,989 (.993) .867 (.898)
1.5 ^ .989 (.99G) .887 (,907)
1.6 .991 (.996) .900 (.9163
1.7 .993 {.496) .916 (.920)

(18.1c) Itna^e	 3	 F(x) (FE'S {x) zn	 parentheses)

^° .4 .$ 1.2
x=

.l. .029 (.353) ,029 (,171) .029 (.089)

.? ,142 (.816) .142- (.524) .142 (.316)
,3 .322 {.967) .320 (.802) .311 (.558)
.4 .527 {.998) .509 0.411) .480 (.738)
.5 .787 (1.0) .733 (,969) .67b (.838)
.6 .938 .889 (.989) .827 {.911)
.7 .989 .962 1.996) .911 (.942}
.8 .498 .987 {.998} ..958 (.967)
.9 1.0 1.0 {1.0) .982 {..978)

c ::!

^^

,^
^^

^3

i

.'	

__•^ f^



.029 (.3i8)

.142 (.798}

.322 (.964)

.527 (.998)

.791 (1.0)

.933

.991
1.0

.029 (.127}

.14z (.41s)

.3i$ (.682)

.509 (.84i)

.742 (.927)

. (8̂ 7 p6 ((.97riy)

.978 (.982)

.99i (.993)

.998 (.996)

. 9̂ 98pp (.996)
r99f] (1.0)
.998
.998

^^
.i
.2
.3
.4
.S
.6
.7
.8
.9
1.0
i.l
i.z
1.3

.`^

^,^,

^^:
	 583

`^
1.3 .991 (.987)
1.4 .99I (.987)
1.5 .991 (.987)
1.6 .991 (.987)
1.7 .9'93 (.939)

(18.14) Image	 +̂ F(x}
{Ft^5 {x)
	 i.n	 parentheses}

6" _ . 4 . is 1 . 2
x^

. 1 •029 (.180) .029 (•140) .029 (.!!U^)

.2 .142 (.556) .142 (.400) .140 (:276)

.3 ,322 (.869) .3i8 (.658) .302 (.484)

.4 .527 (.980) .5i3 (.811) .478 (.638)

.5 .789 (.996) .733 (.924) .651 (.751}

.6 .933 C1.0} .873 (.971) .800 (.847)

.7 .980 .931 (.987) .871 (.911)

.8 .996 .969 (.989} .924 (.938)

.9 1.0 .991 (.993) .956 (.960)
1.0 ,996 (.993) .969 (.971)
1.1 .995 (.993) .973 (.976)
1.2 .996 (.993) .97b (.976)
1.3 .996 (.998) .978 (.980)
1.4 ,998 {.998) .982 (.980)
1.5 .998 (.998} .987 (.982}
1.6 .998 {.998) .989 (.989)
1.7 .99$ {1.0) .991 (.989)

(18.1e) Image 5
	 F(x)	 (F LS (x) in parentheses)

G- 	.4	 .8
	

l.z

.029 (.064)	 `

.138 (.229)

.300 (.424)	 €-

.458 (.611}	 `^

.650 {.731)

.784 {.807}	 $

.882 (.864)	 ^^

.9i6 (.9a2)

.951 {.924)	 s

.962 (.940)	 ^	 i^

.962 (.95&)	 ^^

.964 (.467)

.971 (.969)	 '^

.976 (.978)

.97fi (.978)	 .^

r
Y

r

..^ .	 ^..



:def) Images 3,4,5,&
I.snat^e 3 Image 4

^,...z.	 _ -.___^,	 .._____.	 t .;f

a^

58A^

J
1,6 .998 .978	 (.980)
1.7 .998 .980	 {.980}

r:

(18.1f)	 Image	 6	 F ( ^t}	 {^'L^(x}	 in	 parenthese s}
1

5~	 .4 .8 1.2 r-.

x =
.I .029•(0.)	 .029 {.016) .024	 {.013) ^
.2 .142	 {.OI8)	 ,127 (.073} .102	 {.102)
.3 .307	 (.120)	 .264 (.193} .220	 (.19$} i
.4 .447	 (.369)	 .396 {.3b0) .331	 (.333) '^'
,4 ,604	 (.633.)	 .562 (,516) .467	 (.438)
.6 .720	 {,864)	 .673 (.704) .573	 (.567)

^^
^^`

.7 .856	 (.978)	 .784 C.829) .664	 (.664)

.8 .942	 (.998)	 .878 .(.911) .749	 (.740)

.9 .980	 {1.^3}	 .931 {.944) .804	 (.791) r'^,
I,0 ,998	 .964 {.964) .836	 (.824) .f
1.1 i.0	 .975 (.971) .85b	 {.s35b)
1.2 .978 (.980) .8b0	 {.871} ,^^
1.3 .978 (.982) .867	 {.884? ^^
1.4 .982 (.982} .87.1	 {,$87) ^^	 ^.^
1.5 .984 (.987} .884	 (,898)
l.b .984 (.987} .889	 {.907) ^ ♦ f1.7 {.987) {,987) .893	 (.91.8) ^:^	 ,

^-,

Ta61e	 18.2. Ftnpirical	 rl,f.'s	 C	 and	 F'
^s

{in parentheses)	 for '^^'	 ^	 ^'
each of six re€erence images and [wo values	 of ^,	 from
s^.malation 2	 {250	 iterations). ^1^,

{18,2ab)	 ZmaQes i and 2
^_ :^

i
Image i Image 2 °i

5 ^ .1	 ,3 .2 .6 `i	 s^,
x-
.125 .028{.080}	 .000 1. 008} .032{.30$) .024{.028) r^	 3,^
,25 .092{,256)	 .008(.03b) .1601.796} ,112{.Ib4) ^	 ^
.375 .248{,424)	 .052(.088) ,448{.944) .2801.296) ^"
.5 .396(.604)	 .096{.1087 .748(.992} .428(.4&0) j^
.625 .572(.728}	 .1.36{.I52) .'916(1.+3) ,536{.596) ^^ ;;
.7S .700(.832)	 .176(.200) .988 .660(.672) °^ ji

.875 .788(.9087	 .216(.248) 1.0 .724{,712) ;!
1.0 .8401.972)	 .264{.328) .756(.752)

aT	
^

3..125 .9118{.988}	 .324(.388) .780(.796) ^y
1.25 .952{.942}	 .42	 (.^+6) .796(.820) ;^
1,375 ,984{.996)	 .SOS1.512) .81b{.844}
1.5 .996(.996)	 .556{,564) .836(.852} r•^` i	 ;'

.__.



x-
.I25
.25
.375
.S
.675
.75
.875
1.
1,1.25

1.25
i.5

^^^-
^r__
	

__.^ _	 ...	 ^..

^^7r^ ^
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.4	 1.2

.032(.412)	 .032{.128)

.16 (.900)	 .152(.392)

.444(.992)	 .412(,b56)

.748(1.0)	 .644(«$16)

.932 .852(.904}

.99b .936(.955)
l.a .96s(.964)

.984(.984)

.992(.988)

.996(.988)

.99b(.992)

Image 5
.4 I.2

.032{.45'.) .032C.09b}

.16	 (.90} .148(.288)

.444(.996.) .388(.512)

.764(1.0) .628{.676)

.952 .792(.504)

.996 .884(.884}
1.4 .908{.896)

.92(.908)

.928(.92)

.94(.936)

.948(.96}

.4 1.2

.032(.128) .032(.12}

.lb	 {.736) .152(.332)

.448(.952} .416(.55.6}

.776(.996) .b76(.732)

.940(1.03 .812(.832)
1.4 .936(.876)

.968{.92)

.98	 (.944)

.984(.956)

.988(.968)

.988(.976)

Ima g e b
.12 .36

.03X0.} .028(.024)

.150(.044) .124(.088}

.324(.204) .292{.224)

.488(.576) .432{.42)

.572(.876) .568{.564)

.Sb{.98} .70{.692_)

.968(.996) .78(.74)

.996(1.0) .82(.816)
1.0 .84(.86)

.856(.892)

.888(.916)

6'
x^
,125
.25
.375
.5
,625
.75
.R75
1.
1.125
1.25
1.5

fable 18.3. Triples of em p irical 7Sth per^cerztlle values for
(!I ^ - 611 , ^I@ -- 6^^ , 11$* - ^4i) from szmulatzan I {45E^ itera-
tions), for each reference i.ma^e and each of three values
a ^r 6 .

^	 Ima^:e 1	 6	 Zma^e 2	 t;	 Image 6
.10	 (.83,.64,.80)	 .2	 (.50,.24,.5$)	 .I2	 {.b2,.55,.90)
.20	 {1.45,1.32,1.31} .4 	 {.58,.46,..73}	 .24	 (,67,.64,.97)

^^

.__.



^'

rr cc
	 1

^1^U	 ^

.30	 (2.1,1.86,I.94)	 .6	 (.86,.$,1.02)	 .35	 (.8,.82,t.I}

^	 Image 3	 g	 Lmage 4	 ^	 Image 5	 .:
.4	 (.49,.15, ° 53)	 .4	 {.49,.26,.59)	 .4	 (.48,.19,•55)	 r
.8	 (.51,.28,.60)	 .8	 (.51.,.36,.66)	 .S	 (.50,.44,,h4)
1.2	 {.55,.41,.68)	 I.2 (.57,.50,.75)	 1.2	 {.57,.52,.80) b

Ta complete this Section, we now discuss the accurac y of

the emp^.rically estimated numbers in Tahtes 1$.I^-18.3. All

the distribution functions values n are with approximate	 ^?'
r

probability^'^ contained in the symmetric interval of leng th	 ^'
i

1
p{l-p) ^~(1-oc/2}^ around the em p irically estimated values

Ji

where ^ is the standard normal distribution function and n

is the number of iterations in the simulation. With n =450,	 ,;

I,	 substituting 1/2 for p, we find the conservative (3.- ^-)-

quant^.les^ for each t:

f 	 •Ol9	 Ot ti• 10 	'^,^

percentaT^e points for ^ F^sf {t)-F(t} ^ =	 .023 ^N. OS 	°' 	 ^^

.026	 csG<. X72-	 N
R

In order to take: account of our having estimated d,f.-values 	

^.	

$^

F(t) by empirical estimates F QS^ (t) far many t simultaneous- 	 ^.n
y	

i^
i	 ^ S

+	 lv, the Kolmngaroff-Smirnof£ ap p roximate percentage points	 `'

k for n= 450 are relevant:
.: y

.058 x =.10

	

pexcentage points far sup(F	 {t)-F(t)^`y	 .064 aG^.05	 "^II,^	 A5^	 .077 0.' ^.Ol.	 1i	 "
I`inall y , in Table 6 we have empirically estimated upoer	 -,

n

quartiles for random variables like l^ g - 9^^ . Although it's	 "^°
-	 -	 „a

hard to assess the accuracy of the linear interpolation we 	 "	 ^^
,_,	 ^	 ,y

have used, the ordinary binomial-normal confidence interval 	 i^
;,

{with n=450) for any t near the upper quaxtile of FC°) (with	 I^	 ^?
r	 ^. s

'r	 P{t) near 3/4} yields F{t) with 98% prahabi.I%ty in the range 	 '^^	 ^^

	

^,	 l

^'	 {t)^.02. Therefore. we can ascribe extremely high confi- 	 ^^	 ;j^	 ^
I'-Y

	

^	 3

A-	
_	 -	 ^—.^^.__—_^_	 ^ __

	 ... ,_	 _	 ^. ...

4	 -	 _.	 ^	 -	 -..^_	 _.	 ^ ...-. ^^..rrr.^..^....^......wa.^w+saifew^/^`rr w..r^...^.^...^.^a.. ^.^--_ 	 ..^ ^	 -	 -	 -.	 ---- -	 -_..--	 ._..r^^r^wv+^	 ._ __-
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m

'^i

^;:	 dente to the rust decimal. place of L• he upper-quartile

'^'	 estimates,	 and if fir{ ) (e.g. the d.f.	 of JE ^ - ill )	 were
i.
^:

approximately Linear wikhin increments of .L for x between Q
,-,

^:
and 1.7, we could have approximatel y 9$% confidence that the

,^,	 error in upper quartile estimates would be at most ^ .02.

Section	 L9	 Interpretation	 of	 Results:	 .Conclusions

Our	 first and immediate conclusion 	 from comparing Table
^.::

17.L(B)	 with Table	 18.1	 is	 that	 the	 fi g ures-of-merit- K^	 and
^-^

Kx	 foz^ subpixel	 estimation ar.e on the one hand 	 too	 crude	 to
ti

E
be of use,	 since	 the order of	 subpixel estimation they allow

i-' without	 noise	 is	 .8	 pixel	 or worse	 for	 images	 Z-5,	 and	 on
^	 ,^,

`	 j; the	 othex hand pat at	 all	 predictive of either	 the	 size	 of

L-'
^

n
J J B- 9 J J	 or	 the	 improvement	 of	 ^ J 8^S - 8J j	 over	 i J ^5- 9 J J.

^' -

1'^ Although	 one could hope	 to	 refine	 these	 figures-of-merit by

f^

estimation.	 of	 further	 spectral moments	 of ^^(•),	 the	 payoff

^	 L"" would	 seem	 to	 be	 much too small	 for	 the	 stringency	 of
a
r

k ^`
assumptions	 an	 reference	 images which one would	 have	 to

F	 ^

t impose.	 We	 therefore	 do not recommend	 the	 use	 of	 such
F

^	 ^, noise--£ree	 figures	 of	 merit	 for	 subpixel	 registration•

!^ The	 second- obvious concl^ssian of our 	 study has	 already

ŷ ' been	 mentioned	 but	 should be expanded:	 not only	 do	 the

,J simulation	 results	 in Tables	 18.L-18.3 establish	 the	 super -

^ ^s
laxit y	of	 aver-	 B	 in estimating $,	 but	 the	 artificial-*

estimator	 9	 {which attempts	 to bridge	 the gap between ^	 and
r.5	 ^	 c S

^	 by	 shifting ^ to	 the center nearest ^	 of a pixel with
-

...	 _	 _... _ .	 _... _ ..... . __	 _..

..	 _:_ :. ^..
^,

^	 _.	 -	 ._	 __
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a

F	 iff
^	 IE..,

. I
II

.k

F

7

i

I

"^'! E

^^

"r

r`..

^,

i

verte^t ^ ) is markedly worse than boot I	 Fn other words, for

the types of moving average Gaasszan noise f.iP^.ds atudied,
^	 t5	 ^s

fire sub p ixel imprave^nent of ^ by ^ makes ^ the estimator

of chni. ce far ^ (in Che ahsence of mere detaileri geometric

ittfaxmation about ^^).

Some	 quantiL• ati^re di.scussis^R of the si.mttLaCion	 results

wi11 givQ a sitar per focus to our concl.usiotts.	 Gansidering

Table 6 first, we see Chat the accurac y of $ is relatively

insensitive to the noise-level parameter ^ For. the. real

p
reference ima ges C^-5) and that I^ 9-^^f is less Chan .5

pixel, far fa between .^ and 1.2, rou ghl y 75X o£ Che time.

t5
for these images, ^^@--Qf^	 has upper--puarCile ranging from

.2 to .5 : taixels as G ranges Pram .4 to 1.2, and the advan-

L'^	 r	

.

Cage of ^	 aver ^ deteriorates as G geCs larger than I.O.

Indeed, Tables IB.Z and 18.2 strongl y support the folloraing

generalizatxan: fox many	 images	 2,3,4,	 and 5, when

^ I ^	 - ^ i ^	 ^. s less than about . 6 pixel, I ^ ^^ - ^ I C	 is

(stachasCically) smaller than ^ j 6-b^^) b y . I pixel ar more

far s^aall	 {but khis advanta g e is diluted by larger ^' ).

Quite gerteraxly, for $ll six images, Chere seems Co be na

advanta ge of 
^t5 

over Q wizen J ^^- »8({ is , 9 pixel ar more.

Iata^es 1 and b Cboth artificial, with strartg geometric

sCructu:re, and quite nonstationary) ax'e special in (i)

LS
showing vexy little advantage for ^ a^rer ^ , except 'far the

smalle .sC value a£ ^,-and Cii) shoeaing eery ra p id lass of

accuraeY as ^ increases (e.g., the upper quartiles in Table

18.3 far	 ^ ^ ^tS ,$j ^ are larger for Images 1 and & that fox

r+r'`

t^

,.__...-,--,__ ..__. r ..^_
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^

58.7	 1

'tp	 ^on1	 halt	 as	 Lar	 a	 ar	 less).the	 other	 s. snag _s,	 wi	 h	 v	 g

The	 last	 topic requirin g	detailed	 comment	 is	 tine cotnpar-

icon	 of predictions	 in Table	 17.3 with	 empirical results	 in

Tables 18.1 and 18.5. 	 The special features of Ima ged and 6

are,	 if anything scare shar p l y bxought	 out	 in Table 17.3	 than

in	 the	 empirical results,	 reflecting in part	 the	 conserv-

atism of khe probability inequality of Section 15.	 However,

the	 khearetical	 inequality	 together with '^abte 	 17.3	 very

satisfactoril y	shows	 khe suhnixel accuracy of	 registration

^

atkainable	 on	 images	 2-5.	 This,	 of course,	 is	 borne	 cut
i

i
strongly	 bath	 in simulation	 1	 (	 to which	 Tables	 17.1(a),

^{ 17.2,	 and	 17.3	 are	 directl y	relevant	 and	 in	 simulation	 2.	 '^

r,

'^, Summary	 '^
^_.; ;

r,

^.
According	 bath	 to	 theoretical	 inequalities	 and	 the	 ^_

^^1

^., simulation	 study reported	 here,	 automatic	 subpixel xer^istra-	 `^
r

^	 ,r'
^,

Lion	 with	 respeck	 to	 real	 grey--level	 reference	 imag es	 ,:

L' _:
(asa^tmed	 Co	 be „k°eruQd	 translated,	 with	 a stationary noise

.-;=^
^`;;
L.1

field	 added	 to	 the pixel	
i

grpv-levels)	 seems	 quite	 feasible.	 tii

-- The	 present	 simulation study,	 one of	 the	 first	 systematic

^^^ performance evaluations of the maximum-correlation method of

^^' imagerregistration and of a known effective variant based on

t^^
maxi.tnizing	 a	 least-squares	 quadric	 surface	 locally	 approxi^-	 {{{

^-,

•,	 ^) mating	 tP,e	 (discrete)	 correlation-statistic 	 near	 its
^,

(discrete)	 maximum,	 shows	 that even if the additive 	 noise	 ^
^;	 ^' a

has	 standard	 deviation	 as	 large as	 that	 of	 the	 (3Sx35)^^,'!

,^,

^,

reference	 imag e,	 the	 up per	 gauartile	 of	 the	 error	 in

^s

^'

L'w^
_

^'
4

.. ^..	 _	 ..
_	 ^-.	 ^,- `'^	 '-^_	 :Y,	 ^	 ^.^ _.	 X11

^	 -	 --	 -.	 -	 ..	 _'



^^^

re^istraCion need be no more (aad may be much Z P.ss) khan

.Z5 to .5 pixel.

^.	 _.__	 ^.y..._ ^—__.^.^ ___ _	 _ - - -- ..	 -- -	 -- -• -	 --^ T,.^-. ,^- ...
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^ ^^

Section 2Q. Conclusions

We have developed geometric and probabilistic models

for su•bpixel accuracY , ^ in image registration and edge loca-

tion.	 These models gave been used to develop and analyze

procedures to perform these tasks.	 I^^tial experiments

indicate a high level of subvi- xel accuraa^^^ may be attain-
\

able with the grey level g eometric methods, t^^ough consider-

able experimentation will be required to v^lida•te this.

Our analysis of digik.al	 tines	 methods is reasonably

complete and ^.ndicates an average error of ` about l/20

pixel.	 This result, which	 was	 baseca an restrictive

assumptions9 led to^direct edge estimation procedures using

the digitization of an edge (including grey levels).	 This

method, 4FhiCi1 was briefty tested on grey--level imagery

formed from i,andsat data, pave similar accurac y without

relying ion the restrictions of the strictly geometric
^^,

method.

An estimate for determining the error in using the

peak of the cross-correlation between sensed and reference

images as an estimate of the offset was developed, Simula-

tions were used to determine the reliability of the error

estimate ,and to determine the errors resulting from inter-

potation of the correlation function to locate a subpixel

peals.	 The level of subpixel accuracy as a function of the

sig^zal noise was analyzed using simulations.

The primary direction for future worlt will be the

analysis and testing of the procedure fvr estimating real

^e
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edge location using the artificial edge dig^.tizations as

masks. Reasonable dxreceions of researci^ include further

testing on `noise imagexy, camputatian optim^.xation, and

extension of o^sr previous analysis of geometric registra--

lion to incorporate random grey Level noise for the

analysis of geometric registration to incorporate random

}grey level noise for the 3na3.ysis pf this never nrocedurc^.

t

i

—^..,......,	 ._.ri	 ..^..^,'.,..^.	 ^..	 ._	 —	 — _.....

^w.r	 .. ._ ..	 ^ .tea, w^^wr^.rr^^v.r^.^.urrrrr^Wr4^rrr^^.^._^.__._.^^.. ._._ _ ___. ^.^.. ^	 C	 ^J	 _	 _ _	 _	 __ _..	 1^,
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^`	 ACENDA

t
Wednesday_,_ Junk 6:

	9:00 - 9:30	 Program Overview
`^`	 M. Kristine Butera, Remote Sensing Science Program
^	 Manager, NASA ^3eadquarters, Washington, D.C.

r-,	 R. F. Heydor7, Science Manager, Fundamental Research
Program: MPRIA, NASA/Johnson Space Center, Houston,

^=	 Texas

r ,	 MathlStat: First Session

	

9:30 - 10:15	 R: P. Heydorn, NASA/JSC and M. V. Martin, LEMSCO
L	 "Estimating Location Parameters in a Mixture"

r,	 10:15 - 10:45	 Break

"^=	 10:45 - 11:30	 David Scott and Rod Jee, Rice University
"Nonparametric Analysis of Minnesota Pine Tree Data

''	 and Landsat Data"

`'	 11:30 - i:30	 Lunch

r• Math/5tat:	 Second Session ^

^- 4 (:30	 - 2:15 Wayne Lawton and Meemong Lee, Jet Propulsion Lab
"Texture Classification Using Autoregressive

r Fi 1 teri ng"

^= 2:15 - 3:00 Charles Peters, University of Houston ^^
"Bayesian Estimation of Normal Mixture Parameters" '¢^

^-
3:00 - 3:30 Break '^

^' 3;30 - 4;15 J. Hill, p . V. Hinkley, H.	 Kostal, and C. Morris, =^
- ^;° University of Texas at Austin

'^̂ . "Advances in Empirical Bayes Muddling and Estimation
for Spatial Data"

^^ ^" 4:75 - 5:00 L. F. 6useman, Jr. and L. Schumaker, TAMU
`. u "Multivariate Spline Methods in Surface Fitting"

^. 6:00 - 10:00 Social Hour and Banquet, Gilruth Center
ii ^ •^

l_ Thursday, June 7: ;,	 ^^
G ^.

r. 9:15 - 9:30 Announcements ^^^^

^-'- Math/Scat:	 Third Session

9:30 - 10:15 H. J. Newton and W. 8. Smith, TAMU 	
^

^,^^
"Autoregressive Spatial Estimation for Two-dimensional ^;^
Times Series"

,^ 10:1 5 - 10:30 Break ^j

^, 1:0:30 - 11;15 R. F. Gunst and M. Y. Lakshminarayanan,.Southern
I
^^'^

Methodist University
- "Exploring the Use of Linear Structural Models to

Improve Remote Sensing Agricultural Estimates" ^^
,^

1,.
.
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11:15 - 12;00	 R, S. Chhikara, LE^9SC0 and A. G. hlouston, NASA/JSC
"Calibration or Inverse Regression: Which is Appropriate
i=or Crop Surveys Using Landsat Data?"

	

12:00 - 1:30	 Lunch

Pattern Recognition: First Session

	

1:30 - 2;15	 T. Matsuyama, V. Hwang, and Larry S. Davis, University
o^F Mary] and
"Evidence Accumulation i:or Spatial Reasoning"

	

2:15 - 3;00	 K. S. Shanmugan, University of Kansas
"Textual Edge Detection and Sensitit+ity Analysis"

	

3:00 - 3:30	 Break

	

3:30 - 4:75	 F. Paderes, E. Mi^:hail, W. Forstner, Purdue University
"Recti^Fication o^ Single and Multiple Frames of
Satellite Scanner Imagery Using Points on Edges as
Control"

	

4:15 - 5:00	 David Daw, National Space Technology Labs
"The Influence of the saumber ai • Ground Control Aoints
on the Scene-to-map Registration Accuracy"

Friday, June 8:

	

8:30 - 8:45	 Announcements

Pattern Reca.nition: Second Session

	8:45 - 9:30	 Curtis E. Woodcock and Alan H. Strahlet, Hunter College
"Exploring Spatial Variance in Images Through Scene
Simulation"

	

9;30 - 10:i5	 Grahame Smith, SRI International
.	 "Image-tn^Image Correspondence: Linear Structure

Matching"

	

10:15 - ii:15	 Carlos Serenstein, Laveen N. Kanai, David Lavine, and
Eric Olsen, LICK Corporation
"Subpixei Registration Accuracy: Geometrical and
Statistical Results"

	

11:75 - 12:00	 piscussion
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LIST OF ATTENDEES
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M, Kristine 8utera, NASA Headquarters
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Joy Duncan, TAMU Research Foundation

^. David L. Egle, TAMU

W, Forstner, Pt€rdue University 	 "

^^ Richard F. Gunst, SMUL L. F. Guseman, Jr., TRMU
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'	 . I , James Henry, University of F7 on da
r Virginia R. Hetrick, University of FIarida

R. P, Heydorn> NASA/JSC	 ,^
-

^.
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¢'
^
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Hlavka, NASA-Ames. Research Center_Chris_

Glen Houston, NASA/JSC 	 }
^?

'
	: Vincent Nwang, University of Maryland

^ Rod Jee, Rice University
f {^ Jahnny Johnston, UT-Austin	 ^	 `̀-^

^ Laveen Kanal, LNK Corp.
^" N.	 Kostal , UT-Austi n	 ^ "^

^' t^.. M. Y. Lakshminarayanany SMU
Richard Latty, university oi= Maryland
!rlayne Lawton, JPL

^::
Meemong Lee, JPL

•. Anne Marie McAndrew, NASA/JSC
E. Mikhail, Aurdue University^^

^^ Thomas C. Minter, Lockheed	 ,'L ' Carl t^3orri s,	 UT-Austi n	 ^	 ^

.j H. J. Newton,- TAMU

^^ F.	 Paderes, Perdue University	 ^	 ^	 '^
Charles Peters, Universit y off' Houston if ; Marion Rei ,man

`. ^^ John W. Rouse, Jr., University o-^ Texas at Arlington
#^.

Larry. Schu^i^aker, TAMU
David Scott, Rice University

'^ K. S.'Shanmugan, University of Kansas
^ t Grahame B. Smith, SRS	 .
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