1085-20473

ATMOSPHERIC-PROFILE IMPRINT IN FIREBALL ABLATIOiI-COEFFICIEN:

Z. Ceplecha and P. Pecina

Astronomical Institute of the Czechoslovak Academy of Sciences 25165 Ondrejov Observatory, Czechoslovakia
During the past two decades three different projects for registration of metcoric fireballs were put into operation using multistation photographic technique. They have yiclded data on eeveral hundreds of fireball. trajectories, some of them with deep atmospheric penatration down to ticights of 20 kilometers. The immediate results of multistation ptotugreph of a fireball ar" the relative dintances along the trajectory, $l_{\text {obs }}$, and the heights. Fiobs, measured at each shutter time-mark, t, (shutter breaks of the image). The precision of one value of $l_{\text {nbs }}$ is of the order of several tens of neters. There are usually wany tene of independent poiats (breaka) available for long fireball trajectories with independently measured $l_{\text {obs }}$ and $h_{\text {obs }}$. We need a good theoretical relation for a least-squares solution of $\{=1(t)$ or $i=h(t)$, where l is the cheoretically given distance along the trajectory and h the height. Until recently there were no adequate formulae expressing theoretically the distance along the firebalı trajectory, 1 , as function of t. He have been able to find such formulac and moreover to find their general form for any atmospheric profile used.
The motion and ablation of a single non-fragmenting meteor body can be expressed by the following set of difterential equations first presented by HOPPE (1937):

$$
\begin{align*}
& \frac{d v}{d t}=-\Gamma A \rho_{d}^{-2 / 3} \rho m^{-1 / 3} v^{2} \tag{1}\\
& \frac{d m}{d t}=-\frac{A A}{2 \zeta} \rho_{d}^{-2 / 3} \rho m^{2 / 3} v^{3} \tag{2}\\
& \frac{d h}{d t}=-v \cos z r
\end{align*}
$$

號 h the height of the teteoroid, p the air density at any tine instant t. The parameters are: f the dragifocffifient, A the heat-transfer cocificient, A the shape factor: $A=S m^{-2 / 3}{ }^{\circ}{ }^{2 / 3}$, where S is the head cross-scction and ρ, the density of the meteoroid, t is the energy necessary for ablation of one unit of rass and z_{p} is the angle hetween the Eireball trajectory and the vertical. The atilation coefficient, is defined by

$$
\begin{equation*}
0=\frac{1}{2 \zeta \Gamma} \tag{4}
\end{equation*}
$$

and the shane-density cocfficient, K, by

$$
\begin{equation*}
k=1 A \rho_{d}-2 / 3 \tag{5}
\end{equation*}
$$

To solve the system of equations (1) to (3), we have to assume a density profile of the attosphere. Until now everybody worling in the field of physical theory cf netcors and its application to observations solely used the assumption of exponential decrease of the air density with height corresponding to an isothermal atmosphere:

$$
\begin{equation*}
c=\nu_{c} \exp (-b h) \tag{6}
\end{equation*}
$$

where b, the air density gradient, was ε sbumed constant as well as the zerolevel air-density, p. Moreover, the solution of the system (1) to (3) was known only in the form of $v^{*} v(\rho)$:

$$
\begin{equation*}
\bar{E}_{1}\left(\frac{1}{6} \sigma v_{\omega}^{2}\right)-\bar{E}_{i}\left(\frac{1}{6} \sigma v^{2}\right)=\frac{2 K \rho m_{\infty}^{-1 / 3} \exp \left(\frac{1}{6} \sigma v_{\infty}^{2}\right)}{b \cos z_{R}} \tag{7}
\end{equation*}
$$

where v_{∞} is the initial velocity (hefore entering the atmosphere) and m_{∞} is the initial mass and $\tilde{E}_{i}(x)=\int_{\infty}^{x} \exp ^{u}$ du is the exponential interal. Thus numerical differentiation of directly observed dictances along the fireball trajectory, lobs, was necessary to get pos for application of formula (7) to observations. Such an indirect method yielded atlation coefficients and initial velocities with standard deviationg much larger than corresponding to the accuracy of the measured distance, lops so the accuracy of the observed quantities was far from being utilized fully.

Recently ve have propesed a solution of the syatem (1)-(3) in a closed forn expressing $1=1(v(t))$:

$$
\begin{align*}
& t-t_{0}=-\frac{2}{b \cos z_{R}} \int_{v_{o}}^{v} \frac{\exp \left(\frac{1}{6} \sigma x^{2}\right) d x}{x^{2}\left[\overline{\mathrm{~F}}_{1}\left(\frac{1}{6} \sigma v_{\infty}{ }^{2}\right)-\bar{E}_{1}\left(\frac{1}{6} \sigma x^{2}\right)\right.} \tag{8}\\
& 1-1_{0}=\frac{1}{b \cos z_{R}} \ln \left[\frac{\bar{E}_{i}\left(\frac{1}{6} o v_{\infty}{ }^{2}\right)-\bar{E}_{1}\left(\frac{1}{5} o v^{2}\right)}{\bar{E}_{1}\left(\frac{1}{6} o v_{\infty}^{2}\right)-\bar{E}_{1}\left(\frac{1}{6} \sigma v_{o}^{2}\right)}\right] \tag{9}
\end{align*}
$$

Here v_{0}, l_{0} are the velocity and the distance, ithe point $t=0$ from where the relative time is counted. The integration variable is denoted x. The equations (8) and (9) hold under the assumption (6). The obrerved values, 1 and hof for each independent time instant, t, can be fitted to equations $98 f$ and (9) ty the least-square method and the parameters 1_{0}, v_{0}, v_{∞}, σ can be determined.

In applying our formulae (8) and (9) to observations of fireballs we started to suspect wuch greater importance of the air density profile for the resulting values of the parameters than it vas asstmed previously, when the simplistic approach to the air density profile with a constant gir density gradient was assumed as correct. Our solution of (1) to (3) for a general air density profile has the form

$$
\begin{align*}
& t-t_{0}=\int_{1_{0}}^{1} v^{-1} d l \tag{10}\\
& \frac{\bar{E}_{1}\left(\frac{1}{6} o v_{o}^{2}\right)-\bar{E}_{1}\left(\frac{1}{6} o v^{2}\right)}{\bar{E}_{i}\left(\frac{1}{6} \sigma v_{w}^{2}\right)-\bar{E}_{i}\left(\frac{1}{6} o v_{o}^{2}\right)}=\frac{\int_{h}^{\infty} p d h}{\int_{h_{0}}^{\omega} p d h} \tag{1i}
\end{align*}
$$

Where h_{0} is the height at the tive instant t_{0}. Amore other paranetere v_{0} and : can be determined ty the least-square bethod to fit the observations to (10) and (11).

Detaile on both solutions (8), (9) and (10), (11) can be found in two recent fapers (PECHNA and CEPLECHA, 1983, 1984) together with outlines of the nuncrical procedures and of the computer programs used. The ablation
coefficients and initial velocitien cooputed for 10 Praitie thetworh and ane Eurofean lietwork firebalis for the inutheiaal atmafitre (i962) and for the asaconal aceosphere (1906) are cocparec in Table l. Graphiacal copparison of ablation coefficienta confuted for the iothemal atoonfhere and firt the

a) The coaputed ablation cocfficient in atrangly Jrpandent an the ateospreric cotrl used. Difteronces by uaing, atplistic isothermal atmagtere are up to facior of ivo.
b) The standard devastions when using a seasonal atnostere are aignificantiy sastler than for tice sibple isotheral endel.
c) The atitial velocity differa also far nutaide the estandard devizticam fer the majority of cares and the value fres the scasonal ateozphere ape better. This hat ast:onumical signiticance in confuting the orlitio.

The main conclusion is ruident. The frierous assurfien of birple atuospheric codel ubed up to now for fhecretical considesations of ereteroid penctration into the atcosplere and for coeputational arjicationa to firctalla yielcs incortect reaults. At least, the denasty frofale of "tionthiy atmonhere:" hould te uned (CIRA, 1912) for any future ticorctical and experinental applications to fet any raliable data on ablation coctitacite and anitial velocities of firchalls with food dyasac data. Aralysint atiation cocticiente conputed for cany firebsils of different structure and ronkeition of cheir ceteorcicy, ve could better recognize differme typen of todice and !!eit averare chatacteriatica. Then, wing the averafe statistical value of the ablation corffacient for each scparate structural and connoitional kroup of firetalla, ve could detemine detaile of the instant atr denfity profale of the Hiddle Atciosphere at the particular menent of any fireball with good dyamac data and eoreover the lecal diaturbance ty large meteoric bodics. And in thia direction we want to contribute to studies ot blie liddir Atzosphere in the aear future.

Peferedces

CIPA (1972), COSPAP International ficference Atrarphere 1972. Akadeie Vrtac. Verlin.
Pecira, P. and z. Crflecta (1983), Sull. Aetron. Inot. Czectioni., 12. 102. Pecins, P. and Z. Ceplecha (1464), Sull, Astron. Inst, Cacehosi., 12. No. 1 (or 1983. \%o. 6).
U.S. Standard Atmosphere (ig62). Mastinkton
U.S. Standard Atmosphere Stpplements (1906). Warhington

Table 1. Comparison of ablation corfficient, ", and initial velocity, ve. computed with conetant in denaity gradient, b, and with ecasonal air denticy profile.

Firchall Number	, $a^{2} / \mathrm{kn}{ }^{2}$		v k ka / s		$\begin{gathered} \text { lleight } \\ \text { Interval } \\ \text { km } \end{gathered}$
	$\cdots \operatorname{cxp}(-b h)$	Scasomal Atmosphere	$\cdots e x^{\prime}(-6 h)$	Seseonal Acrosphere	
PN39057	$\begin{aligned} & 0.0229 \\ & \cdot .0009 \end{aligned}$	0.0195 . .0005	$\begin{array}{r}16.339 \\ \hdashline .006\end{array}$	16.350 $\therefore .002$	$\begin{aligned} & 74 \\ & 36 \end{aligned}$
PN39060	$\begin{array}{r}0.007 \\ \hdashline .001\end{array}$	0.018 $\therefore .002$	31.94 $\therefore .00$	31.81 0.04	$\begin{aligned} & 91 \\ & 50 \end{aligned}$
FW3906S	$0.036 ?$ $\cdot .0037$	0.0316 $\because .0006$	17.303 $: .007$	17.332 2.004	68
5N39078	0.0634 0.0031	0.0604 $\therefore .0013$	$10.9: 5$ $: .011$	10.982 $\therefore .003$	62
F139404	0.0396 . .0007	0.0303 -.0007	15.319 $\pm .006$	15.346 $\therefore .244$	79 28
5x39405	0.0465 $\therefore .0017$	0.0451 0.0009	$\begin{array}{r} 14.405 \\ : .011 \end{array}$	14.385 $: .003$	$\begin{aligned} & 70 \\ & 44 \end{aligned}$
Fi39434	$\begin{array}{r}0.0269 \\ \hline .0009\end{array}$	0.0146 $\therefore .0007$	14.289 $=.00 \%$	14.317 $\therefore .002$	69 27
PR39469A	0.0132 $\therefore .0020$	0.0176 -.0016	26.39 $\pm .04$	26.42 $=.02$	$\begin{aligned} & 95 \\ & 55 \end{aligned}$
Fi39729C	$\begin{gathered} 0.0107 \\ . .0004 \end{gathered}$	0.0109 $\therefore .0002$	27.890 $\pm .029$	27.823 . .009	72
F:39820A	$\begin{array}{r} 0.0208 \\ =.0003 \end{array}$	0.0212 -.0002	24.617 $: .006$	24.611 $.003$	$\begin{aligned} & 80 \\ & 39 \end{aligned}$
Exi20181	$\begin{aligned} & 0.059 \\ & .006 \end{aligned}$	$\begin{aligned} & 0.031 \\ & =.004 \end{aligned}$	11.578 $\pm .011$	$\begin{array}{r} 11.611 \\ \pm .004 \end{array}$	$\begin{aligned} & 64 \\ & 33 \end{aligned}$

- Different averace values of b were used correfponding to different height intervals for particular fireballs and to the U.S. Standard Atrosphere (1962).

Seasonal ateosphere were taken frea U.S. Standard Atmosphere Supplements (1966).

Figure 1. The average ablation cocfficient, compute fron the simple isotheral atmospheric codel (i - - exp (-bh)) is flosted againzt the average ablation cocfficient cooputed fron the seasunal atraspheric eodel. Bara are the atandard deviations. The 45° lino earks equal values of froo both computations.

