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ABSTRACT

An energy-balance model is used to estimate daily evapotranspiration for

3 days for a barley field and a wheat field near Hannover, Federal Republic

of Germany. The model was calibrated using once-daily estimates of surface

temperatures, which may be remotely sensed. The evaporation estimates were
within the 95% error bounds of independent eddy correlation estimates for the

daytime periods for all 3 days for both sites, but the energy-balance esti-

mates are generally higher; it is unclear which estimate is biassed. Soil

moisture in the top 2 cm of soil, which may be remotely sensed, may be used

to improve these evaporation estimates under partial ground cover. Sensi-

tivity studies indicate the amount of ground data required is not excessive.
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INTRODUCTION

Evaporation and soil-moisture status are important hydrological parameters
which are difficult to estimate conventionally over large areas. There are

some indications that remotely-sensed measurements may be able to assist in

their estimation for these large areas (e.g., Rosema et al., 1978; Schmugge
et al., 1980; Soer, 1980). One remotely-sensed measurement, of the surface

temperature, may be used in numerical energy-balance models of the

atmospheric boundary layer and upper soil to make inferences of several

hydrological parameters of interest, including soil-moisture status and

evapotranspiration. The principle of these models is to solve the equation:

S = RN + L • E + H (i)

where RN is the net radiation; L • E and H the latent and sensible heat flux

across the atmospheric boundary layer, respectively; and S is the soil heat

flux. L is the latent heat of vaporization and E is the evapotranspiration

flux. Each of these terms depends partly on the surface temperature, and on

a set of boundary conditions such as the air temperature, the vapour pressure

and the wind speed at some level above the surface, the incoming radiation
and the temperature at some level in the soil. Given measurements of the

boundary conditions, the surface temperature may be estimated, compared with

remotely-sensed measurements of the surface temperature, and the two made to

agree by parameter fitting. As remotely-sensed measurements are likely to be
available only a few times daily in an operational scheme because of orbital

constraints, and yet daily means or totals are of most use, the parameters
are usually fitted at the times when remotely-sensed data are available and

used for all simulation times during a day.

An extension of this type of model was described by Camillo et al. (1983),
where both the energy and moisture balances were modelled for a bare soil

surface. The equations are solved using a predictor--corrector optimization

scheme. This model has advantages over previous models of greater computa-
tional efficiency and stability and of greater physical realism for bare

soil. In a test using data from an experiment in the Federal Republic of

Germany, the agreement between estimated and measured temperatures was better

than 1 K and was most sensitive to two parameters, the surface roughness and
the thermal conductivity of the soil solids. IIowever, most of the earth's

land surface is vegetated, and so extensions to the original model must be

made in order to handle vegetated surfaces satisfactorily.

There are several problems with dealing with vegetated surfaces, including
energy exchanges within a vegetated canopy and partitioning the energy and
moisture exchanges between the plants and the soil surface. The classical

way to estimate transfer across the boundary is to find relationships between

measurable variables which may be explained by introducing combinations of

resistances to movement, analogous to Ohm's law (Shuttleworth, 1976). For

vegetation canopies this approach easily introduces large numbers of addi-

tional parameters. For a practical application using remotely-sensed data,

it is better to have a few parameters which may be updated regularly (daily

or even more frequently with spacecraft-borne sensors) rather than to try to
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estimate many parameter values from a close succession of intensive ground
measurements and then use them for long periods of time. A method such as

described here may give reliable evapotranspiration estimates and error bars

over large areas with minimal ground data.

The additions to the bare soil model required to model vegetated surfaces

and a discussion of the simplifications required from the complex resistance
models is described next.

MODEL DESCRIPTION

As in Camillo et al. (1983), the net radiation was measured, and the other

components of the surface energy balance were modelled, as follows:

L • E = - CIUa(e s - ea) (2)

H = - y CIUa(T s - Ta) (3)

S = - kl(Tl - Ts)/Z 1 (4)

where Ts is the surface temperature; Ta the air temperature; es the surface

vapour pressure; ea the atmospheric vapour pressure; Ua the wind speed; and

y the psychrometric constant, kl, TI and ZI are the thermal conductiv-

ity, temperature at the center and depth to the center of the first layer,
respectively.

The constant C1 in Eqs. (2) and (3) is the bulk diffusion coefficient for

neutrally stable atmospheric conditions which was used in the bare-soil

simulations. A more complete evapotranspiration model which includes a plant
resistance would be formulated as follows:

L • E = - (pCp/y)[e s - ea)/(r a + rs) ] (5)

where p and Cp are the density and heat capacity of air; respectively, and
ra and rs are aerodynamic and stomatal resistances, respectively. Under

neutrally stable conditions, the aerodynamic resistance may be modelled
(Brutsaert, 1982) as:

in2(z/z O)
ra = (6)

k2U
a

where z is the height at which the meteorological data are measured; zo is
the roughness length; and k is von Karman's constant. Putting this resis-

tance into Eq. (5), rearranging, and comparing to Eq. (2) gives:

pCpk 2
C1 = (7)

yln2(Z/Zo)(l + rs/r a)
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The easiest application of this type of model using remotely-sensed data

requires the bulk diffusion parameter CI to be constant between calibration

times. This paper provides the presentation of the model, assuming a

constant CI but allowing evaporation to be less than potential through
constraints on the water balance through the soil-moisture flux. The model

is tested by comparing the estimates of evaporation produced by the model

against those produced by a more conventional eddy correlation and energy-

balance approach for one set of ground conditions in the F.R.G. Further

testing of the model under different conditions is clearly desirable.

For C1 to be considered a constant, Eq. (7) shows either that the stomatal
resistance must always be small when compared to the aerodynamic resistance,

or that the ratio of the two must always be constant. Neither of these

conditions is likely to be met, especially for stressed vegetation. However,

there are mathematically- and physically-based reasons for taking this

position, in addition to the simplicitly required for remote-sensing applica-

tions: (i) there must be some constant value of CI which, when used
in Eqs. (2) and (3), will give the correct value for evapotranspiration

integrated over some time period; and (2) an increase in stomatal resistance
is accompanied by an increase in the surface temperature, due to the reduction

in the latent heat flux. Thus, we can bypass fitting on the stomatal

resistance, since the feedback mechanisms (the heat balance at the soil

surface, Eqs. (1-4)) couple its behavior to that of the surface temperature,

to which we are fitting. Eq. (7) shows that increasing, rs should cause a

smaller CI, precisely the behaviour found in this study.

The soil heat flux term (Eq. (4)) may be rewritten to solve for Ts:

rs = (Zl/_l)S + rI (8)

Substituting the heat-balance equation (Eq. (i)) into this equation gives:

Ts = T1 + (Zl/_I)[RN(Ts) + L • E(Ts) + H(rs)] (9)

Solving for Ts also gives the heat and moisture upper-boundary fluxes of the
soil, S and E, respectively. These are used with the soil-moisture (qe) and

heat (qh) fluxes in the soll profile, computed from soll physical properties
and temperature and moisture profiles, to solve the equations for temperature
and moisture within the soil:

dT/dt = - c-l(3qh/3Z) (10a)

de/dr = - _q/3z e (10b)

where e is the volumetric moisture content; and C the volumetric heat capa-

city of the soil. The general layout of the soil model is described by
Camillo et al. (1983).
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In Eq. (2), E is the total evapotransplration demand (cm s-l), which for

vegetated surfaces must be divided into an evaporation flux Es from the soll

surface and a transpiration flux Ep from the plants. The iterative structure
of this model is used to facilitate this. A constant fraction of this demand

function E is allocated to the soil evaporation Es. If the soil-moisture

supply cannot support this potential, Es is reduced to the flux supplied to
the first layer from below (Hillel, 1980). Then the transpiration, E_, is

set equal to the difference between E and Es. If the plant is stressed so

that this demand cannot be met, Ep is set to zero. Finally, E is reset to

the sum of Es and Ep. Thus, non-potentlal evapotransplratlon is modelled by
allowing the demand to match the supply, as defined by the soil-moisture

extraction terms of the model, rather than as is conventionally done by
reducing the atmospheric demand function directly, using a resistance formu-

lation and then assuming that this demand can be met.

The model of the transpiration Ep is provided by an estimate of the crown
potential, estimated using a root-water extraction model described in detail

by Camillo and Schmugge (1983), and comparing this estimate of the crown

potential to the atmospheric demand. The root model provides an additional
term W in the soil-moisture flux Eq. (10b), so that:

dS/dt = - 3q/3z 8 - W (ii)

The model for the sink term W is:

W(z,t) = [@s(Z)- _p(t)]/[_s(Z) + _p(Z)] (12)

where _s(8,z) is the total potentialenergy of the soil water (the sum of the
gravitationaland matrix potential);_ (t) is the plant potential,or crown
potential,which is allowed to vary wi_h time but which is assumed constant

with depth; _s is the soil resistance; and _p is the plant resistance.
The soil resistance_s may be modelledas:

_s = i/[K(8)R(z)] (13)

where K(8) is the hydraulicconductivity(cm s-l); and R(z) is the relative
root density (cm-2),and the resistanceto flow in the roots may be modelled
as:

_p(Z) = r/R(z) (14)

where r is the specific resistance, the inverse of the hydraulic conductivity
in the roots (Hillel, 1980). Rearranging and substituting in Eq. (12) gives
the sink term for each layer:

Wi = [KiRi(_i - zi - _p)]/(l + rKi) (15)

where _i is the matrix potential; and - zi is the gravitational potential of
moisture in the ith layer. Ri is often considered as the length of active
roots per volume of soil, although there is no conclusive experimental evidence
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about this. However, the relative root density appears more important than

the absolute values at any depth, because the model only requires that R(z)

represent the relative ability of the roots to absorb water at each depth.

The crown potential _p is modelled as a response to the atmospheric evapo-
transpiration demand function, and is computed by requiring that the integral

of the sink terms over the soll profile be equal to this demand function Ep.

Thus, for a profile divided into N layers, of thickness dzj:

N

Ep = - E Wjdzj (16)
j=l

Inserting Wj from Eq. (15) into Eq. (16) and solving for the crown potential
gives:

N

Ep(t) + E [KjRj(_j - zj)dzj/(l + rKj)]
j=l

_p(t) = (17)
N

[KjRjdzj/(I + rKj)l
j=l

Once the crown potential is evaluated, the sink term may be evaluated for

each layer using Eq. (15). To allow for the evidence that water flux from

plants to the soil is negligible (Molz and Peterson, 1976), any negative

sink terms Wj are set to zero and the remaining positive terms are reduced
by the scale factor to satisfy Eq. (16).

Even though the transpiration model does not include stomatal resistance, a

rudimentary mechanism does exist to model extreme plant stress. For periods

of large demand or dry-soil conditions, the magnitudes of Ep and _j (or
possibly both) in Eq. (17) will be large, giving a large magnitude for the

crown potential. There is a limit below which this negative potential cannot

go, and if _p from Eq. (17) exceeds this limit, it is reset to equal the
limit. As the soll dries further _s will become more negative, with no

compensating change in _p possible; eventually the sink terms (Eq. (15))
will become negative and are, therefore, set to zero. In this way, the large

stress modelled by a lower limit for _p may eventually cause transpiration
to cease.

MODEL VALIDATION

The model has a somewhat different structure and philosophy from existing
models of evapotranspiration, and so extensive validation of the approach is
required for many different vegetation types under many different conditions.
The validation described here is somewhat limited, being for wheat and barley
crops under near-potential cohditions for a site in the F.R.G., the data
being taken in June 1979. The model must work well under these conditions if
it is to have any general application. Although the surface temperature
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data were collected for small areas only in this intensive measurement cam-

paign, the data were exactly analagous to the soil surface temperatures that
may be collected over large areas by remotely-sensed methods.

The data used to validate the model were taken during the experiment per-

formed in Ruthe, F.R.G., in the summer of 1979. The Joint Measuring Campaign

1979 in Ruthe was organized to study the water budget of an agricultural

area, and to explore the potential of remote sensing in regional water-

balance studies (van der Ploeg et al., 1980). The experiment was undertaken

as part of the Tellus Project, under the auspices of the Joint Research
Centre, Ispra, Italy, of the European Economic Community. The Tellus Project

was also one of the investigations of the NASA Heat Capacity Mapping Mission.
An area of ~ 4 x 4 km, 15 km south of Hannover, F.R.G., was used for this

experiment. The area, near Ruthe, has little relief in an open landscape

with few trees, bushes, buildings or other windbreaks. The soils, developed

in a Pleistocene loess ~ 2 m thick, are very homogeneous over large areas.

The individual fields are large, with an average size of N 7.5 ha.

The data used in this study came from wheat and barley fields. Soil surface

temperatures and soil temperature profiles were collected, together with

gravlmetrlc soil-moisture data and information about soil thermal conductiv-

ity and heat capacity, and net radiation, and wind speed, air temperature

and vapour pressure profiles. These data were collected largely by the

Institute of Hydrology and the University of Reading, Great Britain.

The root mean square error between measured and estimated surface tempera-

tures for each day for both wheat and barley are given in Table i for a

variety of bulk diffusion coefficients CI and an evaporation fraction fs of
zero. Taking the wheat field as an example for which data for two measure-

ment sites, D and G, are available, it may be seen that there is a minimum

root mean square error against site D temperature measurements for a value

of CI of _ 10-J on each day, while for site G the root mean square error
function is rather flat because the measured temperatures are usually below

the estimated values, while the meteorological measurements used are more

representative of those at site D. Similar conclusions may be inferred for

the barley field. It should be noted that the root mean square error values

given refer to all 24 hour values. The worst fit occurs at night, when least
evapotranspiratlon occurs. Root mean square error values for daytime only
would therefore be much below the values in the tables.

A test of the accuracy of the results is shown in Table 2, which compares

the estimates of hourly evapotranspiration from the model with estimates

produced using an eddy correlation technique (B. A. Callander, pers. commun.,

1980). Eddy correlation methods have several possible sources of inaccuracy,

because of instrument errors and atmospheric stability problems; B. A.

Callander (pers. commun., 1980) associated root mean square errors with his

estimates which are reproduced in Table 2. The eddy correlation techniques

produce large errors at night under low-wind-speed stable conditions, and so
only daytime estimates are made. It may be seen that the model estimates are

within the allowable errors on the eddy correlation estimates, assuming 95%

confidence intervals, but that the model estimates are consistently higher
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than the eddy correlation estimates. This is probably due to the very simple

way in which the eddy correlation method used partitioned the estimated
fluxes. The net radiation was measured, and the sensible heat flux was

estimated using wind and temperature data. The soll heat flux was estimated
using wind and temperature data. The soil heat flux was estimated as a

fixed proportion of the net radiation, the the latent heat flux was estimated

as a remainder term using Eq. (1). Consistent biasses of the latent-heat

flux term are thus difficult to detect, and it should be noted that the

day-to-day variations in hourly evapotranspiration rates are similar for the
two estimation methods. The data for the wheat site on June 21 are modelled

using a resistance formulation (Monteith, 1973) using crop resistance data
from June 20, and so there are additional errors on this "eddy correlation"

estimate, as reflected in Table 2.

These results show that the good agreement which can be found between

measured and estimated surface temperatures leads to reasonable evapotrans-

piration estimates. There is also the suggestion that remote sensing of

the surface soil moisture could reduce the errors of estimating the cumula-

tive daily evapotransplration. However, there are many assumptions inherent
in this analysis, and these should be examined.

First, the area examined was evaporating and transpiring under relatively

unstressed conditions, reducing the effects of stomatal resistance. A con-

stant CI does reasonably well for fitting the wheat data for 3 days.
However, it is necessary to use further data sets taken under stressed con-

ditions to see how frequently the bulk diffusion coefficient CI needs to be
re-estimated in order to give reasonable estimates of the daily cumulative

evapotransplration, and to see the assistance that surface soil-moisture

data may give to reduce the errors of the estimates.

SAMPLING INTERVAL REQUIRED ON METEOROLOGICAL DATA

One of the characteristics of the remotely sensed data is that it is avail-

able repetitively for large areas. It thus provides a good way of getting
estimates of hydrological variables over large areas that are very difficult

or expensive to get by other methods. However, it is important that the

requirements for ground data not be excessive, or the use of the remotely

sensed data becomes rather superfluous. The requirement for ground meteoro-

logical data to accompany the satellite data is examined here. The

meteorological data (air temperature, vapour pressure, and wind speed in the

boundary layer, and optionally the components of the net radiation at the

soil surface) are used to evaluate the surface heat balance equation fluxes.

It is the strong dependence of these fluxes on the surface temperature which
allows that measurement to be used for model calibration.

Camillo and Gurney (1984) studied the sensitivity of evaporation estimates

produced by the numerical model of the atmospheric boundary layer and upper

soll to random errors and constant blasses in the meteorological inputs,

using the same data from West Germany described above. It was found that for

the bare soil the errors in the net radiation had the most significant effect

on the evaporation estimates while for the wheat field the effects of errors
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in the vapor pressure and the air temperature were as important as the effect

of errors in the net radiation. Bias errors were found to produce larger
errors than random errors of the same magnitude for both fields.

Plots and tables of evapotranspiration errors as a function of the meteoro-

logical data random and bias errors were computed. The next stage in this
sensitivity analysis is to relate these maximum allowable errors on the

meteorological inputs, as determined from the maximum evaporation errors

which may be tolerated for the application in mind, to the temporal and

spatial sampling frequencies of the meteorological input data. This may be

done using the spatial and temporal auto-correlation structure of the

meteorological variables, which allows cross-correlations between variables

and spacetime trade-offs to be considered (Jones et al., 1979). However,

it is also of interest to examine the temporal sampling problem separately

from the spatial sampling problem. This was done here by running the model

with various sampling intervals on the meteorological data and then comparing

the resultant errors on the evaporation.

SENSITIVITY STUDY METHODOLOGY

The baseline run used data integrated over five-minute intervals from an

automatic weather station. This had been shown by Gurney and Camillo (1984)

do agree well with eddy correlation estimates of evaporation. The results
from all other simulations are compared to this baseline run.

Two different methods were used for acquiring meteorological data to be used

in the simulations. First, the actual data were reduced to one value repre-

senting a fixed time interval. Two reduction methods were used; sampling

the flve-minute data at the middle of the interval, and averaging the five-

minute data throughout the interval, as follows:

a) Samples: Single values to represent one, three and six hour intervals

were taken from the data set. Thus, one five-minute value was taken to

represent net radiation, air temperature and vapor pressure. The five-minute

data from the middle of each period was used for the sample data. Where the

mid-point fell at the end of a five minute sample period, the five minute

period immediately preceding the mid-polnt was used. Anemometers are

usually coupled to integrating recording instruments, so the average wind
speed throughout the period was used.

b) Averages: One, three and six-hour averages were taken from the data

set. This is in many ways a method more analagous to those becoming opera-

tional, where integrating recorders are used to get more representative

values of all the meteorological variables, not just the wind speed. The
hourly averaged data are shown in Figure i to illustrate the way the meteoro-

logical data vary.

Second, we tested some commonly used algorithms either to model unmeasured

data or to interpolate between infrequently measured values. These models
are described below.

157



SENSITIVITY STUDY RESULTS

Sampling and Averaging

Table 3 shows cumulative daily evaporation for the three days for the base-

llne, sampling, and averaging runs. It is immediately apparent from Table 3

from a comparison of the baseline and hourly average runs that, for all the

three days, using hourly averaged data gives virtually identical results to

the baseline. The three and six hourly averages are less good but still

adequate, with the respective maximum daily variations from the baseline

values being .i0 mm and .15 mm respectively.

The hourly sampled data also gave adequate results, the largest error in

evaporation being .14 mm. However, sampling at three and six hour intervals

gave unacceptably large evaporation errors with minimum daily errors of 0.80

mm and 0.57 mm respectively.

For each of the three time intervals averaging gives more accurate evapo-

ration estimates than does sampling. This is to be expected, as the sampling

technique could easily miss fluctuations such as passing clouds which affect

evaporation rates, whereas the averaging technique includes these effects to
some extent.

Interpolation and Modeling

Closely related to sampling and averaging is the idea of using sparse meas-

urements in the model. We have examined commonly used methods for using

sparse measurements of air temperature, vapor pressure and wind speed, and
for using net radiation models when no net radiation data are available.

The data used are those reported in standard meteorological reports from

secondary meteorological stations. We discuss each data type in turn.
Results are shown in Table 4.

Air Temperature

Linear interpolation between the daily minimum and maximum values is commonly

used to provide estimates of the air temperature at other times of the day.

We have modified this algorithm to include the 9 a.m. temperature, as this

value is also usually available. We therefore linearly interpolate between

the daily minimum and 9 a.m., 9 a.m. and the daily maximum, and then to the

next daily minimum. The evaporation estimates derived from using this 16

scheme for the air temperature are in the second column of Table 4. The
third column shows the results when, instead of the true times of the

extrema, the minimum and maximum are assumed to occur at 5 a.m. and i p.m.

respectively.

A comparison of the two shows that there are no significant differences

between the daily evaporation from the two schemes. If one is to use this

method, the simpler case of assuming a fixed time for the daily extrema could

be adopted, particularly as most synoptic reports of temperature maxima and
minima do not include the time of these extrema.
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The evaporation errors, which do not exceed .4 mm in any one day, should be

acceptable for most applications.

Wind Speed

For an unattended weather station only the daily wind run may be available,

so we have examined the use of one daily average wind speed. The results

are shown in the fourth column of Table 2. Comparison to the baseline run

shows good agreement for the first simulation day and progressively worse

results for the next two days, for which evaporation was underestimated by

.8 and 1.2 mm respectively. The reason is that for the first day the daily

average, 129 cm sec -I, happened to represent the wind speed for all daylight
hours when evaporation is greatest (Figure I). However, the second and

third day averages were 70 cm sec -I and 90 cm sec -I respectively, and a

comparison of these numbers to the hourly averaged data in Figure i shows

thatthey grossly underestimate the wind during the periods of greatest

evaporation.

These results are not surprising, as the correlation between wind speed and

high evaporation is well known. The lesson applicable to data sampling is
that the deviations from the mean must be small over the averaging interval.

If only the daily wind run isavailable, it may be possible to use other

meteorological data (such as the times of the passage of fronts) to recon-
struct some of the variations in wind speed within the day and thereby

improve evaporation estimates.

Net Radiation

It is possible to use a numerical model for the net radiation if measure-
ments are not available. As models of this sort are commonly used, it is

important to assess the effect of their use on evaporation estimates. The
model used here may be summarized as follows (Eagleson, 1970):

Rne t = (l-a) Io sine exp(-.128 n/sine) + _€s Ea Ta4 - _c s Ts4 (18)

where a is the albedo, I^ is the solar energy flux at the top of the atmos-

phere (120 cal cm-2 hr-[), e is the angle between the sun and the local

tangent plane, n is a factor relating to atmospheric scattering of visible
and near infrared radiation, _ is the Stefan-Boltzmann constant, _ sis

the surface emissivity, and Ea is the emissivity of the air, which may be
modelled as a function of the atmospheric vapor pressure and/or air tempera-

ture. The surface dependent parameters, the albedo and emissivity, were
measured with values of .18 and .96 respectively. The attenuation factor,

n, was treated as a fitting parameter, the only one used in the radiation

model. Figure i shows the hourly averaged data (solid line) and the best
fit (dashed line) for n = 3, as determined by eye.

The irregularities in the data not reproduced by the model are due to cloudy

conditions, which were not modelled but could be easily included as an extra

factor in Eq. (18). On a daily averaged basis, June 19 was considered com-

pletely cloud covered, June 20 about 40% cloud covered, and June 21 about
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15% cloud covered. The distribution over time on June 21 (the only day for

which such data are available) was 25% at ii a.m., 60% from i p.m. to 4 p.m.,
and 10% after 6 p.m. This cloud distribution is reflected in the differences

between the measured and modelled net radiation in Figure i.

The effect of these inaccuracies is tabulated in column 5 of Table 4. The

deviations of the estimated evaporation from the baseline for the three days
are i mm, -.54 mm and -.75 mm respectively.

Vapor Pressure

The 9 a.m. vapor pressure is widely available, so we have examined the errors

in evaporation from using this value throughout the day. The hourly averaged
values are plotted in Figure i. The 9 a.m. values for the three days were

14.7 mb, 17.8 mb, and 22.4 mb, and column 6 of Table 4 shows the evaporation

estimates. The deviations from the baseline values for the three days are
.3 mm, -.4 mm, and -i.0 mm. Thus, we conclude that using the 9 a.m. measure-

ment throughout the day when the daily variations are large (i.e. i0 mb on

June 21) gives evaporation estimates with unacceptably large errors.

This sensitivity to the vapor pressure is a direct result of the important

role it plays in the diffusion model, Eq. (2). Previous work (Camillo and

Gurney, 1984) has shown that in a diffusion model of this type, vapor pres-
sure errors can be as important as net radiation errors.

Vapor Pressure and Temperature

In the absence of advection, vapor pressure changes very closely with the

air temperature. It is thus of interest to see the errors where the vapor

pressure is calculated with the psychrometric equation, using the 9 a.m.

wet bulb temperature throughout the day and the interpolated air temperature.

This should give more acceptable errors than using one value for the vapor
pressure throughout the day. It may be seen from Table 4 that the errors on

evaporation are .5 mm, .0 mm and 0.4 mm, which should be just acceptable for
many applications.

All Variables Modelled or Interpolated

It is also of interest to see how well the model performs when the net radia-

tion is modelled and when the other meteorological data are all interpolated

from sparse measurements. The air temperature was interpolated using assumed
times for the maxima and minima, and the vapor pressure was calculated with

the aid of the interpolated air temperature and 9 a.m. wet bulb temperature.

It may be seen that the resultant errors in daily evaporation for the three

days are I.i mm, .0 mm and .9 mm, respectively. The errors on two of the

days are thus unacceptably high.

SENSITIVITY ANALYSIS DISCUSSION

We have examined the sensitivity of evaporation estimates from an energy and

moisture balance model to various ways of obtaining the meteorological data
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which drive the model. First, we have examined the use of averaged and

sampled data, with varying time intervals represented by each data point.

Hourly averages gave virtually identical results to the baseline run, in

which 5 minute averages were used. Hourly sampled data gave less good but

adequate results. For all intervals averaging the data gave smaller errors

than did sampling so that errors from averaging over three and six hour

intervals also gave acceptable results.

We also considered various other commonly used methods for providing the

meteorological data. Using one average wind speed throughout the day was

acceptable only when the fluctuations from this mean value were small. A

linear interpolation scheme to calculate the air temperature from the daily

minimum, 9 a.m., and maximum values provided acceptable results. Use of
standard net radiation models could be adequate for clear sky conditions, or

if they included a factor for reducing the solar radiation during cloudy

conditions; this would require cloud distribution data throughout the day.

We found that using the 9 a.m. vapor pressure throughout the day gave

unacceptably large evaporation errors, but using the 9 a.m. wet bulb tempera-

ture and the hourly temperature interpolated from maxima, minima and 9 a.m.

values gave much improved results and yielded acceptable errors. Using

these interpolation and modelling algorithms together gave unacceptable

results on two of the three days. However, it should be noted that these

algorithms were very simplified, and somewhat more realistic algorithms, as

discussed above, using ancillary data from meteorological satellites for

cloud cover, or numerical weather analysis for other variables, could yield

much more acceptable results. It is interesting that the results are as

good as they are for such sparse data, and gives hope that the approach is

reasonable for operational purposes using remotely sensed data.
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Table i - Root mean square errors between measured and estimated surface temperatures (K)

for both wheat and barley fields.

CI

0.5 1.0 1.5 2.0 2.5 3.0

WHEAT

Site D:

June 19, 1979 1.4 i.i i.i i.i 1.2 1.2

June 20, 1979 2.2 1.8 2.2 2.3 2.6 2.6

June 21, 1979 2.2 1.5 2.1 2.5 2.6 2.5

Site G:

June 19, 1979 2.0 1.4 1.2 1.1 1.1 1.1
June 20, 1979 3.9 2.3 1.7 1.6 1.5 1.4
June 21, 1979 4.2 2.2 1.6 1.2 1.0 0.9

BARLEY

Site K:

June 19, 1979 1.6 I.i i.i i.i i.i 1.2

June 20, 1979 2.6 1.4 1.4 1.6 1.6 1.7

June 21, 1979 3.3 3.6 3.9 4.1 4.2 4.3

Site I:

June 19, 1979 2.3 1.6 1.4 1.3 1.2 1.3

June 20, 1979 3.6 2.0 1.6 1.4 1.3 1.3

June 21, 1979 3.5 1.8 1.2 i.i 1.0 i.i



Table 2 - Comparison of eddy correlation and energy balance model estimates of hourly

evaporation rates (mm hr.-l).

Root Mean

Eddy Correlation Square Error Energy Balance

Wheat:

June 19, 1979 0.239 0.061 0.233

June 20, 1979 0.280 0.104 0.438

June 21, 1979 0.411 0.146 0.531

Barley:

June 19, 1979 0.149 0.086 0.267

June 20, 1979 0.325 0.110 0.481

June 21, 1979 0.354 0.112 0.470



Table 3 - Cumulative daily evaporation (mm) for three days, for the baseline

run and runs using various averaging and sampling intervals.

Hourly 3-Hourly 6-Hourly Hourly 3-Hourly 6-Hourly

Date Baseline Average Average Average Sample Sample Sample

June 19 3.24 3.26 3.25 3.17 3.19 3.47 3.78

June 20 5.31 5.32 5.24 5.16 5.21 6.11 5.88

June 21 6.94 6.93 6.84 6.79 7.08 6.17 7.46

3 Day Total 15.49 15.51 15.33 15.12 15.48 15.75 17.12



Table 4 - Cumulative daily evaporation (mm) for three days, for the baseline run and for

runs using various methods to use sparse data (air temperature, vapor pressure,

wind speed) or model non-exlstent data (net radiation).

A: Baseline run.

B: Air Temperature linearly interpolated between daily minimum, 9 a.m. temperature and daily
maximum, with true times of minima and maxima.

C: Air temperature linearly interpolated between daily minimum, 9 a.m. temperature and daily

maximum, with times of minima and maxima assumed at 5 a.m. and i p.m. respectively.

D: Daily wind run.

E: Net radiation model.

F: 9 a.m. vapor pressure used throughout day.

G: 9 a.m. vapor pressure interpolated using interpolated air temperature.

H: All variables interpolated or modelled.

Date A B C D E F G H

June 19 3.24 3.49 3.55 3.29 4.22 3.58 2.76 4.32

June 20 5.31 5.47 5.43 4.55 4.77 4.96 5.34 5.34

June 21 6.94 6.78 7.18 5.74 6.19 5.95 7.32 7.87

3 Day
Total 15.49 15.74 16.16 13.58 15.18 14.49 14.41 17.53
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Figure I. The meteorological input data input to the baseline run, showing
air temperature, wind speed, net radiation and vapor pressure

respectively. The modelled radiation data and interpolated air
temperature also shown as dashed lines.
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