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ABSTRACT 

The scientific conference at Snowmass, Colorado, on solar seismology was the 
result of a recommendation by the NASA sponsored Science Working Group on the 
Study of Solar Oscillations from Space. Solar or Helio Seismology is a subject 
of remarkable maturity given its relative youth. Several exciting diqcoveries 
have been made with ground-based techniques, and reports of some of these are 
included in these proceedings. The quality of the ground-based observing environ
ment suffers from several degrading factors: diurnal interruptions and thermal 
variations, atmospheric seeing and transparency fluctuations and adverse weather 
interruptions are among the chief difficulties. The limited fraction of the 
solar surface observable from only one vantage point is also a potential limita
tion to the quality of the data available without going to space. The signifi
cance of all these factors is not immediately apparent, and this conference was 
intended to provide a forum permitting a free interchange of ideas and analysis. 
Primary conference goals were to discuss in depth the scientific return from 
current observations and analyses of solar oscillations, to discuss the instru
mental and site requirements for realizing the full potential of the seismic 
analysis method, and to help bring new workers into the field by collecting and 
summarlzlng the key background theory. At the conclusion of the conference there 
was a clear consensus that ground-based observation would not be able to provide 
data of the quality required to permit a substantial analysis of the solar con
vection zone dynamics or to permit a full deduction of the solar interior 
structure. 
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CONFERENCE SUMMARY 

Roger K. Ulrich 
Department of Astronomy I 
University of California I Los Angeles I CA 90024, U. S. A. 

Solar or Helio Seismology is a subject of remarkable maturity given its 
relative youth. Several exciting discoveries have been made with ground-based 
techniques I and reports of some of these are included in these proceedings. The 
quality of the ground-based observing environment suffers' from several degrading 
factors: diurnal interruptions and thermal variations, atmospheric seeing and 
transparency fluctuations and adverse weather interruptions are amoung the chief 
difficulties. The limited fraction of the solar surface observable from only 
one vantage point is also a potential limitation to the quality of the data 
available without going to space. The significance of all these factors is not 
immediately apparent and in order to provide a forum to permit a free 
interchange of ideas and analysis I the NASA sponsored Science Working Group on 
the Study of Solar Oscillations from Space recommended at its January 1983 
meeting at JPL that a scientific conference on solar seismology be held. This 
conference at Snowmass was the result of that recommendation. 
as the principal organizer of this conference and J. Harvey, J. 
Rhodes agreed to assist me. The thoughtful and helpful advice 
provided was invaluable in the success of the conference. 

I agreed to serve 
Toomre and E. 
that they 

Our twin goals were to discuss in depth the scientific return from current 
observations and analyses of solar oscillations and to discuss the instrumental 
and site requirements for realizing the full potential of the seismic analysis 
method. The organization of the conference was intended to highlight these two 
goals starting with some of the most challenging and eKciting scientific 
objectives. We also felt it important to help bring new workers into the field 
by collecting and summarizing the key background theory. The introductory 
chapter by Toomre provides such an overview and tutorial for those readers not 
familiar with the subject. Toomre describes the nature of the oscillations and 
reviews the status of the principal observational results. The following paper 
by Gilman is meant primarily as a challenge to the observers - existing 
observations are not close to providing the quality of data necessary to answer 
Gilman's questions about the solar dynamo; however, we hope that such dynamo 
theory questions probably could be answered with better data. The technique of 
deducing the internal dynamics of the solar envelope from the oscillations 
involves the inversion of an integral equation. The series of papers by Gough, 
Christensen-Dalsgaard I Hill and Toomre (in various combinations and 
permutations) sets forth the theory needed to carry out this inversion. These 
authors show that the inversion process is vulnerable to noise in the data 
because of the need to take differences between nearly identical quantities. 
Given adequate dah, they also show that a remarkable amount of deta.iled 
information about sola.r dynamics can be deduced. 
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The measurement of solar oscillations requires a stable instrument which 
ideally permits the determination of the velocity pattern over the solar surface 
within a short period of time. Most early work which measured solar velocities 
utilized spectroscopic techniques with a scanning slit. With such a system an 
image was gradually built by rastering over the solar surface. The time delay 
and inefficiency of the older method as well as the size and weight of high 
resolution spectrographs has led to the development of newer methods of velocity 
measurement which in essence involve tunable narrow band filters and an array 
detector. Three such approaches are discussed by Rhodes, Caccaini et a.l and .. by 
Brown. Promising results are described in these pa.pers. Applications of the 
more mature spectrographic technique are presented in the papers by Harvey and 
Duvall and by Scherrer. The quality of these results is good. The papers by 
Frohlic.h and Delache and by Woodard give the first results from a space-borne 
eaperiment. Their serendipitous detection of the solar oscillations has provided 
us an opportunity to study data which is uneffected by the presence of day-night 
gaps although the observing sequence is shorter: 55 minutes on and 50 minutes 
off cycle. 

The next part of the conference addressed two deficiencies with ground
based observations -- the degrading effect of the earth's atmosphere and the 
difficulties caused by gaps resulting from the diurnal observing cycle. The 
discussions of the filter functions by Christensen-Dalsgaard and by Caudell et 
al are indirectly related to the atmosphere degradation since the filter 
functions must function through the atmospheric distortion. The theoretical 
analysis of the seeing problem by Hill, et al and the observational analysis by 
Ulrich, et al both indicate that the atmospheric degradation reduces the 
sensitivity to the highest .R values and introduces a background noise for all 
values of .R. This latter difficulty is particularly important because as is 
shown in the section on inverse theory, a Variety of modes including those which 
have low excitation amplitudes will be needed to obtain sensitivity to the 
structure and dynamics throughout the sun. The papers on the filling of 
temporal gaps by Hill, by Mihalas, Christensen-Dalsgaard and Brown and by Kuhn 
show that as long as the duty cycle of the observations exceeds about 80%, 
nearly perfect power spectra can be recovered. This conclusion of course is 
sensitive to the level of noise in the data. One solution to the day-night 
problem is to take data from a global network of stations. The siting of such a 
network will require some consideration of cloudiness at prospective locations. 
The paper by Glackin et al gives some guidance on the utilization of space-based 
and other data to estimate the cloudiness. 

The ultimate limit on the accuracy of the solar oscillation data will be 
set by the intrinsic lifetime of the modes of oscillation. The theory of mode 
excitation and mode-mode coupling which might some day be able to provide 
guidance on this topic is presently in a rather underdeveloped state. The 
papers by Guenther and Demarque I by Glatzmaier, by Durney I by Kidman and Cox and 
by Antia et al discuss various aspects of this excitation problem. Another area 
where some limits on the quality of the deduction might arise is through the 
solar equation of state. Rogers presents an introduction to the current state 
of the art in this area and the paper by Ulrich and Rhodes gives some 
preliminary estimation of the possible importance of the equation of state 
uncertainties. 
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Following the scheduled part of the meeting the conference participants 
held an informal discussion of the question: 

'Why should oscillations be studied from space?' 

The general consensus was that the atmospheric seeing problem appears to be the 
most fundamental limitation to the ground-based observations. Included in this 
problem are the effects of the image distortion and the effects of transparency 
variations. The uncertainties posed in the selection of global network sites 
represent a significant risk which can only be evaluated convincingly by 
building such a network. The readily available data on cloudiness and 
atmospheric seeing are inadequate to permit a highly reliable determination of 
site quality without gathering new observations. The questions of the dynamics 
of the solar convection zone and the relationship of these dynamics to the solar 
activity can only be answered with data having a high degree of continuity and 
contiguity. Further, it is essential to have regular access to oscillation 
modes possessing small horizontal wavelengths. There was a clear consensus that 
the ground-based network would not be able to provide data of the quality 
required to permit a substantial analysis of the solar convection zone dynamics. 
Such probing is essential to come to understand what controls the flow and 
magnetic structures in rich evidence at the solar surface. It is also clear 
that all acoustic oscillations are influenced by conditions at the upper 
reflection point and the stratification there must be resolved unambiguously by 
using modes with short wavelengths that are observable only from space. 
Finally, a space observatory affords the best way to measure those long period 
acoustic and gravity modes that sample the deep interior of the sun but which 
are of very modest amplitude in the atmosphere. 
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OVERVIEW OF SOLAR SEISMOLOGY: OSCILLATIONS AS 
PROBES OF INTERNAL STRUCTURE AND DYNAMICS IN THE SUN 

ABSTRACT 

JURI TOOMRE 
Department of Astrophysical, Planetary and Atmospheric 
Sciences, and Joint Institute for Laboratory Astrophysics, 
University of Colorado, Boulder, CO 80309, U.S.A. 

The physical nature of solar oscillations is reviewed. The 
nomenclature of the subject and the techniques used to interpret the 
oscillations are discussed. Many of the acoustic and gravity waves 
that can be observed in the atmosphere of the Sun are actually resonant 
or standing modes of the interior; precise measurements of the 
frequencies of such modes allow deductions of th~ internal structure 
and dynamics of this star. The scientific objectives of such studies 
of solar seismic disturbances, or of solar seismology, will be outlined. 
The reasons for why it would be very beneficial to carry out further 
observations of solar oscillations both from ground-based networks and 
from space will be discussed. 

1 • INTRODUCTION 

Observations of the atmosphere of the Sun reveal a broad rarige 
of acoustic and gravity waves, with many of these representing internal 
modes of oscillation which penetrate from below into the atmosphere. 
They are detectable in the solar photosphere as Doppler shifts of 
spectral lines or as associated intensity fluctuations. These seismic 
disturbances of the Sun, much like those of the Earth, afford the 
possibility of studying various aspects of the internal structure and 
dynamics of this star. This has led to the rapidly evolving subject 
called solar seismology or helioseismology. We will here briefly review 
the notation and some of the physical reasoning that is essential for 
making sense of this subject. The reader may also find it convenient 
to turn to several current review articles on solar seismology (e.g. 
Leibacher and Stein 1981; Gough 1983; Deubner and Gough 1984; Brown, 
Mihalas and Rhodes 1984). . 

Two of the main restoring forces for solar oscillations are 
pressure and buoyancy. These yield two distinct types of wave modes: 
the ones commonly labelled p modes are dominated by pressure and consist 
of propagating acoustic waves, while those labelled g modes are 
dominated by buoyancy and consist of interval gravity waves. The 
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p modes have relatively short periods (typically about 5 minutes), while 
the g modes have much longer periods (typically several hours). In 
general a given mode of oscillation is trapped within a specific region 
of the Sun, in the sense that most of its energy is in that region. 
Accordingly, the temporal frequency v of the mode is largely determined 
by the stratification of that region. For p modes the trapping is 
between an upper turning point just beneath the photosphere where the 
mode is reflected by the rapid decrease in the density, and a lower 
turning point where the mode is turned around more gradually by the 
increase in sound speed with depth. The characteristic period of a 
resonant acoustic wave within such a cavity depends upon its travel time 
between the turning points, and this is controlled by the varying sound 
speed c at which that wave propagates. For g modes, wave propagation is 
generally possible only in regions below the convection zone (which 
occupies the outer 30% of the Sun by radius) where buoyancy can be a 
restoring force rather than a destabilizing one. A particular g mode is 
trapped in regions where its frequency v is less than the local buoyancy 
frequency N. Once again, the characteristic period of a gravity mode 
depends upon its travel time through the region of trapping, and this is 
controlled by the variation of N with depth. By determining the 
frequencies of such p and g modes with precision, one is able to probe 
either the variations of sound speed c or of buoyancy frequency N over 
different intervals within the Sun. Since c and N measure differing 
aspects of the stratification and the composition of the interior, solar 
seismology can serve to guide and validate theories for the internal 
structure and the evolution of a star like the Sun. Clearly the 
frequencies of these global modes of oscillation are integral properties 
of the stratification within the Sun. Given a sufficient variety of 
observable modes, much about the internal constitution of the Sun can 
be unravelled. 

2. SCIERTIFIC GOALS OF SOLAR SEISMOLOGY 

Seismic probing of the Sun affords the potential of measuring for 
the first time the static and dynamical structure of the interior of a 
star. As a consequence, solar seismology can be expected to make major 
contributions in the following areas of what might be called "big 
physics": 

a) Determination of the initial solar helium abundance. An important 
prediction of all cosmological models is the proportionate amount of 
helium produced at the formation of the universe. The distribution of 
helium within the current Sun can be inferred from the frequencies of 
the global modes of oscillation, thereby permitting detailed estimates 
of the abundance of helium in the protosolar state. This may yield the 
most reliable estimates of helium abundance in the early universe, 
thereby impacting both theories of cosmology and stellar evolution. 

b) Solar neutrinos. The low observed neutrino flux could be due to an 
error in solar models or in particle physics. Direct probing of the 
solar interior with p and g modes, particularly near its center, may be 
able to resolve this long-standing puzzle. 
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c) Stellar interior dynamics. The differential rotation of the Sun with 
both depth and latitude can be deduced from the fine structure of the 
oscillation frequencies. Flows associated with giant convection cells 
below the surface can be similarly probed. The possible presence of 
very strong magnetic fields of primordial origin deep within the Sun 
would also produce fine structure in the frequencies. Further, the 
depth of the convection zone and its stratification can be tested by 
precise determination of the basic frequencies of the modes. Thus one 
may begin to address questions of vital importance to theories for 
convection, stellar evolution, and stellar activity cycles. 

d) Solar gravitational potential. Tests of general relativity involving 
the orbit of Mercury depend upon knowing the quadrupole component J2 of 
the Sun's gravitational field. By measuring the internal rotation of 
the Sun using the oscillation modes, one can deduce departures from 
spherical symmetry of its gravitational potential. This may resolve 
questions of the accuracy of the theory of general relativity. 

Table 1 outlines the scientific objectives of solar seismology, 
also indicating just which measurable properties of the oscillation 
frequencies will be used to address those objectives. We turn next to a 
brief overview of some of the results to date from solar seismology that 
bear on those goals. 

Table 1. SCIENTIFIC OBJECTIVES OF OSCILLATIONS AS PROBES OF INTERIOR STRUCTURE 

MEASURED QUANTITY 

FREQUENCY: 7/ n,t 

P MODES: SAMPLE SOUND SPEED C 
--- WITH DEPTH 

G MODES: SAMPLE BUOYANCY FREQUENCY 
--- N WITH DEPTH 

FREQUENCY FINE STRUCTURE: 7/ n,t,m 

VARIATION WITH TIME OF FREQUENCY 

FINE STRUCTURE: 7/n,t,m (TIME) 

AMPLITUDE AND WIDTH OF PEAKS 
IN POWER SPECTRA 

DERIVED SOLAR PROPERTIES 

DETERMINE STRATIFICATION OF DENSITY, TEMPERATURE 
AND PRESSURE WITH DEPTH 
o CALIBRATE STELLAR STRUCTURE THEORY 
o OBTAIN DEPTH OF CONVECTION ZONE 

DETERMINE CHEMICAL COMPOSITION AND ITS GRADIENTS 
o ESTIMATE PRIMORDIAL HELIUM ABUNDANCE 
o TEST MIXING IN INTERIOR 
o ATTEMPT TO RESOLVE SOLAR NEUTRINO PROBLEM 

DETERMINE DIFFERENTIAL ROTATION: ANGULAR VELOCITY !2 
WITH RADIUS AND LATITUDE 
o OBTAIN SOLAR QUADRUPOLE COMPONENT J2 
o TEST SPINDOWN IN STARS AS THEY EVOLVE 

DETERMINE COUPLING OF CONVECTION WITH ROTATION 
. 0 PROVIDE VITAL INPUT TO SOLAR DYNAMO MODELS 
SEEK EVIDENCE FOR STRONG FOSSIL MAGNETIC FIELD 

PROBE VELOCITY AND TEMPERATURE STRUCTURES OF GIANT 
CELLS IN CONVECTION ZONE 
o TEST DYNAMICS OF LARGE-SCALE COMPRESSIBLE CONVECTION 
o CALIBRATE STELLAR CONVECTION THEORIES 

DETERMINE MODE LIFETIMES AND QUALITY OF RESONANT CAVITIES 
o EXAMINE MODE EXCITATION AND DAMPING 
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3. NATURE OF SOLAR OSCILLATIONS 

a. Initial Discovery of 5-Minute Oscillations 

Solar seismology encompasses a variety of acoustic and gravity 
waves possessing a broad range of periods. The 5-minute acoustic 
oscillations have received particular attention because they are the 
ones most easily observed. The subject of solar oscillations really 
began with the first detection of both 5-minute oscillations and 
supergranulation, as reported by Leighton (1960) and Leighton, Noyes and 
Simon (1962). This led to many papers on the quasi-periodic variations 
seen in Doppler velocities over a range of heights in the photosphere. 
In particular, Doppler observations carried out in one spatial dimension 
(such as along the spectroscope slit) and in time revealed that the 
5-minute oscillations looked like wave packets which lasted through 
about 6 or 7 periods and had spatial scales of coherence of about 30 
Mm. An example of such observations is shown in Figure 1. The 5-minute 
oscillations there have peak Doppler velocities of about 1000 ms- I , thus 
making them one of the more energetic velocity signals in the 
photosphere, on a par with those of granulation an~ supergranulation. 
Indeed, the vigorous 5-minute oscillations largely mask the persistent 
flows of supergranulation and mesogranulation unless one filters out 
their effects by some form of averaging in time. 

o 20 40 60 80 100 

TIME (minutes)-

Figure 1. Doppler observation of 5-minute oscillations on the Sun, as 
measured in one spatial dimension and time, reveals what appear to be 
wave packets in both space and time. When observed at a given site in 
the solar atmosphere, such quasi-periodic oscillations attain peak 
velocity amplitudes of about 1000 ms- l • These signals are actually the 
superposition of nearly 107 acoustic resonance modes of oscillation, 
each with amplitudes of order 20 to 50 cm s-l, that interfere both con
structively and destructively to yield these apparent wave packets. 
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Given the wave packet character seen in Figure 1, much of the early 
interpretative work concentrated on the possibility that the 5-minute 
oscillations were resonances set up in the solar atmosphere by the 
emergence of new granulation convection cells. Since granules have 
typical lifetimes of about 10 minutes, it seemed reasonable that 
acoustic waves with a range of similar periods could be excited in the 
stable atmosphere by it being thumped from below by overshooting 
convective elements. Although variations of this proposition fostered 
many papers, the explanation lay elsewhere. 

b. Resonant Acoustic Cavity 

The existence of an acoustic resonant wave cavity below the solar 
surface was first proposed by Ulrich (1970) and by Leibacher and Stein 
(1971) to explain the 5-minute oscillations. Ulrich further made the 
important prediction that the depth of such an effective cavity would 
vary with the horizontal wavenumber kh (or associated spherical 
harmonic degree i) of the acoustic wave, with increasing kh leading to 
shallower cavities. The cavity would respond most strongly at a number 
of discrete values of frequency v for each value of kh' Power in the 
oscillations would thus be expected to lie preferentially along multiple 
curves in kh-v space. That such characteristic ridges in power 
actually exist when observing the real Sun was first demonstrated by 
Deubner (1975) and refined by other observations that followed (e.g. 
Rhodes, Ulrich and Simon 1977; Deubner, Ulrich and Rhodes 1979; Hill, 
Toomre and November 1983). 

The observational breakthrough came from observing solar Doppler 
velocities over a two-dimensional spatial window, sampling an array of 
say 128 x 512 spatial points with 2" resolution, with the longer 
dimension covering about half the diameter of the Sun. Further, such 
Doppler observations should be repeated about once per minute for an 
overall time interval of about 6 hours or longer. By spatially 
averaging the data along the narrower dimension, one can then isolate 
the resonant acoustic waves traveling around the Sun on one great circle 
from most others. Fourier transforms applied to the data in the 
remaining spatial dimension and in time then yield power spectra in 
kh and v, much as depicted in Figure 2. Power is there concentrated 
along specific loci in the kh-v plane, in reasonable conformity with 
frequencies obtained from recent theoretical calculations. That these 
are ridges in power is further emphasized in the perspective view of 
another kh-v diagram in Figure 3 obtained from Doppler observations, 
which also serves to indicate that the distribution of power along the 
ridges involves fairly jagged structures. 

The Doppler signals as observed in Figure 1 are not the result of 
discrete excitations that set only nearby portions of the atmosphere 
into oscillation, with an amplitude of say 1000 ms- l

, Rather, over 10 7 

acoustic wave modes are involved, each with amplitudes of order 20 to 50 
cm s-. These normal modes of oscillation may be excited by stochastic 
interaction with the turbulence in the convection zone. Excitation and 
damping of a given wave mode would proceed almost continuously in a 
spatially distributed fashion. It may also be that the modes are 
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Figure 2. Power spectrum in frequency v and horizontal wavenumber 
kh (or degree 1) from Doppler observations of high-degree 5-minute 
oscillations. Superposed on these ridges in power are theoretical 
predictions for frequencies of oscillation modes obtained from a 
solar model with a helium content of 25% by mass (shown as solid 
curves) and another which is helium deficient (19%, shown dashed). 
These curves are labelled by f to identify the loci of frequencies 
of the fundamental (or surface gravity) modes and by the values of 
the radial order n of the acoustic modes. 
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Figure 3. Perspective view in v and kh of power spectrum of high
degree acoustic oscillations observed in Doppler shifts of a Mg I 
line. The considerable variability in power along the ridges is in 
part caused by noise introduced by effects of atmospheric seeing and 
in part by mode beating. 
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self-excited by something like the K-mechanism which permits them to 
extract energy from the radiation field. These 107 modes interfere both 
constructively and destructively to produce the overall patterns of 
oscillatory velocities that are observed. The apparent lifetimes of the 
wave packets in Figure 1 correspond roughly to the beating period 
between modes, for instance from adjacent ridges, and the apparent 
spatial coherence lengths similarly correspond to the spatial beating 
scale between such modes. 

c. Notation for Noraal Hodes of Resonance 

Oscillations within a spherical object like the Sun can be 
represented in terms of a superposition of many normal modes, each of 
which varies sinusoidally in time t with frequency v. The spatial 
structure of the wave pattern associated with any normal mode is most 
naturally described in spherical polar coordinates (r,6,~) as the 
product of a function of radius r and a function of colatitude 6 and 
longitude~. This permits one to express the radial component of 
velocity in a specific normal mode as the real part of 

v(r,6,~,t) = Vn(r) ~(6,~) e-2nivt , (1) 

where yT = P~ (cos6) eim$ is a spherical harmonic functionmof degree 
1 and order m involving the associated Legendre function P1' For each 
pair 1 and m, there is a discrete spectrum of modes with distinct 
frequencies v. These possess differing spatial structures with radius, 
as represented by the eigenfunctions Vn(r) which are oscillatory in 
space and typically possess n zeros or nodes. The angular degree 1 
measures the total horizontal component of the wavenumber, kh, with 

(2) 

at radius r. The azimuthal order m measures the component of kh 
around the axis of the spherical coordinate system, and is constrained 
to take the 21+1 values -1, ••• ,+1. Although the effective radial 
component kr of the wavenumber varies with depth (with kr vanishing 
at the turning points of the cavity and becoming imaginary outside), it 
is convenient to regard nn/R as a mean radial wavenumber, where R is the 
radius of the Sun. 

The frequencies v of the normal modes thus depend on what may be 
called the quantum numbers n, 1, and m, and we denote this by writing 
v = vn i m' One can measure the 1 and m values of the modes by making 
spatially resolved observations of the disturbances at the solar 
surface. However, the n value of a mode cannot be measured directly, 
since it depends on unobservable variation with depth. The complete 
identification of a mode will therefore require some theoretical 
knowledge of how v varies with the three quantum numbers. Before we 
turn to that in the next section, we Can deduce that if the Sun were to 
be perfectly spherically symmetric, v must be independent of m. This 
comes about because the azimuthal order m depends on the choice of axis 
of the coordinate system, yet in a spherically symmetric configuration 
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all choices must be equivalent. Such a degeneracy of V on m can be 
relaxed by any departure from spherical symmetry, thereby resulting in 
fine structure in the frequency spectrum that is m dependent. The 
breaking of symmetry can be achieved by rotation or magnetic fields, and 
thus measurements of the fine structure permit deductions about such 
phenomena within the Sun. 

The appearance of some spherical harmonics Y~, as projected onto 
the solar disk, is shown in Figure 4. At any instant in time, the 
pattern of Doppler velocities of an individual oscillation mode would 
thus consist of regions of approaching flow (shown by solid contours) 
alternating with receding ones (dotted contours). Increasing t or m 
yields increasingly complex spatial patterns for the velocities. For 
zonal modes (with m = 0), the nodal lines of zero velocity are lines of 
latitude; for sectoral modes (with m = t), they are lines of longitude. 
Within this subject of solar seismology, the oscillations have further 
come to be grouped into three classes according to their angular degree: 
low-degree modes for t ~ 3, intermediate-degree modes for 4 ~ t ~ 100, 
and high-degree modes for 100 ~ t ~ 1000. 

Figure 4. Contours of Doppler velocities for selected normal modes 
of oscillation as projected onto the solar disk in the absence of 
any other modes. At any instant in time, the patterns consist of 
approaching flow (shown as solid contours) alternating with receding 
ones (dotted). Increasing the degree t or azimuthal order m of such 

m spherical harmonics Yt produces more complex spatial patterns. 
Shown also are a zonal mode (m = 0) which is axisymmetric, and a 
sectoral mode (m = t) which is confined about an equatorial strip. 
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An interesting feature of the sectoral modes is that with 
increasing degree they become more confined,about an equatorial strip 
bounded by the latitudes cos-1{m/[t(t+1)]1/2} (e.g. Gough 1983). This 
comes about because sectoral modes at high t are much like plane
parallel waves, but for geometrical problems in fitting onto a spherical 
surface; their lateral confinement results from destructive interference 
at higher latitudes where their apparent phase velocities with longitude 
are proportionately greater than at the equator. Such a property of 
sectoral modes was exploited in obtaining the high t power spectra shown 
in Figures 2 and 3: a long but narrow observing window aligned with the 
solar equator serves as a reasonably sensitive detector of sectoral 
modes to the exclusion of others. Of course, any great circle on a 
sphere, not just the equator, should possess waves that are propagating 
along it, and they too can be described most simply in terms of sectoral 
modes if suitable rotations are made for the spherical coordinate system 
so that its equator coincides with that great circle. 

Figure 4 also serves to explain why the sensitivity of integrated 
sunlight observations of the oscillations are limited to low-degree 
modes with t ~ 3. In such observations made without imaging, one 
records only an average of the velocity signal over much or all of the 
solar disk, and since contributions from regions with velocities of 
opposite sign cancel, modes of high degree yield little as a net 
signal. In the absence of spatial resolution, the modes that survive 
in the integrated signal can be identified solely by comparing their 
frequencies with theory and their relative amplitudes with models of the 
response of a given observing aperture to specific spherical harmonics. 

d. Properties of the Acoustic Modes 

We shall now turn to reconsider how the resonant wave guide works 
for the originally discovered 5-minute acoustic modes. This turns out 
to be particularly simple because the wavelengths of those modes are 
short compared to the radius of the Sun, and thus spherical curvature 
effects may be ignored. These modes are all of high angular degree t 
(t l 100) and low radial order (n ~ 10). The original observations 
concentrated on high-degree sectoral modes, and since these can be 
viewed as nearly plane-parallel waves, they are usually distinguished by 
kh in place of t. Turning to Figure 5 which sketches ray paths and 
surfaces of constant phase for such acoustic waves, one finds that as 
the waves approach the surface of the Sun from below they are reflected 
back downward by the very steep density gradient there. As a given wave 
then begins to propagate downward, it is progressively refracted around 
until it is once more headed upward. This comes about because the deep 
portions of the wavefront are traveling at a faster sound speed c 
(recalling that c « T1/2, where T is the mean temperature which 
increases with depth). At the point of lower reflection, the wave is 
propagating horizontally, and reflection occurs at the depth d into the 
Sun where c = 2nv/kh' Therefore for a given frequency v, waves of 
greater horizontal wavenumber kh are refracted faster and penetrate 
less deeply since their wavefronts (as in Figure 5) are more tilted from 
the horizontal. The depth of penetration d of the wave into the Sun, or 
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Figure 5. Typical ray paths and surfaces of constant phase for an 
acoustic mode of high degree t confined to a shallow region just 
below the solar surface (shown as the horizontal line). An acoustic 
wave is trapped between an upper turning point just beneath the 
photosphere where the wave is reflected by the rapid decrease in the 
density, and a lower turning point where the wave is turned around 
by the increase in sound speed with depth. 

Figure 6. Global nature of low-degree acoustic modes is shown in 
the multiply-reflected ray paths associated with this mode of high 
radial order (nit ~ 5) which propagates throughout most of the solar 
interior. The circle represents the solar surface. 
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thus the effective depth of the particular acoustic cavity or wave 
guide, varies as d = (2n+3)/kh. Although all these 5-minute acoustic 
modes are evanescent (non-propagating) in the atmosphere, they are able 
to tunnel into that region with sufficient amplitude to be readily 
observable. 

Working out the travel time between reflections in such resonant 
trapping of acoustic modes within the convection zone leads to a 
dispersion relation approximately of the form 

v « [(2n+3) g ~]l/2 (3) 

where g is the acceleration due to gravity. The precise relation 
depends sensitively upon the stratification below the surface. Such a 
relation defines the curves shown in Figure 2, or the centroids of the 
ridges in Figure 3, with the order n distinguishing one curve or ridge 
from another. Thus such specific groups of acoustic modes are 
identified by their order n, say as P2 when n = 2. Such ridge 
classification ignores the possible existence of chromospheric modes 
which contribute additional nodes to the radial eigenfunctions. The 
lowest ridge in those figures corresponds to a surface gravity mode, 
usually called the f mode, which has n = O. 

The plane-parallel description of the oscillations, as in Figure 5, 
is inadequate when kh is small, since then the horizontal wavelength 
In/kh and the penetration depth d are significant fractions of the 
solar radius. Therefore effects of curvature must explicitly be taken 
into account. Further, the horizontal phase speed of the waves 
increases with decreasing kh' in essence because the waves penetrate 
deeper and experience a prop?rtionately higher sound speed. Indeed, for 
kh less than about 0.15 Mm- , modes propagate around the Sun in less 
than about 10 hours, which is also less than their estimated lifetimes. 
Thus one would expect that only those waves survive which interfere 
constructively around the solar circumference, thereby selecting 
particular values of kh. This suggests that oscillation modes of low 
kh are really global in character'mand they are most readily described 
in terms of spherical harmonics Yl. 

The global nature of low-degree acoustic modes is also apparent in 
their ray paths within the Sun. Figure 6 shows the path of a typical 
multiply-reflected ray contributing to an acoustic mode of high radial 
order n. Such a mode, with 1 « n, propagates throughout most of the 
solar interior; only a central region is avoided. A normal mode may be 
regarded as the interference pattern of disturbances between many 
traveling waves, each possessing a ray path of the form shown. 
Incidentally, those ray paths do not generally close back on themselves 
after multiple bounces, for it is only the overall interference pattern 
that possesses spatial periodicities in the form of spherical harmonics. 

The dispersion relation for acoustic modes can be obtained by 
insisting that information propagating along the ray paths is in phase 
with the interference pattern. The relation (3) for high-degree modes 
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(with £ » n) was so deduced. Assuming that the Sun is spherically 
symmetric, similar reasoning applied to low-degree modes (with £ « n) 
leads to the dispersion relation (e.g. Gough 1983) 

where 

v 
n,t 

v 
o 

1 = vo(n + ~2 + 0) + € n,t (4) 

(5) 

is the reciprocal of the sound travel time from the surface at radius R 
to the core and back, and 0 is a small term which is related to the 
effective polytropic index of the outer layers of the solar envelope. 
The next term in the expansion, 

€ 
n,t 

~ - v 
o 

a t(£+1) - S 

n + ~£ + 0 
2 

(6) 

involves the positive dimensionle~s constants a and S which are of order 
unity. Such asymptotic relations (see also Vandakurov 1967, Tassoul 
1980) imply that modes of given degree £ but successive order n occur 
at discrete frequencies approximately evenly spaced by vo , with Vo 
expected to be about 136 ~Hz for the Sun. Further, increasing £ by 2 
and decreasing n by 1 leaves v almost unchanged, since for n » £, 
€n £ provides only a small correction to the leading term. Thus arise , 
groups of uniformly spaced frequencies belonging alternately to modes 
of odd and even degree, with a spacing vo/2 between groups. 

e. Properties of the Gravity Modes 

Resonant cavities also exist for internal gravity waves in the 
Sun~ Such waves can propagate only where the stratification is stable 
to convection, and further where their frequency v is less than the 
local buoyancy (or Brunt-Vaisala) frequency N. Thus propagation is 
possible in the solar interior below the convection zone, and also 
within the atmosphere. The upper and lower reflection points of any 
given cavity correspond to where N has approached v, aside from some 
factors depending on the degree £ of the wave. The g modes of the deep 
interior all share an upper reflection point near the base of the 
convection zone; their amplitudes decay throughout that zone where the 
modes are evanescent. Since the decay rate increases with £, only modes 
of low degree are likely to be detectable in the atmosphere. 

Theoretical calculations of dispersion relations for gravity waves 
reveal that these normal modes should be nearly uniformly spaced in 
period Pn £ , unlike p modes which are nearly uniformly spaced in , 
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frequency. These g modes should possess periods 

with 

p = 
n,t 

1 
n+¥+'Y 
-----:-:-::.- p 
[t(t+1)]1/2 0 

(7) 

(8) 

where 'Y is a term that depends on the structure just below the base of 
the convection zone, with the latter at radius rc. The buoyancy 
frequency N is given by 

(9) 

where p is pressure, p is density and rl = (otnp/otnp)s, s being 
specific entropy. Having access to precise frequencies of g modes would 
thus enable one to sample rather different properties of the stratifica
tion than would be afforded by p modes and their sampling of an integral 
of the sound speed c. 

f. Frequencies and Radial Structure of Oscillations 
Obtained from Numerical Models 

Figure 7 shows the frequencies vn t obtained from a solar model , 
for sequences of acoustic and gravity modes of low and intermediate 
degree. These theoretical calculations, like all others to date in the 
subject, have used linearized equations for the dynamics of the 
oscillations, which is warranted given the small observed amplitudes for 
individual modes. Such calculations (e.g. Ando and Osaki 1977; 
Christensen-Dalsgaard and Gough 1981; Scuflaire, Gabriel and Noels 1982; 
Ulrich and Rhodes 1983) incorporate nonadiabatic effects in the outer 
layers of the Sun, but generally ignore effects of mode excitation and 
dissipation by the turbulence in the convection zone. Thus although the 
frequencies of the oscillations are likely to be determined quite 
accurately for a given solar model, issues of growth rates for the modes 
are quite uncertain (cf. Goldreich and Keeley 1977). Figure 7 displays 
loci of frequencies at fixed n as t varies for both p and g modes; these 
curves are designated by their radial order n. The frequencies vn 1 , 
are actually determined only at integral values of 1, given the global 
nature of the modes, but these discrete frequencies have been joined by 
smooth curves for clarity. Figure 7a illustrates the nearly uniform 
spacing in frequencies for p modes with n at fixed 1, consistent with 
the asymptotic relation (4). It also shows the crowding of g modes at 
much lower frequencies or longer periods. The portion of the low 
frequency domain delineated by the vertical bar is expanded in Figure 7b 
to reveal the frequency dependence of a selection of g modes, 
terminating arbitrarily with giO. As predicted by the asymptotic 
relation (7) for such g modes, the frequencies get increasingly crowded 
both with increaSing nand 1. Such close spacing of the g modes in 
frequency places severe demands on the frequency resolution that must be 
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Figure 7. Frequencies vn 1 obtained from a theoretical solar , 
model for p and g modes of low and intermediate degree 1. Displayed 
are loci of frequencies at fixed radial order n as 1 is varied, with 
the curves identified by n. Shown in (a) is the frequency range of 
o to 5 mHz, and in (b) an expanded view of the lower frequencies 
from 0.05 mHz (period of about 333 min) to 0.70 mHz (period 24 min). 
The left panel (a) shows that the p modes possess nearly uniform 
spacing in frequencies at fixed 1 as n is varied, provided n » 1 ; 
the crowding of the g modes at low frequencies makes them nearly 
indistinguishable. The right panel (b) shows the gravity modes gi 
to giO far more clearly, and evidently the frequencies converge with 
increasing 1. For these g modes at fixed 1, it is the spacing in 
period and not in frequency which is nearly uniform as n is varied, 
though there are evident perturbations here due to avoided crossings 
of frequencies. 
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Figure 8. Comparison of frequencies of acoustic modes, primarily of intermediate 
degree t, as obtained from theory and observation. Shown in (a) are loci of frequen
cies determined from a theoretical solar model, and in (b) a power spectrum in v-t 
obtained from Doppler observations with imaging of the zonal modes of oscillation of 
the Sun. The striking fan structure of frequencies in these observations has provid
ed an unambiguous link between acoustic modes of high and low degree, thereby clearly 
identifying the radial order n in low t observations; a knowledge of n is vital for 
detailed modelling of the interior stratification. 
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achieved in observational power spectra if the modal identification is 
to be unambiguous. 

Given the limited range in t, Figure 7 provides only a partial view 
of the frequencies of the intermediate-degree modes. This is rectified 
by Figure 8a which displays theoretical p mode frequencies for t 
extending up to 200, thereby also showing frequencies for some of the 
high-degree modes. This plot emphasizes that at higher t the frequency 
interval between modes of differing n is considerably wider than at 
low t. The reality of such a large fan structure of frequencies is 
confirmed by the remarkable observational power spe~trum, shown in 
Figure 8b, which was obtained by Duvall and Harvey (1983) when observing 
intermediate-degree modes. This power spectrum also makes a clear link 
between the ridges readily distinguished by radial order n at high t and 
the modes at low t where the n identification was previously unclear. 

The plots of vn t also remind us that nearly identical temporal , 
frequencies can be achieved with a variety of normal modes, each mode 
sampling quite different regions within the Sun. Figure 9 illustrates 
this by showing the variation with proportional radius r/R of scaled 
displacement amplitudes for several p and g modes. The three examples 
of acoustic modes on the right have similar frequencies, of 3.3 mHz (or 
periods of about 5 min), while the gravity modes on the left all have 
frequencies of 0.10 mHz (periods of about 165 min). For the p modes, 
increasing the degree t leads to the modes becoming increasingly 
confined to a region close to the surface; note that similar frequencies 
are achieved in this example by suitably decreasing the radial order n 
as t is increased. For the g modes, increasing t and n yields more 
concentrated and intricate modal structure near the core of the Sun. 
Although these global g modes are confined to the stable region beneath 
the convection zone as far as their energy is concerned, the amplitudes 
of the low t modes decay slowly enough in tunneling through the 
convection zone that they may have measurable displacements or 
velocities in the solar atmosphere. 

As Figure 9 readily shows, these g modes have the greatest 
potential of sampling the stratification, as N, near the core, though 
the low-degree p modes also penetrate quite deeply into the Sun and can 
sample the variation of sound speed c there. The extent of penetration 
of an acoustic mode can be measured by the lower reflection or turning 
point of~the mode, and this depends both upon V and t. Figure 10 shows 
how that turning point, plotted as proportional radius r/R, varies with 
V and t. It is evident that p modes of low degree probe more deeply 
than those of high degree. Thus although p-modes of lower degree and 
higher frequency sample conditions over greater ranges of depth, 
scientific inferences of conditions at great depths will be most 
reliable if modes of high degree are measured accurately as well. This 
comes about because all p modes are very sensitive to conditions near 
the surface, as can be judged from their amplitudes in Figure 9. 
Effects of conditions at considerable depths can be separated out best 
if accompanied by precise measurements of high-degree modes confined 
near the surface. This is an issue of vital importance in assessing 
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Figure 9. Scaled displacement amplitudes with proportional radius 
r/R of some acoustic and gravity modes within the Sun as obtained 
from a theoretical model. The theoretical eigenfunctions for the 
radial displacements, say Ar, have been scaled by the indicated 
factors of density p and radius r for clarity of display. The three 
acoustic modes shown on the right all possess similar frequencies of 
3.3 mHz (periods of about 5 min), obtained by decreasing the radial 
order n while increasing degree R,. These p modes are increasingly 
confined to a region close to the surface (at r/R = 1) as R, is in
creased. The three gravity modes on the left all have frequencies 
of 0.10 mHz (periods of 165 min). Increasing R, and n yields g modes 
with more complicated structure near the core of the Sun. All these 
g modes possess an upper reflection point near the base of the con
vection zone, with their amplitudes decaying throughout that zone 
where the modes are evanescent. 
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Figure 10. Contours showing the extent of penetration of 
acoustic modes into the Sun as a function of degree £ and 
frequency v. The contours are labelled by the proportional 
radius of the lower turning point of a mode. For reference, 
the curve identified as Pl marks the lowest frequencies 
attainable by acoustic modes as a function of £. 

benefits of observations to be made from space, for the necessary high £ 
measurements are particularly impacted by seeing distortions within the 
Earth's atmosphere. 

g. Coaparison of Observed and Computed Frequency Spectra 
of Low-Degree Acoustic Hodes 

Observations of low-degree p modes using sodium or potassium 
resonance cells as Doppler detectors have yielded unexcelled frequency 
spectra to date (e.g. Grec, Fossat and Pomerantz 1980; Claverie et ale 
1980). The potential of seismology was convincingly demonstrated by 
observations carried out from the South Pole during austral summer to 
avoid day-night gaps in the data string. Figure 11 shows the power 
spectrum obtained from such observations during a continuous 5-day time 
interval. Given the spatial response to various YT of such observations 
without imaging, the succession of peaks in frequency correspond to 
modes £ = 0, 1, 2 and 3 of varying degree n (cf. Christensen-Dalsgaard 
and Gough 1982). The observed power in these low-degree acoustic modes 
is greatest in the frequency range 2.5'mHz to 4.5 mHz, which must be a 
consequence of preferential excitation in the convection zone, for 
Figure 7a reminds us that many p and g normal modes are feasible in 
principle at considerably lower and somewhat higher frequencies. 

Detailed comparison of these observed frequencies with those 
obtained from solar models is facilitated by plotting the frequencies of 
peak power in a so-called eche1le diagram in Figure 12, with that form 
suggested by the dispersion relation (4). The spectrum is divided into 
segments of length Vo = 136 ~Hz starting at an arbitrary frequency, 
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Figure 11. Power spectrum in frequency v of low-degree solar oscil
lations as observed in Doppler velocities without imaging from the 
South Pole during a continuous 5-day time interval. 

1500 

2000 

N 2500 
::I: 
:::I.. 

~ 3000 
>
u 
z: 
LIJ 

g. 3500 
LIJ 
IX 
u.. 

4000 

4500 

• t \l=3, • + (n=12) 
\ I + 
f ,+ 
f I ++ 

1 + 1 ++ .e = 1 
I + ,+ 
1 + I + 

+ ,+ ,+ + 

\ ~ 
'\ -t\ 

~. ~ 

, 
\ +. + (n=13) 

1 + I ! 
I +' + 
t +1 

+1 + t +f + 
J + I + I + + 

f = 2 .+ + n r. l .c.=O 

+\ ~ 
\ \ +' +\ +\ , , +, 

+ \ + \ 
+ \ + 

+ \+\ / + \ +\- THEORY 
OBSERVATIONS : 'v.\ 

South PoZe + \\ 
\ +\ 

\ .. + \ + •• 
5000~~~~~~~~~~~~~~~~~~~ 

o 20 40 60 80 100 120 

SHIFTED FREQUENCY (}.1Hz) 

Figure 12. Echelle diagram used to compare in detail the frequen
cies of oscillation modes (at the indicated low degrees t and suc
cessive radial orders n) as obtained from a theoretical solar model 
and from full-disk Doppler observations carried out from the South 
Pole. 

25 



and the segments are presented directly beneath one another. That 
choice of Vo already places constraints on the stratification within 
solar models. Such a manner of display emphasizes that modes of odd and 
even degree fall into separate groups in frequency. and that successive 
segments at higher frequencies correspond to modes of successively 
higher radial order n. The separations in frequency between the ~ = 0 
and 2 and the 1 = 1 and 3 modes are related to the En ~ term of (6). , 
The nearly vertical dashed curves show the loci of frequencies from a 
standard solar model, while the crosses denote frequencies from the 
South Pole observations. 

The differences in frequency between observations and theoretical 
predictions are typically about 5 ~Hz, or about 0.2%, whereas the 
observational uncertainties are estimated to be about 2 ~Hz. By many 
standards this is remarkably good agreement, but the potential of 
seismological methods can only be realized if the predicted and observed 
frequencies match within the observational errors. Various standard 
solar models lead to slightly different sets of predicted frequencies, 
but none presently satisfies that stringent criterion. The differences 
in frequencies may involve issues of equations of state or opacities, 
effects on stratification by mixing below the convection zone or 
intermittent mixing of the core, elemental abundances and their 
distribution with radius, or possibly strong magnetic fields in the 
core. Mode excitation and decay may also contribute to the differences 
in ways that are not yet fully understood. Some of these processes are 
expected to influence frequencies at about the 1 ~Hz level. For that 
reason it is of essence to measure the frequencies to the level of 0.3 
~Hz, or to about 0.01%. Some low-degree p modes may maintain their 
coherence long enough for such observations to be feasible, as has been 
suggested by the promising observations of Isaak and colleagues obtained 
from a two-station network and shown as a power spectrum in Figure 13. 
Precise frequencies from these observations have not yet become 
available for detailed comparisons to be made with theoretical 
predictions. However, the potential quality of that spectrum promises 
to provide frequencies with a precision considerably better than 1 ~Hz. 
The strongest modes seen in full disk Doppler measurements have also 
been observed in integrated solar intensity by the Active Cavity 
Radiometer (ACRIM) on the Solar Maximum Mission satellite (e.g. Willson 
and Hudson 1981, Woodard and Hudson 1983). Such instruments provide a 
prom1s1ng route for making complementary observations with high 
precision of intensity fluctuations of the low-degree modes. 

h. Detection of Gravity Modes 

The detection and identification of gravity modes present major 
challenges in seismology. It appears that the amplitudes in the solar 
atmosphere of all but the lowest-degree g modes may be below the 
sensitivity level of present detectors. Further, the inherently long 
periods of g modes require observations spanning years if suitable 
frequency resolution is to be achieved to distinguish the closely spaced 
frequencies of these modes. Observations of whole disk Doppler 
velocities from Crimea and Stanford have revealed an oscillation with a 
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Figure 13. Power spectrum in frequency v of low-degree solar 
oscillations obtained from full-disk Doppler observations 
carried out at two stations, one at Tenerife and another at 
Hawaii. The spectrum is based on observations spanning about 
3 months in 1981, with as much as 22 hours of coverage per 
day. 

period of 160.01 min, and if this is a solar g mode of high order, it 
appears to have maintained phase coherence over 7 years (e.g. Severny et 
al. 1976, Kotov et al. 1978, Scherrer et al. 1979, Scherrer and Wilcox 
1983). The identification of that oscillation mode is still uncertain, 
but it may correspond to a g10 mode at £ = 2 (cf. Christensen-Dalsgaard 
and Gough 1976). Recent analysis of the 8 years of data from Crimea has 
yielded 32 frequencies with periods between 116 and 200 min which 
Severny et al. (1984) believe to be solar g modes and not terrestrial in 
origin. 

There has been significant progress with techniques to mitigate 
effects of sidelobes and aliased peaks in power spectra due to daily 
gaps in these long data records (e.g. Scherrer, these proceedings). 
This has led to the tentative identification in the Stanford power 
spectra of a sequence of about a dozen peaks whose nearly uniform 
spacing in period satisfies relation (7), thereby suggesting that they 
correspond to g modes with periods in the range of 3 to S hours (Delache 
and Scherrer 1983, Scherrer 1984). They found the spacing in period, as 
in (8), to correspond to Po = 38.6 ±O.S min, which is rather greater 
than the values (33 to 36 min) to be expected in that frequency range 
from standard solar models calibrated by the p modes. Isaak et ale 
(1984) report having detected g modes in whole-disk Doppler measurements 
carried out by the Birmingham group (Figure 13 shows their power 
spectrum at the higher p mode frequencies). They find Po = 41.2 min, 
inconsistent with the Stanford results. Further, Frohlich and Delache 
(1984, and these proceedings) report statistical evidence from analyzing 
the ACRIM intensity data for Po = 45.0 ±0.2 min, though those 
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oscillations are in the period range of 3.5 to 30 hours and thus not in 
direct conflict with the other values of Po' The sources of 
discrepancy in Po between the Stanford and Birmingham reports are 
unclear, but may arise from uncertainties in identifying the radial 
orders n or degrees ~ that correspond to the peaks (Gough 1984, Gabriel 
1984). 

The apparent differences in Po between theory and observations 
possibly suggest that the buoyancy frequency N in the solar core should 
be reduced from what has been supposed in standard solar models. This 
might be accomplished by mild mixing of material between core and 
envelope to slightly reduce the gradient of chemical composition, and 
thus N, brought about by the nuclear reactions in the core (cf. 
Berthomieu et al. 1984). Certainly an accurate observational determina
tion of Po, which is an integral measure of internal stratification, 
will place important constraints on solar models, dealing both with the 
current state of the Sun and having implications on its evolutionary 
history. Such determinations would benefit greatly from observations of 
oscillations carried out with imaging Doppler analyzers to allow clear 
identification of the degree t of the g modes. Ground-based networks 
may be able to provide a significant component of such observations, 
though a space observatory with an operational lifetime of a number of 
years may prove to be essential for attaining the best signal-to-noise 
in determining the frequencies and relative amplitudes of the g modes. 

4. EFFECTS OF ROTATION IN SPLITTING THE FREQUENCIES 

Any deviation from spherical symmetry can lift the degeneracy of 
frequency upon the azimuthal order m of the oscillation modes. In 
particular, rotation of the Sun will accomplish this, for then normal 
modes with different m will possess slightly different apparent 
frequencies Vn,t,m' 

a. Simple Explanation of Splitting 

One can understand how the frequency splitting comes about by 
turning to Figure 4, and concentrating on modes with the same t but 
differing m, as in the t = 10, m = 5 and 10 examples. What are shown 
there are instantaneous views of velocity patterns associated with 
specific propagating normal modes. A little later in time, each such 
pattern would appear as having been translated laterally (rotated around 
the polar axis) at the horizontal phase speed of that mode, simply 
because the underlying waves which produce such interference patterns 
are propagating around the Sun. Of course for given t and Iml, there is 
both a mode (say +m) propagating eastward and another (-m) propagating 
westward, both with identical angular phase speeds (2nv/m) which vary 
inversely with m. 

Consider now the simplest case where the rotation axis of the Sun 
coincides with the polar axis of the coordinate system, and further that 
its angular velocity n(r) depends only on radius, with at first no 
latitudinal variation. The resulting advection of the wave patterns by 
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the rotation would cause the normal modes to appear to be swept past the 
viewer at different rates for the prograde (say +m) and retrograde (-m) 
modes. This could be interpreted as apparent changes in the temporal 
frequencies of the modes from the vantage point of the observer, for the 
frequency is a measure of the rate at which nodal lines proceed past a 
fixed reference point. That rate is a product of the apparent angular 
phase speed (2nv/m, augmented by a factor proportional to 0) and the 
spatial wavenumber, here m, along the propagation direction. Thus the 
apparent shift in frequency is proportional to mO, and thereby the 
degeneracy of frequency on m has been lifted. There are also modifica
tions to oscillation frequencies from dynamical effects of Coriolis 
forces, but such changes are small for high-order p modes when compared 
to those of advection. 

b. Formal Estimates of Splitting 

Given the simplifying assumption that the angular velocity O(r) 
depends only on radius r, detailed calculations (e.g. Gough 1981, 1982b) 
of the effects of rotation show that a mode with frequency vn 1 is , 
split into 21+1 equally spaced components, which may be written as 

m JR v n = V n + -2 8 n K n ( r) 0 ( r) dr • n, ... ,m n, ... ,o n n,... 0 n, ... (10) 

The spacing of these components is determined by the integral over the 
volume of the Sun of the product of the angular velocity and a function 
that measures the sensitivity of the mode frequency to rotation at each 
depth. Such functions Kn,1 are known as rotation splitting kernels, 
and examples of some are shown in Figure 14. The scaling factors 8n ,1 
are of order unity, and are chosen to make the kernels Kn,1 unimodular. 
For low-degree p modes with n » 1, the frequency splitting is just 

v = V + n,1,m n,1,0 
m --0 2n 

where n is an average of the internal angular velocity of the form 

(11) 

(12) 

If the Sun were to be rotating throughout at about its surface rate, the 
rotational splitting in frequencies between m components is about 0.46 
~Hz. That splitting is no longer simply a constant when one admits that 
o is really a function of both rand 6, and a few explicit examples have 
been considered (cf. Gough 1982a). 

The rotational splitting kernels Kn 1 shown in Figure 14 emphasize , 
that a given p or g mode samples the angular velocity 0 over a 
considerable range of depths. The g modes afford more information near 
the core and p modes in the upper regions, much as we surmised by 
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Figure 14. Variation with proportional radius r/R of rotational 
splitting kernels Kn,t deduced from theory, showing how selected 
acoustic and gravity modes might respond to an angular velocity Q(r) 
within the Sun. Shown in (a) are kernels for some p modes with 
periods close to 5 min, and in (b) for a g mode with period of 345 
min. The kernels for these p modes become highly overlapped as they 
approach their maxima near the solar surface (attaining values close 
to 70 in the units shown); that region has been omitted here for 
clarity in displaying the kernels within the interior. 
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looking at the amplitude functions in Figure 9 from which such splitting 
kernels are derived. However, the kernels Kn 1 are not at all like , 
o-functions with radius. Therefore deductions about the variation of 
angular velocity within the Sun require the use of inversion techniques 
that combine information from many modes to obtain localized measures of 
Q. Such inversion methods to be applied to the data are discussed in 
detail by Gough (these proceedings) and are a critical element when 
interpreting the rotational splittings. 

c. Observed Splittings 

Fine structure in the peaks has been detected in the observed power 
spectrum of low-degree p modes by Claverie et ale (1981), who have 
attributed this to rotational splitting of the frequencies. Claverie et 
al. further suggest that their measurements imply that a suitably 
wei~hted average of the interior angular velocity Q(r) of the Sun, much 
as Q in (11), is about twice the value of n at the surface. Gough 
(1982b) raises questions about this interpretation, since 21+1 splitting 
components have been reported for a given 1 value, whereas only 1+1 of 
them should be detectable if the rotation axis of the interior coincides 
with that of the photosphere. However, if those axes do not coincide, 
then all the m components of a given 1 may be detectable, since issues 
of symmetry about the apparent equator at the surface no longer apply. 
In this case, however, one expects additional frequency splitting, so 
that in general more than 21+1 components should be seen (Gough and 
Taylor 1984). The net result may appear as a modulation with time in 
the amplitudes of the fine structure peaks. Isaak (19S2) has suggested 
that the additional components may be the consequence of an intense 
rotating magnetic core, such as has been postulated by Dicke (1979) to 
account for the 12.2 day periodic component in the Princeton oblateness 
data (e.g. Dicke and Goldenberg 1974, Dicke 1981). Gough (1982b) and 
Dicke (1982) have carried out analyses of the splittings that might be 
caused by an oblique magnetic solar rotator. Gough suggests that it is 
premature to conclude much about what causes the apparent frequency 
splittings before questions about the 21+1 components in the spectrum 
are resolved by additional observations, such as those under way by 
Isaak and colleagues. 

Measurements of apparent rotational sp1ittings from observations of 
fluctuations in limb-darkening functions have been reported by Bos and 
Hill (1983) for a selection of tentatively identified low-degree p and g 
modes. From these splittings, Hill, Bos and Goode (1982) estimate the 
internal rotation and associated gravitational quadrupole moment J 2 of 
the Sun, suggesting that general relativity may be in trouble. However, 
Gough (1982a) reports an alternative interpretation of those data using 
optimal averaging inverse methods and finds no fundamental conflict in 
the value of J2 with that supposed by Einstein in using general 
relativity to explain the advance of the perihelion of Mercury. 

Certainly the subject of splitting of modal frequencies has 
engendered considerable debate, but that serves to emphasize just how 
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fundamental are the issues at stake, whether they touch on stellar 
structure, evolution or relativity. Clearly more observations, and 
preferably with a higher frequency resolution, are needed to try to 
resolve the interpretations or speculations put forward so far. 
Possibly detailed measurements of frequency splitting of the nonaxi
symmetrical counterparts of the intermediate-degree modes, as in the 
observations briefly discussed by Harvey and Duvall (these proceedings; 
see also Duvall and Harvey 1984, Duvall et ale 1984) may help to sort 
out some of these issues. 

5. PROBING FOR GIANT CONVECTION CELLS 

The presence of large-scale convection cells below the solar 
surface should also lead to the splitting of frequencies, having 
particularly discernible effects on those modes whose horizontal scale 
is small compared to that of the cells. Magnetic field patterns have 
suggested the existence of such giant convection cells, as have 
nonlinear convection theories. Attempts to observe such convective 
flows by direct Doppler measurements have been inconclusive, and suggest 
that the photospheric velocity amplitude of the giant cells is below the 
sensitivity of the measurements, namely about 10 ms-1 (cf. LaBonte, 
Howard and Gilman 1983). However, theoretical modeling of compressible 
convection (e.g. Toomre 1980, Latour, Toomre and Zahn 1983) suggests 
that the horizontal velocity should increase with depth. Therefore one 
may anticipate finding velocities associated with the giant cells in the 
upper portions of the convection zone which are substantially greater 
than the limits set by the photospheric observations. 

The detection and detailed measurement of large-scale convection 
cells would be essential for trying to unravel the complicated nonlinear 
dynamics of that zone. Most of what is seen at the surface of the Sun 
is controlled by underlying dynamical processes in the convection zone, 
whether by magnetic dynamo action that drives the solar cycle, or by 
convection under rotational constraints that redistributes the angular 
momentum and thus produces differential rotation, or by phase locking of 
convection cells that may explain the active longitudes and the 
persistent coronal holes, or by magnetoconvection that concentrates 
magnetic fields into flux ropes which erupt through the surface to form 
active regions. Although these are all formidable issues which will not 
be readily sorted out, seismology affords the possibility of observing 
convective flows and related structures below the surface where the 
dynamics is determined. 

a. Observation and Inversion of Data for Giant Cell Velocities 

Acoustic modes of high degree t are most suitable for probing the 
giant cells, with the studies to date having used sectoral modes 
centered on the equator. The wave patterns are advected by horizontal 
flows which are composed both of rotation and convective cellular 
motions. The advection velocity U for these high-degree modes is a 
spatial average of the equatorial component of the subphotospheric flow 
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velocity U, weighted by the energy density of the mode (cf. Gough 1978, 
Gough and Toomre 1983). If variations of U across the observing 
aperture and throughout each observing interval can be ignored, then the 
frequency of a given mode (n,~,m) is simply shifted by 

QV = 2n ~ U (13) 

and that shift is of opposite sign for the eastward (+kh) and westward 
(-kh) propagating modes. Temperature or density perturbations 
associated with such convection cells will produce further frequency 
shifts, but they should be independent of the sense of propagation of 
the modes. The frequency shifts attributable to giant cells are those 
that change over the course of different observing days as other 
convection cell patterns are rotated into view. Since individual modes 
of high degree cannot be resolved by the available observations, the 
frequency shifts QV are measured from the positioning of appropriate 
ridge sections in the kh-v power diagrams. 

Hill, Toomre and November (1982, 1983) reported variations in ridge 
positions from one day to another that were thought to be associated 
with the passage of giant cells across the field of view. Figure 3 
shows a portion of the power spectrum from one of their observing days. 
Application of an optimal averaging inversion procedure to that data 

- 1 reveals that U changes by about 100 ms- from one observing day to 
another, and thus may be a consequence of giant cells (Hill, Gough and 
Toomre 1984). The available modes and the estimated signa1-to-noise 
ratios permit inversion of the data to be carried out over a depth range 
of 15 Mm below the surface. Details of the sensitivity of such inver
sion methods are presented by Hill, Gough and Toomre (these proceed
ings). Although the use of high-degree p modes to study giant cells in 
the subphotosphere is still in preliminary stages, the method holds out 
very considerable promise. 

b. Influence of Atmospheric Seeing 

Observations of high-degree modes from the ground are impaired by 
the effects of atmospheric seeing. As discussed briefly by Hill (these 
proceedings), the image displacements and distortions arising from 
optical turbulence in the Earth's atmosphere lead to considerable 
degradation of the observed signal of 5-minute oscillations at the 
higher ~ values. This would explain the noticeable decrease of the 
power along the ridges with increasing kh or~. Numerical simulations 
of seeing effects currently under way indicate that degradation sets in 
for ~ >- 200, and that power at t ~ 400 is reduced by more than a factor 
of 20 even when atmospheric seeing conditions are good (Toomre et ale 
1984). Seeing effects appear to introduce a background level of noise 
in the power spectra that may make the detection of low-amplitude modes 
at even low values of t difficult. The width and jaggedness of the 
ridges in Figure 3 are partly a consequence of seeing redistributing the 
power, and partly the result of beating between the unresolved modes 
within each sampling bin in kh and v. Effects of mode beating can be 
reduced by data sets spanning longer intervals in time, though solar 
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rotation places limits of about 4 days over which the same pattern of 
giant cells might expect to be seen without too much distortion on the 
solar disk. 

Networks of ground stations should remove effects of day-night gaps 
in such data, though successfully combining high ~ observations from 
different sites may prove to be difficult. However, all ground-based 
observations of high-degree modes are seriously affected by seeing 
distortions, and this is likely to place the main constraint on the 
effectiveness of solar seismology to study the dynamics of the convec
tion zone. Such studies would benefit the most from observations 
carried out from space: a satellite positioned in a fully sunlit orbit 
would provide the highest signal-to-noise ratio in the measurement of 
high-degree oscillations while minimizing the observing interval 
necessary to accomplish this. It is also critical that such observa
tions of dynamical structures be completed within their lifetimes, and 
this may preclude waiting for solar rotation to bring particular giant 
cells back into view again in order to continue the observations and 
thus try to beat down the noise in ground-based studies. 

6. GROUND-BASED NETWORKS AND SPACE OBSERVATIONS 

One can readily perceive that the study of solar oscillations by 
observation and theory has become an area of intensive and mature 
scientific inquiry. Progress in this subject has been striking. Solar 
seismology has already provided preliminary estimates for the initial 
solar helium abundance, has confirmed the essential features of tempera~ 
ture and density profiles within solar interior models, has determined 
the depth of the convection zone, has provided tentative evidence for 
possible mixing within the core, has yielded a preliminary determination 
of the rotation profile in the interior, and has provided evidence for 
subsurface flows associated with giant convection cells. Such a listing 
of the principal accomplishments of solar seismology to date is quite 
impressive. However, one should not assume that such an outpouring of 
results and interpretations will simply continue at an ever quickening 
pace. The reason for that note of caution is that progress in solar 
seismology will require increasingly precise determinations of oscilla
tion frequencies, coupled with unambiguous identification of the modes. 
Neither ingredient is easy to achieve. Further, nonsolar noise must be 
at a low enough level that the frequencies of solar oscillations are 
distinct and unaltered. Also, the observations of dynamical structures 
within the Sun, such as of giant cells, must be accomplished before the 
structures have changed. 

Several major steps are necessary for significant advances in solar 
seismology. One essential element will be the development of a new 
generation of very stable Doppler velocity analyzers that permit imaging 
of the Sun. The various studies under way on a Fourier tachometer oper
ating as a Michelson interferometer, on a magneto-optical resonance line 
filter, on Fabry-Perot interferometers, on birefringent filters, and on 
stabilized grating spectrographs may provide several viable instruments. 
However, there is no paucity of challenges in getting such imaging 
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instruments to work with say 0.5 ms- 1 absolute Doppler stability, for 
that implies 1 part in 10 9 stability in wavelength determination. 

What are also needed are opportunities to carry out observations 
over long periods of time without significant interruptions due to day
night cycle or to weather. For instance, it would be essential to 
determine the frequencies of low-degree p modes to an accuracy of at 
leasi 0.3 ~Hz in order to be able even to detect rotational splitting 
that is of the order 0.46 ~Hz (if the Sun were to be simply rotating 
throughout at its surface rate). For typical frequencies of 3000 ~Hz in 
the 5-minute band, this implies observations spanning at least 30 days 
to achieve the required frequency resolution, say 6v/v, of 10- 4 

(recalling that 6v/v varies inversely with the number of oscillation 
periods observed coherently), Such frequency resolution probably is 
also necessary to sort out the very dense spectrum of gravity modes. 
For a g mode with a period of 160 min, or a frequency of about 104 ~Hz, 
observations would be required that span at least 3 years. Yet clearly 
one would wish to have an even better frequency resolution to be able to 
determine how the fine structure varies with azimuthal order m, thereby 
being able to study differential rotation in both radius and latitude. 
Also, it would be essential to reduce the very complicated effects of 
day-night sidelobes (displaced from each real peak in the power spectra 
by ±11.6 ~Hz) by having nearly continuous observations. 

Finally, precise observations are required of high-degree modes if 
the dynamics of the convection zone are to be studied in any detail. 
Such observations would be essential in another respect: determination 
of conditions at considerable depths using the low-degree modes will be 
most reliable if accompanied by precise measurements of high-degree 
modes confined near the surface. Observations of the high-degree modes 
are influenced the most by seeing distortions introduced by viewing 
through a turbulent atmosphere, and significant progress on high t 
oscillations will have to await an observatory in space. 

Progress in the long term in solar seismology will require 
developing both ground-based networks of observatories with imaging and 
refined space-based instruments. The networks of stations around the 
globe will permit nearly uninterrupted observing of the Sun, thereby 
largely removing effects of sidelobes in power spectra and considerably 
enhancing the signal-to-noise from what could be achieved from a single 
station in a comparable time span. Elimination of sidelobes will 
greatly aid the study of the splitting of frequencies by rotation and 
magnetic fields, and remove ambiguities in the frequency intervals 
populated by the closely-spaced g modes. The attainment of good 
signal-to-noise in reasonable observing intervals from networks of 
stations will permit the study of slowly time-varying stratification 
within the Sun during the course of the II-year solar cycle. Ground 
stations are relatively easy to establish and they can be maintained 
over long intervals of time. Therefore it should be possible to begin 
the necessary observations quite soon. However, the primary emphasis in 
observations carried out from ground-based networks should be on the 
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measurement of oscillation modes of low and intermediate degree that are 
not seriously impaired by atmospheric seeing. 

The space-based observatory will be essential for the accurate 
measurement of high-degree modes in order both to probe the dynamics of 
the convection zone and to remove ambiguities in the deep stratification 
as deduced from the low-degree modes. Without the high-degree modes, it 
will not be possible to analyze the crucial upper convective boundary 
layer at the top of the zone. Very accurate determination of 
frequencies for such modes should define the variation of sound speed 
with depth sufficiently well both to be able to specify the helium 
abundance of the convection zone and to calibrate equations of state of 
partially ionized plasma in the zone. Space observations will also 
permit the study of low-degree p and g modes of low radial order that 
are likely to be an important element in considering the stratification 
within the deep interior. Clearly observations from ground networks and 
from space are complementary, with the former easier to accomplish in 
the shorter term, but the latter essential for achieving the promise of 
seismology to probe a star in considerable detail. It is timely to 
proceed with both ventures. 
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Fig. 1: Adapted from Musman and Rust (1970). Fig. 2: From Gough 
(1983), after Berthomieu et ale (1980), showing their theoretical 
frequencies superposed on observational power spectrum by Deubner 
(1975). Fig. 3: From Hill, Toomre and November (1983). Fig. 4: 
Adapted from Christensen-Dalsgaard (1982c). Figs. 5 and 6: From Gough 
(1983). Figs. 7, 8a, 9 and 14: Theoretical frequencies, eigenfunctions 
and rotational splitting kernels provided by J. Christensen-Dalsgaard 
and D. Gough, based on computations with a solar model (Modell) 
described in Christensen-Dalsgaard (1982a). Fig. 8b: From Duvall and 
Harvey (1983). Fig. 10: From Christensen-Dalsgaard (1982b). Fig. 11: 
From Grec, Fosset and Pomerantz (1980). Fig. 12: Echelle diagram, 
plotted in the manner of Scherrer et ale (1983), showing theoretical 
frequencies computed from a solar model (Modell) of Christensen
Dalsgaard (1982a) and observational South Pole data from Grec, Fossat 
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WHAT WOULD A DYNAMO THEORIST LIKE TO KNOW ABOUT THE DYNAMICS OF THE 
SOLAR CONVECTION ZONE? 

Peter A. Gilman 
High Altitude Observatory 
National Center for Atmospheric Research 

1. Current issues concerning solar dynamo theory. 

Let me offer some fairly personal observations about the current status of 
solar dynamo theory. For recent detailed, balanced reviews, please see Stix 
(1981a), Schussler (1983), Weiss (1981), Cowling {1981}, Belvedere (1983). I 
make no attempt here to be comprehensive, but rather shall try to highlight a 
few questions I think are of importance. 

Until very recently, solar dynamo theory has been predominantly kinematic 
that is, the induction equation for magnetic field is solved using assumed 

velocities and/or parametric representations of the inductive or diffusive 
effects of velocities. The equations of motion governing these flows are not 
solved in paralleL Therefore nonlinear effects that have been invoked are gen
erally ad hoc. 

Within this kinematic domain, a number of apparent successes have been 
achieved, including magnetic field reversals of the correct period; migration of 
toroidal fields toward the equator to emulate the well known butterfly diagram; 
and others, including variations in cycle length and amplitude, when ad hoc 
nonlinearities are added (see e.g. Yoshimura 1978a, 1978b). But much of this 
apparent success results from the fact that there are free parameters and 
functions in the kinematic theory that can be chosen to yield the right results. 
In particular, to achieve the correct toroidal field migration direction requires 
that the angular velocity increase with depth; to get the correct dynamo period 
requires that the "helicity" (scalar product of velocity and vorticity) of the flow 
be weak, in some sense. But dynamical theories of the differential rotation 
driven by convection, at least those that take proper account of the influence 
of rotation upon convection, predict that the angular velocity should decrease 
with depth, and be nearly constant on cylinders concentric with the rotation 
axis. (See, e.g., Gilman, 1980 for a review.) And the helicity associated with the 
convection that drives the differential rotation is at least two orders of 
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magnitude larger than needed to give the correct period, so if field reversals 
occur at all, they are too fast by one order of magnitude (Gilman and Miller, 
19B1, Gilman, 1983). 

Therefore there is currently a major paradox to be resolved in solar dynamo 
theory, one that has been known for almost a decade. Measurements of solar 
oscillations accurate enough to infer the interior rotation rate as a function of 
depth could largely resolve the paradox -- that is, whether kinematic dynamo 
theory is basically correct for the sun and the dynamical theories for global 
convection and differential rotation require major revision, or whether the 
dynamical theories are basically correct and solar dynamo theory is wrong. 

If interior rotation can be measured from oscillations, then there is hope we 
can go further and attempt to demonstrate the existence of global convective 
flows, and hopefully infer some of their properties. Helicity would be an obvious 
candidate, though probably one of the-most difficult. 

If the dynamo theory proves to be wrong, it is probably either because it 
does not take into account in any detail the fact that the solar magnetic fields 
are highly concentrated into flux tubes, or because the dynamo is mainly con
centrated in a thin layer at the bottom of the convection zone (e.g. Galloway 
and Weiss, 1981). It is not clear how oscillations measurements can help us 
understand these issues directly, since they can not give us highly localized 
information about a particular depth or structure in the convection zone. 

2. Recent results from global compressible convection models. 

Let me give a few more detailed results from the latest model calculations 
for global convection and differential rotation. These results are based on two 
models; my own, and that of Glatzmaier (19B3). The physics in these models is 
rather similar, but the mathematical solution techniques are different. Both 

. models are compressible, and typically contain several pressure scale heights. 
Both calculations begin significantly below the photosphere ('" 10% in solar 
radius) because they are incapable of resolving supergranule and granule scale 
convection. Both parameterize the effects of small scale {subgrid scale} eddy 
transports of momentum and entropy quite crudely. Among the physical differ
ences between the models is the treatment of the lower boundary. My model 
has a rigid lower boundary, above which the stratification is all convectively 
unstable. Glatzmaier's model allows for penetration into a stable layer below. 
Glatzmaier's model also uses a spherical harmonic expansion in the horizontal 
dimension that allows better treatment of the poles than does mine, which uses 
a Fourier expansion in longitude, coupled with a finite difference grid in lati
tude and radius. 

The differences between these models seem to be relatively unimportant in 
that the main results are quite similar. The fundamental conclusion from cal
culations using both these models of relevance to the sun is that, starting from 
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a solar luminosity. a solar rotation rate. and plausible. though crude. represen
tation of the eddy diffusivities of momentum and entropy. they generate a 
broad spectrum of convection that in turn drives an equatorial acceleration of 
about the correct magnitude and profile. When one looks in a little more detail 
at the solution, some departures from solar observations do show up, but they 
do not negate the main agreement, suggesting We may be not too far from the 
"correct" answer for the sun (until one considers other issues, such as the 
dynamo problem as discussed above). 

A number of additional results from these models should also be mentioned. 
From both, the angular velocity decreases with depth and is roughly constant 
on cylinders concentric with the axis of rotation. Convection in low latitudes is 
also predominantly in the form of convective rolls with a north-south axis. 
These results are both quite similar to that of the incompressible case studied 
earlier in a number of papers by me (see, e.g. Gilman 1979, 1980, and earlier 
references cited therein). and arise from the strong influence of rotation upon 
the flow. 

In general, the spectrum of convection (measured, say, by the kinetic energy 
in each longitudinal wave number m) is quite broad. In my calculations, the 
kinetic energy drops by a factor of 10 compared to the spectrum peak (some
where in the range m = 10 to 15), by m = 30 to 40. At certain times, however, 
there are exceptions, when a single longitudinal wave number contains a sub
stantial fraction of the total convective kinetic energy. Glatzmaier found a case 
when wave number 14 contained 34% of the kinetic energy of the convection for 
a period of 2 months. No other wave number had more than 10% of the energy. 

Within this broad spectrum, individual convective modes grow, evolve. and 
decay. and are advected by the differential rotation. From linear theoretical 
arguments (Glatzmaier and Gilman. 1981). they also are dispersive. That is; dif
ferent wave numbers are predicted to rotate at different rates, by as much as 
several %. The result of all of these effects is that the total flow pattern 

. changes radically in 1 rotation, and changes significantly in one passage from 
east to west limb ('" 8 days). We return to this point later. 

Both helicity (defined above) and the Reynolds stress (covariance of perpen
dicular components of convective motion--a measure of the angular momentum 
transport by the convection) are pro~nent features of these solutions, with 
the helicity being a factor of '" 10 - 10 larger than required to give the correct 
dynamo period for the sun. 

Two possible discrepancies with solar observations that show up are that the 
amplitude of the horizontal flow in the convection near the top of the model 
convection zone (but still '" 10% below the surface) is a factor of 2-3 larger than 
the upper limits estimated from the Mt. Wilson doppler velocity measurements 
by LaBonte et al. (1981). If both observations and theory are correct, then the 
global convection must be attenuated by the factor of 2-3 in the uppermost 10% 
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of the convection zone. Simple estimates of the amount of this attenuation to 
be expected (Stix. 1981b) are not encouraging. 

Another difficulty is that we get better agreement in detail with the solar dif
ferential rotation if the convection zone is deep. extending. either as an 
unstable layer (my model). or through penetration (Glatzmaier model) to a 
depth of 40% or so of the radius. Shallower layers give a narrower equatorial 
acceleration. and some tendency to spin up the poles (my model). A convection 
zone depth or depth of convection mixing of 40% conflicts with estimates of 
burning of Li and Be (Vauclair. et al.. 1978) and with observed five minute oscil
lation frequencies (see other papers in this proceedings volume). We continue 
to study solutions for shallower layers that do not have these conflicts. in 
search of better differential rotation profiles. 

3. What we need to know about differential rotation and convection. 

With respect to .differential rotation. it is obvious from the above discussion 
that it is most important to find the profile of rotation with depth and latitude. 
If that is successful. then we can try for variations in rotation rate with time at 
the 1% level (20 m/sec). The recently discovered torsional oscillations (Howard 
and LaBonte. 1980) being at the 5 m/sec level. are almost certainly out of 
reach. 

As everyone at this meeting knows. the first inferences of solar rotation with 
depth from frequency splitting of oscillations have given highly variable results. 
I suspect most workers in the field at this moment do not believe any of them 
very strongly. It seems imperative to make redundant calculations of rotation 
at the same depth using different combinations of oscillations. in order to test 
the reliability of the results. And we still need to demonstrate we can repro
duce the known photospheric differential rotation with latitude by using high 
wave number p modes that peak near the solar surface. 

With respect to convection. we would clearly like to know several properties. 
We would like to find the amplitude and structure with depth of the spectrum of 
convection out to longitudinal wave numbers of 30 or more. Does this structure 
yield north-south rolls in low latitudes as predicted? The uppermost 10% of the 
convection zone is of particular importance. because global models can not 
treat that layer well. and. as discussed above. significant attenuation with 
height is needed in convection amplitudes to fit with observations at the sur
face. To be useful. we need to measure convective velocities of the whole con
vection spectrum to an accuracy of 10-20 m/sec. particularly if the upper limit 
estimated from surface measurements by LaBonte et. al. (1981) is indicative of 
the interior flows. For a single longitudinal wave number. we would like to see 
velocities measured down to 5-10 m/sec. which may be very difficult. 

Some properties of global convection expected on theoretical grounds may 
help us to infer their existence and flow structure from oscillations. while oth
ers may increase the difficulty of determining their nature. The favorable pro
perties are particularly the expected symmetries of the various flow 
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components about the equator. while the unfavorable ones are the various 
sources of time dependence in the total convection pattern. 

Theoretical models of global convection such as we have discussed above 
predict north-south rolls centered about the equator. This means that for a 
reasonably deep convection zone (30% of the solar radius) the east-west flow in 
the rells at a given level should have the same sign and roughly the same ampli
tude from at least 20° N to 20° S. The radial motion will have the same sym
metry. The north-south motion, on the other hand, will have a node at the 
equator, and have opposite signs at the same longitudes in the north and south. 
Thus if the convection velocities contribute a measurable splitting or shift to 
the oscillation frequencies, alternately adding and subtracting the signals in 
the north and south hemispheres ought to separate the contributions from the 
two horizontal velocity components. If this proves to be possible, then it will 
enhance our ability to demonstrate the existence of the north-south rolls, but 
also may allow calculation of higher order moments of the velocity field. such as 
the helicity, important for the dynamo. and the Reynolds stress, needed to 
understand how the differential rotation is maintained. 

The longer the lifetime of a particular convection pattern (to which alliongi
tudinal wave numbers contribute), the easier it is going to be to observe. 
Ideally. the same pattern recurring for several solar rotations could be super
imposed to reduce noise. Even persistence during one passage from east to 
west limb would be valuable. However. there are at least three effects at work 
that limit pattern lifetime. These are a) indiVidual mode growth and decay; b) 
advection and shearing of modes by the differential rotation, and c) dispersion 
of modes due to rotation. Let us take each of these in turn. 

The lifetime of an individual convective mode in a turbulent system is closely 
related to its turnover time, L/U, in which L is a typical length scale for the 
convection. and U a typical velocity scale. If L = 0.1 ~ for large scale convec
tion near the bottom of the convection zone, and U '" 20 m/sec, then L/U '" 40 
days. or 1.5 solar rotation. By this measure, then, convection should easily per
sist through one passage from east to west limb (8 days) and there should be 
significant correlation from one rotation to the next. 

Advection by the differential rotation at a given level should only change the 
speed of propagation of the convection pattern, and not appreciably affect its 
lifetime. However, shearing by differential rotation, if it is strong enough, can 
radically alter the structure of a convective mode. In Glatzmaier's and my glo
bal convection-differential rotation models both kinds of behavior can be seen. 
Latitudinal shearing is most important in mid latitudes, and weakest near the 
equator, so it will have the effect of limiting the iatitudinal extent of persistent 
convection patterns. From my own model calculations, N-S rolls retain their 
shape well against latitudinal shearing equatorward of '" 200 latitude, but 
poorly poleward of that latitude. Between 200 and, say 500 latitUde, there is a 
rotational velocity difference (relative to a uniformly rotating reference frame) 
of ..... 100 m/sec. Two points, at 20 and 500 latitude initially on the same meri
dian, would therefore move 300 in longitude relative to each other in a time of 
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"'0.5 ~/100 m/sec = 40 days. A convection pattern with a longitudinal wave 
number m ::= 12 would be sheared by 1 full wave length in that time. Conse
quentlya convective roll, representing half a convective wave length, would lose 
its structure in "" 1/4 that time, or 10 days. This time period would be shorter 
for higher wave numbers. Thus latitudinal shearing should prevent identifica
tion of a convective roll poleward of 200 latitude from one rotation to the next, 
and will greatly modify it in even a single disk passage ('" 8 days from 60 E to 60 
W). This means that we should concentrate our effort on equatorial latitudes 
when looking for persistent convective features. As discussed above, it is also 
in low latitudes that most advantage can be taken of the predicted symmetry 
properties of the convection. 

Linear theory of north south rolls in a highly stratified compressible fluid 
(Glatzmaier and Gilman, 1981) predicts there will be substantial dispersion in 
the longitudinal phase velocities of modes with different longitudinal wave 
number. It is not known yet how important these effects are in the nonlinear 
case, but from Glatzmaier and Gilman-(1981) we can illustrate that this disper
sion can lead to substantial change in a composite convection pattern in a sin
gle disk passage. They predict, for example, that a north-south roll with longi
tudinal wave number m = 12 could have a period of as much as 6% less than m.::= 
6. Thus in 8 days, while m = 6 would have moved 2 of its wave lengths, m = 12 
would have moved only 3.69 of its, rather than the 4 wave lengths required to 
keep a composite pattern made up from these two modes invariant. 
Wavenumber m = 12 lagging by O.Sl of its wave lengths means a phase lag of '" 
1120 

, so the composite pattern must change substantially, if m = 6 and m = 12 
have roughly comparable amplitudes. Nonlinear model results need to be 
analyzed in greater detail to see how important an effect this is. Finally, we 
note that additional dispersion will be introduced by the radial gradient of rota
tion if different longitudinal wave number rolls have peak amplitudes at dif
ferent depths. 

From all of the above discussions we conclude that composite convective 
patterns are unlikely to persist recognizably for even a single rotation, and may 
change significantly even during a single disk passage. However, if individual 
longitudinal wave numbers can be extracted from the overall pattern, these 
should last much longer. Changes in their amplitudes in low latitudes where 
shearing by latitude gradients in rotation is weak are governed by their turn
over time previously estimated to be 1 - 2 rotations. 

It would also be highly desirable to deduce from oscillations the horizontal 
and radial variations in thermodynamic structure caused by c~%vection, but 
since these variations are likely to be of order of or less than 10 everywhere 
except in the first few thousand km below the photosphere, the prospects do 
not seem good. Also, we would like to gain information on the magnetic field ig 
the convection zone (and below) but it takes extremely large fields ('" 10 
gauss) to produce a significant perturbation in the p mode frequencies at the 
base of the convection zone where strong fields might be able to reside. Thus, 
that prospect seems remote, too. But if the oscillations can be used to deduce 
the angular velocity profile with depth and latitude in the convection zone, that 
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will be a great advance indeed. And if even some of the velocity structure of 
convection can also be determined, progress will be much greater still. 
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Douglas Gough 
Institute of Astronomy and Department of Applied Mathematics 
and Theoretical Physics, University of Cambridge, and Joint 
Institute for Laboratory Astrophysics, University 6f Colorado 
and National Bureau of Standards, Boulder, Colorado 80309 

He1ioseismological inversion, as with the inversion of any other 
data, is divided into three phases. The first is the solution of the 
so-called forward problem: namely, the calculation of the eigenfrequen
cies of a theoretical equilibrium state. The second is an attempt to 
understand the results, either empirically by determining how those fre
quencies vary as chosen parameters defining the equilibrium model are 
varied, or analytically from asymptotic expansions in limiting cases of 
high order or degree. A familiarity with at least the qualitative de
pendence of the eigenfrequencies on various properties of the solar 
model is necessary not only for personal enlightenment but also for 
arming oneself to interpret the rather more abstract third phase. That 
phase is to pose and solve an inverse problem, which seeks to find a 
plausible equilibrium model of the Sun whose eigenfrequencies are con
sistent with observation. 

The three phases are briefly discussed in this review, and the 
third, which is not yet widely used in he1ioseismo10gy, is illustrated 
with some selected inversions of artificial solar data. 

1. INTRODUCTION 

There is now a substantial body of seismological data from the 
Sun. Therefore we can contemplate graduating from the hit-and-miss 
model-fitting investigations that have dominated the subject in the past 
to the more systematic approach provided by inverse theory. There are 
many methods for attempting to invert seismological data, developed 
mainly by geophysicists and applied mathematicians interested in geo
physical problems, so we are in the fortunate situation of being able 
to draw on their experience. There appears to be a variety of schools 
of opinion about which methods are generally preferable, or even which 
approach is likely to be the most fruitful for a particular problem. 
What seems to be universally agreed, however, is that when attacking a 
totally new problem it is expedient to test a method first, using arti
ficial data generated from a theoretical model. 
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In this and the accompanying discussion (Christensen-Dalsgaard and 
Gough, 1984a), we report briefly on two potentially useful methods of 
inverting helioseismological data. One is based on localized averages, 
and the other is an expansion (spectral expansion) in the weighting 
functions (data kernels) that characterize the contribution of different 
regions of the star to the data. Both methods have been used in geo
physics, and have their origins in the work of Backus and Gilbert (e.g. 
1970). A detailed description of the methods, and their relation to 
other techniques that have been used, will not be given here; for this 
the reader is referred to the various reviews that already exist (e.g. 
Wiggins, 1972; Parker, 1977a,b; Sabatier 1977, 1978). The examples dis
cussed here and in the accompanying article of the application of these 
methods to artificial data suggest that both of the procedures offer 
hope of being useful for inverting solar data. 

The two aspects of the solar structure that are most likely to be 
determined in the foreseeable future are the internal rotation and the 
hydrostatic stratification. From a theoretical point of view the former 
is the simpler problem, because it is essentially linear; moreover the 
result is likely to be quite reliable, because it is not sensitive to 
uncertainties in the physics of stellar material. The latter is non
linear, and depends on a knowledge of the equation of state and, to a 
lesser extent, on the dynamics of convection. Nevertheless there are 
good grounds to believe that a useful inversion, which sets certain 
stringent constraints on the stratification, will soon be possible. 

2. PHASE ONE: THE FORWARD PROBLEM 

The forward problem is discussed in the standard texts on stellar 
pulsation theory (Ledoux and Walraven, 1958; Unno et al., 1979; Cox, 
1980). Since to a first approximation the Sun may be regarded as being 
spherically symmetrical (the oblateness of the density distribution 
is nowhere more than about 10-5 ), the oscillation eigenfunctions are 
separable. For example, the displacement eigenvector ~(t,t) may be 
written, with respect to spherical polar coordinates (r,a,~): 

( m -1 m -1 m ) 
~ = E(r)P t , r H(r)oaPt' r cosec6 H(r) PtO~ cos(m~-wt) (2.1) 

where p~(cosa) is the associated Legendre function of the first kind and 
t is time; t and m are respectively the degree and the azimuthal order 
of the mode. 

To a good first degree of approximation (no worse than 1 part in 
10 3) the oscillations may be regarded as being adiabatic. This property 
has a good aspect and a bad aspect. The good aspect is that the physics 
of adiabatic oscillations is relatively well understood. So an accurate 
and fairly reliable solution to the forward problem is possible. The 
dynamics of the oscillations hardly senses the perturbations to the heat 
flow, and therefore it is not necessary to have an accurate knowledge of 
the opacity or the nuclear energy generation rates, or how the convective 
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heat flux is modulated by the oscillations, at least for the lower
frequency modes. The highest frequencies that have been observed do 
seem to have a somewhat greater sensitivity to the nonadiabatic effects 
of convection, however, the theory of which is quite uncertain. Never
theless, since these are significant only in a very thin layer near the 
top of the convection zone, it is possible, at least in principle, to 
eliminate their influence by considering appropriate combinations of 
eigenfrequencies. I shall not discuss that here, but merely assume that 
they can be neglected, and consider the straightforward linearized per
turbation analysis of a truly hydrostatic star. 

The bad aspect relates to the good aspect: because heat flow is 
essentially irrelevant, the oscillation eigenfrequencies provide us with 
no direct information about temperature. Adiabatic oscillations result 
solely from Newton's second law of motion: pressure gradients exert a 
force on material with inertia. Therefore all we can learn directly is 
a relation between pressure and density. If this is known throughout 
the Sun it can be coupled with the constraint of hydrostatic balance and 
Newtonian gravitation to provide us, at least in principle, with the 
density and pressure stratification. Of course it is necessary to know 
the equation of state, so that one can calculate the perturbation to the 
pressure gradient associated with a given compression or rarefaction, and 
this is perhaps the major uncertainty in the entire theory at present. 

The dominant symmetry-breaking agent is the linear advection term 
coming from the angular velocity of the Sun. Its effect is to split the 
degeneracy of the eigenfrequencies of like order (n) and degree (.0. 
From the splitting one can hope to infer the internal angular velocity 
Q(r,e,t). Because the splitting is small, quadratic effects, such as 
centrifugal forces acting on both the equilibrium state and the oscilla
tions, can be ignored. Therefore the problem is, to a good approxima
tion, linear. Several reports of observations of rotational splitting 
have already been made (Deubner et al., 1979; Claverie et al., 1981; 
Hill et al., 1982; Deubner, 1983; Rhodes et al., 1983a; Scherrer and 
Delache, 1984), and more are no doubt imminent. 

In addition to Q, large-scale convection currents (giant cells) 
should also produce diagnostically useful observable consequences (Gough 
and Toomre, 1983; Hill et al., 1983,1984). Locally, the horizontal com
ponent of the convective flow acts on high-degree oscillations in much 
the same way as rotation. 

3. PHASE TWO: UNDERSTANDING THE FORWARD PROBLEM 

Much of the understanding of the forward problem comes from analyti
cal analyses in simplified circumstances. Useful information about high
degree oscillations, for example, can be extracted by approximating the 
equilibrium state by a poly trope or by assuming it to be isothermal (e.g. 
Lamb, 1932; Stein and Leibacher, 1974). Low-degree oscillations can be 
analyzed asymptotically at high order (e.g. Vandakurov, 1967; Zahn, 1970; 
Ledoux and Perdang, 1980; Tassoul, 1980). It is from analyses such as 
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these that one can learn what aspects of the observed dispersion rela
tion pertain to different levels in the star. In particular, the small 
separation between the frequencies of modes (n,~) and (n-1,~+2) of low
degree five-minute oscillations provides information about the strati
fication in the energy-generating core (e.g. Gough, 1983a). Another 
example is presented in these proceedings, where it is pointed out that 
the latest observations of five-minute oscillations by Harvey and Duvall 
(1984) indicate an error in a standard solar model at or near the base 
of the convection zone (Christensen-Dalsgaard and Gough, 1984b). 

Asymptotic relations usefully provide a coarse diagnostic of the 
solar interior. The frequencies of high-order modes depend predomin
antly on aspects of the equilibrium structure that vary on a scale much 
greater than the characteristic wavelength of the oscillation eigenfunc
tions, and can be expressed as integrals of the equilibrium structure 
that do not depend explicitly on the detailed variation of these eigen
functions. In particular, Duvall's law (1982) describes the p modes, 
and appears to be approximately true for high-degree modes even when the 
order is not large (Christensen-Dalsgaard et al., 1984). The law can be 
inverted analytically to obtain an integral formula for the sound speed 
in terms of the observed dispersion relation (Gough, 1984). 

Aside from discontinuities, aspects of the equilibrium structure 
that vary on a scale much shorter than a wavelength are not easily 
treated by analytical methods. They do influence the eigenfrequencies, 
however. In such cases, the effect on the frequencies depends on the 
detailed structure of the spatial oscillations in the eigenfunctions. 
Though it is often possible to see a posteriori how the frequencies are 
influenced, by noticing the locations of nodes and antinodes of the 
eigenfunctions in relation to the small scale variations in the equilib
rium structure, it is usually not easy to make quantitative predictions. 

It is certainly evident, therefore, that a systematic procedure is 
required for analyzing the eigenfrequencies to measure the equilibrium 
structure on a relatively small scale. In the present state of develop
ment of the theory, it is probably necessary to use such a procedure for 
much of the large-scale structure too, since the asymptotic approxima
tions are not always reliable. Inverse theory will no doubt provide 
that procedure. But before embarking on my discussion of inverse theory 
it is perhaps appropriate simply to mention some of the conjectures that 
have arisen from the results of model-fitting. I do this to emphasize 
the importance of a simple procedure that provides an easy guide to the 
results that might subsequently be found by more sophisticated analyses. 

The first conjecture from model-fitting was deduced from the fact 
that the frequencies of high-degree five-minute oscillations observed by 
Deubner (1975) were lower than the predictions (Ulrich, 1970; Ando and 
Osaki, 1976) of contemporary solar model envelopes. From a polytropic 
analysis (Gough, 1977) this seemed to imply that the models overesti
mated the entropy jump across the upper superadiabatic convective 
boundary layer, implying that the Sun's convection zone was actually 
deeper than the models predicted. Numerical experiments by Ulrich and 
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Rhodes (1977) were consistent with this idea, and subsequent more de
tailed numerical work (Lubow et al., 1980; Berthomieu et al., 1980), in 
which many of the other uncertain aspects of the theory were varied, 
suggested that the conjecture was likely to be the only possibility. 

A second conjecture arose from a calibration performed by fitting 
to observations the eigenfrequencies of low-degree five-minute modes 
of a.sequence of evolved solar models with different compositions 
(Christensen-Dalsgaard and Gough, 1980, 1981; Shibahashi et al., 1983; 
Ulrich and Rhodes, 1983). This suggested an initial solar helium abun
dance of 0.25 ± 0.02 (see also Gough, 1983b). Interestingly, it was 
found that a perfect fit between theory and observation was not possi
ble, and subsequent numerical experiments with the theory failed to re
move the discrepancy. As I have already pointed out, we have a strong 
indication of where the models are incorrect (Christensen-Dalsgaard and 
Gough, 1984 b), but the nature of the error is yet to be found. Perhaps 
we must await an inverse calculation before we know the answer. 

4. WHAT DO OSCILLATION FREQUENCIES TELL US? 

Oscillations sample an extended region of the Sun, and so provide 
an integral measure of the structure over that region. This is most 
easily seen from the variational formulation of the adiabatic eigenvalue 
problem for a nonrotating star (e.g. Ledoux and Walraven, 1958): 

w2 J p101dV = J[YP(diV1)2 + 210Vp div1 + p-l1oVp 1· Vp]dV 

- G JJ 1£_£'1-1 div(pP div'[p(£')1(£')]dV'dV ,. (4.1) 

where p and p are the pressure and density of the equilibrium state, Y 
is the adiabatic exponent (a~np/a~np)ad, G is the gravitational constant 
and the integrals are over the volume of the star. Thus the frequencies 
are a combination of weighted averages of nonlinear functions of the 
equilibrium pressure and density and their derivatives, the weighting 
depending on the oscillation displacement eigenfunctions~. Since dif
ferent eigenfunctions weight the structure differently, the hope is that 
with a sufficient variety of data one can obtain an estimate of how p 
and p vary with r. 

Most of the inversion procedures that have been developed apply only 
to linear integral equations. Therefore to make some progress it is 
expedient to develop an iterative procedure, like a generalized Newton
Raphson method, that improves (hopefully) upon a trial model of the Sun. 
One postulates an initial guess: PO, PO, YO, taken, for example, from a 
standard model of the Sun. Then one carries out the forward problem, 
calculating the eigenfunctions ~o and eigenfrequencies Wo corresponding 
to the modes for which observational data are available. One presumes 
that the physics is correctly described by equation (4.1), so that w, p, 
p, ~ refer to the actual Sun. Then one writes down the equation satis
fied by 6w2 = w2 - w~, by subtracting two equations of the type (4.1), 
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and hopes that the trial model is sufficiently close to reality for lin
earization in the differences op = p-~o, op = P-PO' etc. to be valid. 
There results an equation in which ow is expressed as a linear func
tional of the differences op, op, etc. It is at this point that one 
appreciates the variational formulation of the problem. Since equation 
(4.1) is stationary to variations in the functions ~ about the true 
eigenfunctions, it follows that the terms that are linear in ~ - ~O 
cancel, and ow2 can be expressed in terms of ~O alone. Thus it is~not 
necessary to perturb the forward problem. 

One can 
support 

proceed further by imposing the constraint of hydrostatic 

~= 
dr 

_ Giiip 
2 r 

where iii is the usual mass variable which satisfies 

dDi 2 
- = 4'ITr p 
dr 

(4.2) 

(4.3) 

By substituting these equations into the equation for ow2 and integra
ting by parts (and noticing that the surface integrals are negligible), 
it is possible to write the equation in the form 

ow2 J op 2 
--2- = S(~o'10,r) p- r POdr 
Wo 0 

(4.4) 

provided the equation of state is known, where ~o(r) represents the 
equilibrium structure (PO, PO, etc.) of the trial model. The formula 
for the differential kernel S is quite complicated, so I refrain from 
presenting it here. Several examples are plotted by Gough (1978a). 

If equation (4.4) can be inverted to estimate op, an improved esti
mate of p can be deduced, and the whole procedure could be repeated. 

In deriving equation (4.4) I presumed the equation of state was 
known. This is required for computing the variation in y. What is re
quired is not only a ~owledge of the microphysics of the solar materi
al, but also the composition. Of course for the first iteration one has 
a trial composition taken from the standard solar model. But for subse
quent iterations one has no such information, and the procedure must be 
generalized. 

For the purposes of inferring the structure of the core (if it can 
be done without a detailed knowledge of the structure of the envelope) 
this issue is not very important. There the material is highly ionized, 
and y ~ 5/3. But in the convection zone where the abundant elements 
are partially ionized, the problem is important. Formally it is quite 
straightforward to overcome the difficulty by generalizing equation 
(4.4) to include additional integrals that are weighted averages of the 
abundances of the elements that influence y, and generalizing the inver
sion procedure described in the following section. [The geophysical 
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inverse problem originally formulated by Backus and Gilbert (1967) was 
posed for a vector function.] No investigation of the properties of 
such a procedure applied to the Sun has yet been undertaken. Alterna
tively, it may be simpler to separate the problem of determining the 
composition of the convection zone and solving that first (Gough, 1984). 
This should be possible because in the convection zone the stratifica
tion is close to being adiabatic and the chemical composition is pre
sumably homogeneous. 

The case of rotational splitting of nonaxisymmetrical modes can be 
treated similarly. The perturbations wI to the eigenfrequencies imposed 
by the angular velocity Q(r,e,t) can be computed by linearizing the 
variational principle of Lynden-Bell and Ostriker (1967). Alternatively 
it can be obtained in the form of a consistency condition if one expands 
the eigenvalue problem about that for the nonrotating state. The result 
is a functional of Q which, in the special case when Q is a function of 
r alone, can be written in the form (Gough, 1981; cf. Hansen et a1., 1977) 

wI 
Wo = m J K(~'~O,r)Q(r)dr (4.5) 

Quadratic and higher order terms can be computed, if desired, but these 
are small compared with the linear term represented in equation (4.5) 
(Dziembowski and Goode, 1984; Gough and Taylor, 1984). Once again, the 
data, namely the splitting frequencies wI, are weighted averages of the 
function to be determined (this time Q), with weight functions that de
pend on the equilibrium model and its eigenfunctions. If the previous 
inverse problem has already been solved (using the observed frequencies 
of the axisymmetrical modes) K can be regarded as being known. This 
inverse problem is therefore linear, and requires no iteration. 

5. PHASE THREE: INVERSE METHODS 

In this section I consider explicitly the inversion of the ideal
ized equation (4.5) to obtain Q from rotational splitting data. Now it 
is convenient to label the modes with an index i which identifies n, £ 
and m. Actually, in the special case considered here where Q depends 
only on r, K is independent of mand therefore i need represent only n 
and~. Thus one wr~tes 

(5.1) 

where Wi = Wli/(mwOi) are observable quantities, Ki are known kernels 
and R is the radius of the Sun. In practice, observations contain 
errors, so if the Wi are regarded as the observations, equation (5.1) 
holds only approximately. 
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As pointed out by Backus and Gilbert (1967), a solution to the 
problem represented by (5.1). if it exists, is not unique, even if 
strict equality is assumed. One reason is that since one can have only 
a finite number of observations, the kernels Ki cannot possibly span the 
space of functions on the interval (O,R). Therefore there is an infi
nite number of functions, fk' orthogonal to all the Ki' and any linear 
combination of them can be added to n without modifying any of the inte
grals. Let 0 denote the subspace spanned by the Kio The functions fk 
lie in its complement, A, called the annihilator. Evidently the data 
contain no information about the projection of n in A. 

Permitting only approximate equality broadens the possibilities 
further. Therefore the problem is not simply to find an approximate 
solution to equation (5.1), but to select which of the infinite number 
(if there are any at all) is the most likely. Here prejudice reigns, 
and opinions therefore differ. 

Before proceeding I shall assume that the physics embodied in equa
tion (5.1) is correct (and that the data are consistent). In that case 
a solution must exist. 

Spectral expansion 

This is essentially an expansion of n in terms of the kernels Ki' 
The idea of using Ki as a basis is, at first sight, natural, since the 
Ki span the subspace 0 that is accessible to the observations. However, 
as I shall soon discuss, it is actually more useful to transform, at 
least conceptually, to a new basis, Wi, that takes into account the de
gree to which the data can measure the projection of n onto each basis 
function. 

In geophysics, the expansion first arose out of a procedure formu
lated by Backus and Gilbert (1967). Suppose one has a preconceived idea, 
W(r) say, of the function n. Let us assume that W is close to the truth, 
and seek that function n that minimizes the least-squares deviation 

E :: l (n-W)2 dr 
o 

(5.2) 

Forgetting errors for the moment, the minimization must be performed 
subject to the constraints (5.1), with exact equality. The result is 

n = W + I a'K (5.3) 
iii 

with al being the solutions of the Euler equations 

L Ai·aJ~ = wi - a i j J 

where 

J
R 

a = KiWdr i o 
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Thus the difference between Q and W is expressed, in equation (5.3), as 
a linear combination of the kernels Ki' 

The foregoing analysis suggests that one might simply express Q 
directly as an expansion in Ki: 

Q = I aiKi (5.6) 
i 

If once again errors are ignored, one can determine the coefficients in 
the usual way by projecting the constraints (5.1) onto the basis, which 
leads to 

L Ai·a. = wi 
i J J 

(5.7) 

The difference between the solutions (5.6)-(5.7) and (5.3)-(5.4) is in 
the annihilator A, so the data Wi cannot distinguish between the two. 
Therefore, if Wi constitute the only information that is available about 
Q, one has no basis for choosing between the two possibilities. An in
herent advantage of the Backus-Gilbert formulation, however, is that one 
can write into Q, via W, additional constraints (obtained from informa
tion other than Wi) that are not otherwise easily incorporated into a 
procedure for solving (5.1). 

There are two related problems that one would encounter in trying 
to carry out the straightforward method outlined above. First, if there 
are redundant data, the matrix Aij is singular, and some care must be 
taken in solving equations (5.4) or (5.7). If the data Wi were truly 
error-free, that would be possible, at least in principle, since, by 
hypothesis, the equations would be consistent, and one would need only 
to reject the redundant equations and solve the reduced set that re
mains. In practice, however, the data are erroneous, and equations 
(5.4) or (5.7) are formally inconsistent. One could still reject 
redundant data, but that, of course, would be unwise. Retention of 
redundancy is always important under these circumstances for reducing 
the influence of random errors. Therefore some kind of averaging pro
cedure is required. 

The second problem concerns error magnification. In addition to 
formal redundancy it is usually the case that there are different com
binations of the data that give nearly but not strictly the same infor
mation. This leads to the matrix Aij being ill-conditioned, or nearly 
singular. Once again, one wishes to average in some way the almost 
identical information that is contained in the two or more combinations; 
that is analogous to what must be done for the genuinely redundant data. 
But in addition one must reject the apparent information contained in 
the difference between the almost equivalent combinations, for that is 
dominated by the errors in the data. 

The second problem is analogous to trying to measure a vector ~ by 
making independent measurements of its components (aI, a2) in the direc
tions of the unit vectors ~l and !2, which are known to be nearly paral
lel. Thus if 
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(5.8) 

and the measurements of al and a2 have errors £1 and £2' one cannot 
measure the component of ~ in a direction roughly perpendicular to ~l 
and Y2 (e.g. in the direction of ~1 - ~2) if either of £1 or £2 has a 
magnitude comparable with the difference al - a2 between the two meas
urements. Even though formally the vectors ~l and ~ can be used as 
basis vectors for a plane, in practice the erroneous data provide infor
mation only along the line parallel to ~l = (1/2)(Vl+~2). For practical 
purposes the component of ~ parallel to E2 = (1/2)(~1-~2) is inaccess
ible. Thus the situation is essentially the same as if Yl and ~2 were 
genuinely parallel, which is analogous to the first of the problems 
mentioned above. 

The resolution of problems of this kind had already been discussed 
by Lanczos (1961). The procedure is to find that part of the subspace 
o that is inaccessible to the data by virtue of the errors, and to rele
gate it to the annihilator A. The solution Q is the component of the 
actual function that is in the appropriately diminished subspace 0' that 
remains. In terms of the simple vector analogy, one creates a new ortho
gonal basis (~1'~) of the plane, and recognizes that one can measure 
only the component a1 + a2 in the direction of El" Notice that in this 
analogy the result contains both measurements, so statistical errors 
are lower than had the second of the measurements, say, been rejected 
as being redundant and the resulting component estimated by 2al • The 
Lanczos inverse also has this property, providing a natural way of aver
aging data in the more complicated case when several different combina
tions provide similar information. 

For the details and the justification of the Lanczos method the 
reader is referred to the book by Lanczos (1961), and the discussions 
in the geophysical context by Jackson (1972), Wiggins (1972) and Parker 
(1977a). The following summary follows Parker (1977a). 

Let 0i be the standard errors of the data Wi" Then one weights the 
constraints (5.1) with Oil, yielding 

wI = JR KI(r)Q(r)dr (5.9) 
o 

where wi = Wi/oi and Ki = Ki/oi, so that wi has unit standard error. 
The matrix Aij, defined in the same way as Aij in equations (5.5) but 
with Kk replacing Kk, is positive-definite and symmetric, and can be 
diagona1ized with an orthonormal matrix Uij to give 

L UkiAktUtj = Ai6i:l (5.10) 
k,t -

where Ai are the positive eigenvalues of Aij and 6ij is the Kronecker 
delta. Now consider the new basis ~i(r) of 0 defined by 

~I. 



~ = A-1/2 I u. K! 
i i j Ji J 

(5.11) 

which has the property 

l ~i ~.dr = 0ij o J 
(5.12) 

Regard the functions ~i to be ordered such that Ai decreases with in
creasing i, and expand the solution n in terms of them: 

(5.13) 

Of course the expansion excludes that part of n in the annihilator A. 
In view of equations (5.12) and (5.9), the expansion coefficients are 
determined by 

,1/2 =: ,1/2 
I\i ai I\i (5.14) 

Recalling that the wj have unit standard errors, it follows immediately 
from equation (5.14) and the orthonormality of Uij that if the errors in 
wj are statistically independent the errors in ai are also statistically 
independent, with standard deviation Ar1/ 2• Thus the uncertainty of the 
coefficients ai increases with decreasing Ai; and it is immediately evi
dent from equation (5.14) that the uncertainty is total when Ai = O. 
Notice that these statements incorporate the statistics of the errors 
in the data, as must be the case, because each Ai depends on the crj. 

The final step in the procedure is to truncate the expansion 
(5.13), thereby effectively relegating to A the subspace spanned by 
the eigenfunctions ~i that correspond to small eigenvalues Ai' It can 
easily be shown that these functions contribute little to the integrals 
in the constraints (5.9) compared with their contribution to the sum 
(5.13). It is necessary to decide where (and how) the expansion is to 
be truncated, and here several options are available (e.g. Wiggins, 
1972; Jackson, 1973). In the following section I illustrate a pragmatic 
approach, which appears to be reliable when systematic errors in the 
data can be ignored. Moreover, it is particularly useful when the 
magnitude of the random errors in the data are poorly estimated. It 
rests on the fact that as Ai decreases the functions ~i tend to develop 
more and more small-scale structure and the coefficients ai increase 
(as Ai l/2 ) in a random way once they are dominated by errors. If one 
increases from unity the number of terms retained in the expansion 
(5.13), the result should first approach the correct solution. Then, 
once errors dominate, successive approximations diverge, exhibiting 
structure on smaller and smaller scales with larger and larger am
plitude. The best estimate of n one can obtain by the method is the 
function to which the expansion appears to be converging before the 
divergence takes over. 
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Extracting localized averages 

The idea of finding localized averages was introduced by Backus 
and Gilbert (1968), partly as a means of assessing what they call the 
resolving power of the data: namely, the degree to which information 
about n that is contained in the data can be localized in space. 

R To begin, the constraints (5.1) are rescaled by dividing each by 
J Ki(r)dr, yielding 
o 

* R * wi = J Ki(r)n(r)dr (5.15) 
o 

* where Ki is unimodular: i.e. 

JR * Ki(r)dr = 1 (5.16) 
o 

* Thus wi' which is an observable quantity, is an average of n. The idea 
now is to seek, for a certain value ro of r, a set of coefficients 
Bi(rO) such that in the linear combination 

f * R l Bi(rO)wi = J D(rO,r)n(r)dr (5.17) 
i 0 

the averaging'kernel 

(5.18) 

resembles a Dirac delta function centred at r = rOo One can assess the 
degree of success by inspecting D to see how localized it is. A quanti
tative measure of the localization can be obtained from the spread, de
fined by Backus and Gilbert (1970) as 

JR 2 2 
s(rO;D) = 12 (r-rO) D (rO,r)dr 

o 
(5.19) 

which, as Backus and Gilbert show, can be large either if D is not well 
localized or if ro is far from center r of a well-localized D, where 

JR 2( ) rD rO,r dr 
o 

r = (5.20) 
JR 2( ) 

o 
D rO,r dr 

The factor 12 is chosen in (5.19) because if D = 0- 1 for Ir-rol < 0/2 
and D = 0 otherwise, then s(ro,D) = o. For any given D, s(ro;D) is 
minimized when rO = r. That minimum, 0 = s[r;D(ro,r)], is the width 
of D, and measures the degree to which D resembles a delta function. 
Alternative measures have also been used. 
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The average (5.17) of n, which I denote by n(;), is a useful diag
nostic of the function n. Indeed, as Backus and Gilbert (1968) point 
out, it is only_this that is in any sense determined by the data. Thus 
one can regard n as an estimate of n, bearing in mind that it is really 
a smoothed version obtained by averaging over a characteristic distance 
cSt 

·The determination of 
and Gilbert (1968, 1970). 
when r = rO and increases 
the functional 

the coefficients Si(ro) is discussed by Backus 
One chooses a function J(rO,r) which vanishes 

monotonically away from rO, and one minimizes 

(5.21) 

subject at least to the constraint 

JR D(rO,r)dr = 1 
o 

(5.22) 

When ~ is small the constraint (5.22) forces D to be small where J is 
large,. and permits D to be large near r = ro where J vanishes. 

In an application of this procedure to artificial high-degree solar 
p-mode data (Gough, 1978b) it was found that the final result was not 
particularly sensitive to the form chosen for J, provided it rose steeply 
enough far from roo I shall not discuss that issue further here. All 
the examples illustrated in the following sections where computed with 
J(ro,r) = 12(r-ro)2, which is the case that Backus and Gilbert (1970) 
discuss in detail when they consider erroneous data. Then 

(5.23) 

where 

(5.24) 

In practice, errors in the data cause the minimization of ~ subject 
to the constraint (5.22) not to provide a good measure Q of the average 
of n. The reason is that to obtain the most concentrated kernel D re
quires coefficients Si with large magnitudes. The constraint (5.22) 
requires that f Si = 1. Severe cancellations are therefore required 
in that sum, and in the sum on the left-hand side of equation (5.17). 
Cancellation in the latter does not actually take place when the data 
w~ contain errors. 

Backus and Gilbert (1970) assume tha't :n estimate Eij of the co
variance matrix of the eErors in the data Wi is known, so that one can 
estimate the error £ in n: 
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(5.25) 

The idea then is to set a limit £0 on the error £, and minimize s sub
ject to the constraint £ ~ £0 and equation (5.22). The result depends 
on the choice of £0. Alternatively one can set a limit So on s, and 
minimize £ subject to s ~ So and the constraint (5.22). 

As Backus and Gilbert prove, the two formulations are essentially 
* equivalent. They point out that Sij and Eij are both positive definite 

symmetric matrices, so that s = So and £ = £0 each define hypere11ip
soids in the parameter space spanned by 8i. The intersections of these 
hypere11ipsoids with the hyperplane r 8i = 1 are also hyperel1ipsoirls, 
which I denote by st = constant and £t = constant. In general, Eij is 
not a scalar multiple of S!j, so the centres of the ellipsoids are not 
coincident. Consequently, for any given value £1 ~ £0 of £, s is mini
mized when the ellipsoid st = constant (= s2, say) is tangent to the 
ellipsoid £t = £1, and the solution 8i is the point of contact. The 
smallest value, sO, of s is obtained when that point is as close to the 
centre of the ellipsoid st = s2 as is permissible, which implies that 
£1 is as large as is permissible: namely, £1 = £0. The argument is 
clearly symmetric; £ is minimized for s = sl ~ So when the ellipsoid 
£t = £2 is tangent to the ellipsoid st = sl, and the smallest permissi
ble value £0 of £ is achieved when s1 = sO. The conditions for tangency 
are: 

* I (Ai- + lJEij )8j = v (5.26) 
j J 

* I Sij 8i 8_ = So (5.27) 
ij J 

I 8i = 1 (5.28) 
i 

* * where Aij is defined as in equation (5.5) with Kk replaced by Kko Equa-
tions (5.26)-(5.28) are to be solved simultaneously for the coefficients 
8i and the unknown parameters lJ and v. The solution is determined 
uniquely in terms of So with lJ > 0, provided So is in its allowable 
range. Evidently So cannot be less than its minimum value obtained by 
ignoring errors; it is also bounded above, as can be appreciated from 
the definition (5.19) when it is recognized that the magnitude of D is 
bounded for finite values of £. 

In practice it is simpler to solve the problem implicitly, by 
choosing lJ and solving for 8i, v and sO. Backus and Gilbert set 
lJ = w tane and v = bsece with 0 < e < ~/2, and w > 0 chosen, for 
convenience, to make S!j and wEij of comparable numerical size. 
Then they introduce 

* wij(e) = sijcose + wEijsine 

Equation (5.26) now takes the form 
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LW .. S.=b 
j l.J J 

The matrix Wij is symmetric and 
positive definite inverse WiJ. 
(5.30) may be solved, whence So 
(5.27) and (5.25). 

(5.30) 

positive definite, and therefore has a 
Therefore for any chosen e equations 
and c2 may be evaluated from equations 

The parameter e determines the extent to which errors are to be re
stricted, at the expense of permitting D to be less well confined. When 
e = 0 the errors are ignored, and when e = n/2 no attempt is made to lo
calize D. The aim is to find a tradeoff somewhere between. 

The choice of e is discussed by Backus and Gilbert (1970). As with 
the spectral method, the pragmatic approach is useful, especially when 
the estimate Eij of the covariance matrix is uncertain. This is illus
trated in the accompanying paper (Christensen-Dalsgaard and Gough, 
1984a). 

Examples of the application of the localized averaging procedure to 
real solar data are presented by Gough (1982) and Hill et ale (1984). 

6. PHASE THREE: SOME NUMERICAL EXAMPLES 

The principal object of this section is to illustrate an appli
cation of the spectral method to artificial solar data. A similar 
application of the localized averaging procedure is discussed in the 
accompanying paper (Christensen-Dalsgaard and Gough, 1984a). 

The example I present in some detail concerns the determination of 
the horizontal component of the large-scale subphotospheric flow using 
high-degree f and p modes. Thus the data mimic those discussed by 
Deubner et a1. (1979), Deubner (1983), Rhodes et a1. (1983a) and Hill 
et a1. (1983). 

A model of the solar envelope was constructed in the usual way by 
integrating the equations of stellar structure inwards from the photo
sphere. The procedure was identical to that used by Hill et a1. (1984). 
Upon this was imposed an artificial horizontal equatorial velocity n in 
excess of the surface rotation, which is plotted in Figures 2-4. The 
form of the function n was chosen to have several different features to 
test what the method could resolve: a gentle growing oscillation at low 
values of x = log p, followed by three straight portions with corners, 
chosen such that n increases at great depth. Straight portions were 
chosen because the Ki are not straight, and corners test the spatial 
resolution of the procedure. Otherwise the choice was quite arbitrary. 

For the purpose of the inversion 4S five-minute sectoral modes were 
chosen, distributed approximately uniformly along the 9 lowest ridges in 
the k-w diagram. The modes are indicated by crosses in Figure 1. The 
adiabatic eigenfrequencies Wo were computed in the usual way, and the 
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Fig. 1. k-w diagram of prograde sectoral modes computed from the ob
servations of Hill et ale (1983). The crosses indicate the 
modes that were used in the inversions displayed in Figures 
2-4. 

perturbations wI produced by the artificial function Q were computed 
from the eigenfunctions using equation (4.5). The modes considered are 
all concentrated in the outer layers of the Sun; therefore it was ade
quate to compute only in the region r ) 0.5 R. 

Three inversions were performed. The first used the raw fre
quencies; the other two used data constructed by adding independent 
Gaussian-distributed noise to the frequency perturbations wl. The 
same set of modes was used in all three cases. 

In Figure 2 are displayed the expansions (5.13) truncated at four 
different points. They include I = 9, 15, 20 and 33 basis functions, 
with eigenvalues satisfying Ai/AI) 3 x 10-2, 10-2, 10-3 and 10-8. 
As expected, convergence generally improves as the number of modes is 
increased. If even more modes are included the accuracy of the expan
sion deteriorates slightly, presumably as a result of rounding errors. 
At depths greater than x ~ 12.5, the most deeply penetrating oscillation 
eigenfunctions and their associated kernels Ki drop to zero, and the 
modes cannot sense Q. The inferred velocity falls to zero too. 
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Fig. 2. Inversions of error-free frequency sp1ittings wli of the 45 
modes indicated in Figure 1. Both the results of the inver
sions and the imposed horizontal velocity n from which w1i 
were computed are shown; the latter is easily identifiable 
because it is common to all the panels. The eigenvalues Ai 
retained in the expansions represented in panels (a)-(d) 
satisfy Ai > Am, where Am/AI = 3 x 10-2, 10-2, 10-3 and 10-8 
respectively; corresponding numbers I of basis functions ~i are 
9, 15, 20 and 33. Since the problem is linear, the ordinate 
scale is arbitrary. The independent variable is x = log

10
p. 
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In Figure 3 are inversions of data with errors having standard 
deviations of 5 per cent of the raw values. The first two inversions 
are hardly distinguishable from the corresponding inversions with error
free data. The errors have been averaged to some degree by the inver
sion procedure, as a result of combining redundant information, leading 
to an inferred velocity with an error generally rather less than 5 per 
cent of the mean magnitude of n. Evidently the error that is present is 
a result of imperfect resolution resulting from retaining no more than 
15 basis functions. When 20 basis functions are included (Figure 3c), 
however, the errors are beginning to become important, and erroneous 
small-scale structure is introduced into the inferred velocity. Pre
sumably this would not have happened at this level of truncation had 
substantially more than 45 data been included in the inversion. Figure 
3d includes 26 modes, which have Ai/Al > 10-5; now erroneous rapid 
oscillations dominate the expansion, though the general behaviour of 
Q is still discernable. 

The final example, which is illustrated in Figure 4, was computed 
from data with 50 per cent errors. Even though the error in the in
ferred velocity is as great as 100 per cent in places, the inverted data 
still retain the basic features of nCr). When 20 basis functions are 
used the characteristic wiggles similar to those in Figure 3d are intro
duced. 

The conclusion to be drawn is that the spectral method is likely to 
be useful for solar inversions to infer the large-scale subphotospheric 
velocity (including rotation). 

As a secondary example I present the results of a single iteration 
of a density inversion. This work was carried out some years ago in 
collaboration with A. J. Cooper (unpublished), to ascertain whether it 
was likely to be possible to infer the distribution of the density of 
the Sun from whole-disk data taken from a spacecraft. Two simple models 
of the Sun were constructed, each consisting of an inner poly trope of 
index 3 to represent the radiative interior and a polytropic exterior of 
index 1.5 to represent the convection zone. The transition in one case 
was at x = r/R = 0.75, and in the other it was at x = 0.80. Eigenfre
quencies of the two models were computed for low-degree modes of rela
tively low order, assuming y = 5/3 throughout. One set was considered 
to be the observations; the other set was the theoretical eigenfrequen
cies of a trial solar model. No errors were added. Inversions of equa
tion (4.4) were carried out using both the spectral expansion and the 
localized averaging procedure to try to deduce the density distribution 
of the model that provided the artificial data. The fact that it had 
been constructed from poly tropes it not important since that information 
was not available for the inversion: only the mass, the radius and the 
eigenfrequencies were usad. The constraint of preserving the mass is 
simply of the form (4.4), with the left-hand side replaced by zero and 
with S = 1; it was handled in the same way as the frequency constraints. 

The results of the two pairs of inversions are shown in Figures 5 
and 6, where the inferred density differences ~p between the trial and 
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Fig. 3. Inversions of frequency splittings to which independent 
Gaussian distributed errors with 5% standard deviation have 
been added. The lower bounds Am to the eigenvalues retained in 
panels (a)-(d) are given by Am/AI = 3 x 10-2 , 10-2 , 10-3 and 
10-5 respectively_ Note the difference in the ordinate scale 
in panel (d). 
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Same as Figure 3, except that 50% errors have been added to 
the fre~uency splittings and that Am/AI = 10-1, 3 x 10-2, 10-2 

and 10-. The expansion with Am/AI = 10-1, which includes only 
four terms, is similar in form to similar truncations with 10% 
or no errors, but its amplitude is roughly twice as great. 
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Fig. S. The continuous line is the relative density difference op/p be
tween the 'true' artificial model of the Sun and a trial. The 
dashed line represents an estimate of op/p from the spectral 
expansion obtained from a single iteration from the trial by 
the procedure outlined in the text. The filled circles are 
corresponding localized averages: no well-localized kernels 
could be constructed with centres at radii smaller than 0.3 R. 
Dipole (t = 1) and quadrupole (t = 2) p modes of orders 1-9 
were used in both inversions. 
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Fig. 6. Same as Figure 5, but using modes g4-P5 (t = 1) and g3-PS 
(t = 2). 
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the artificial Sun are compared with the actual difference. Both used 
just 18 modes. The two inversions in Figure 5 were performed with the 
9 lowest-order p modes with t = 1 and t = 2. The results are not very 
good, though the general trend of the exact curve is exhibited by the 
inversions. The poor quality of the inversion would have been evident 
without prior knowledge of the correct op, partly because in most places 
it was not possible to produce nicely localized optimal kernels D, par
ticularly near the centre of the star, and partly because on the whole 
the two inversion techniques gave different results. 

When some of the p modes are replaced by the quadrupole f mode and 
some low-order g modes, the situation is quite different. Now sharply 
peaked kernels D can be produced, and the two methods both yield very 
similar and quite accurate results. These are shown in Figure 6. 

We have also performed some experiments with other groups of modes, 
and with data containing errors. The results of that investigation will 
be reported elsewhere. 

7. OTHER INVERSION METHODS 

Other criteria can be considered for selecting from the infinity of 
functions Q that satisfy the constraints (5.1). For example, one can 
choose the smoothest or the flattest function by minimizing 

JR (d
2

n)2 dr or JR (dn)2 dr 
o dr2 0 dr 

(7.1) 

subject to the constraints (5.1). The latter has been used by Gough 
(1982, 1984) with the solar data reported by Hill et a1. (1982) and 
Scherrer and Delache (1984). In view of the fact that functions in 
annihilator A of (5.1) tend to be rapidly varying, one would expect 
these procedures to give results similar to the spectral expansion. 

the 

Another procedure that I must mention is that described by Ulrich 
et al. (1979). It was the first to be used on real solar data (Deubner 
et ale 1979). Despite the fact that it was demonstrated to be inter
nally inconsistent, yielding unfaithful results in a particular artifi
cial case (Gough, 1978b), it behooves me to discuss it further because 
Rhodes et al. (1983b) plan to use it again on future observations to 
measure the solar rotation. 

The procedure appears to be based on the incorrect assumption that 
the kernels Kf are highly localized. The essence was to replace equa
tion (5.1) by 

wi = Q(r 1i ) (7.2) 

where r Ii measured the "effective depth" of Kt. 
for rli can easily be shown to be equivalent to 
though Ulrich et al. (1979) did not describe it 

70 

The definition adopted 
the first moment of K!, 
in those terms. As was 



pointed out by Gough (1978b), the procedure would be adequate if Q were 
a linear function of r, for then equation (7.2) is correct even though 
* Ki is not localized. Nevertheless, Deubner et ale found empirically 

that the Q is not a linear function. Subsequent observations by Rhodes 
et ale (1983a) did not support the finding that Q varies with depth, 
which led Rhodes et ale (1983b) to suggest that inversion procedures of 
the type described here are not necessary. However, the more extensive 
observations of Hill et ale (1984) suggest that Q does vary, both in 
space and in time. 

In support of the continued use of equation (7.2) Rhodes et ale 
(1983b) argue that it can be regarded as containing just the first two 
terms of a Taylor expansion of Q. If that were so, Deubner et ale 
(1979) would have represented Q by a linear function of depth. Rhodes 
et ale (1983b) went on to say that, should future observations merit, 
higher terms could be included, after which a least-squares analysis 
could be carried out. Thus one would set 

Q ~ L Ykz 
k 

k 

where z = R-r, and determine Yk by 

where 

2 I ~i [I yk(zik)k X = 
i k 

( R k * )l/k 
zik = J z Kidz 

o 

- wi] 
2 

(7.3) 

minimizing 

(7.4) 

(7.5) 

which are essentially the higher-order effective depths of Ulrich et ale 
(1979); the coefficients ~i are constants that weight the data according 
to the errors (e.g. ~i = oi2). 

This procedure has already been carried out (Gough, 1982) on the 
rotational splitting data of Hill et ale (1982) and Claverie et ale 
(1981) using polynomials of up to eighth degree, and I have shown (un
published) it to work quite well on artificial data (when it can be re
liably tested) provided the assumed variation of Q is on a scale large 
enough to be resolved by a modest number of terms. However, it does not 
work when Q varies on a smaller scale. This is illustrated in Figure 7, 
where polynomials of up to sixth degree are fitted to the data that were 
inverted by the spectral method to produce Figures 2 and 3. None of the 
polynomial approximations fits the original curve particularly well. 
Moreover, without a knowledge of the original function Q from which the 
wi were computed, there is no way of knowing where the polynomial ap
proximations are least good. The failure to converge, however, does 
indicate that the results cannot be trusted. If the degree of the poly
nomial is increased further, or if substantially larger errors are added 
to the data, the mismatch is aggravated severely. Of course, one can 
always find a smooth function whose values are arbitrarily close to any 
angular velocity Q for which the radius of convergence of a power series 
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Fig. 7. Polynomial approximations to the same horizontal velocity n as 
was used in the inversions in Figures 2-4, computed by X2 mini
mization as described in the text. Panels (a) and (b) use the 
same data as were used for Figures 2 and 3 respectively. The 
degrees of the polynomials are indicated in the figure. 

representation is greater than the range of r over which n can be meas
ured, and so one might think that this method could be used with many 
more terms. However, the procedure is then unstable to small errors in 
the data, and in any case the method is impractical because the matrix 
that must be inverted to compute the coefficients of the power series is 
ill conditioned. 

My conclusion is that there is little point in using power series 
approximations in cases when the constraints can be written as linear 
integral equations of the type (5.1). However, in more complicated 
circumstances it may not be unwise to try it, because the expansion is 
usually simple to carry out. If one is fortunate enough to obtain a 
stable apparently convergent representation, then the problem is proba
bly solved. But if the problem is expressible in the form (5.1), it 
seems to be expedient to expand in the more natural basis functions $i. 

8. DISCUSSION 

The conclusion to be drawn from this and the accompanying article 
(Christensen-Dalsgaard and Gough, 1984a) is that both the Gilbert-Backus 
optimal localized averaging procedure and the spectral expansion are 
likely to be useful for inverting solar oscillation frequencies. It 
has been shown that the method should certainly work given accurate 
knowledge of the rotational splitting of modes that have already been 
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detected observationally, and evidence has been presented to suggest 
that it should work for inferring the Sun's pressure and density dis
tribution too. 

I should stress however, that the more primitive assessments of 
Phase Two of the inversion will continue to have some value. I have 
already described how model-fitting calculations have given us estimates 
of the Sun's initial helium abundance and the present depth of the con
vection zone, and how an appreciation of the asymptotic structure of 
high-frequency p modes has permitted us to infer that at least part of 
the cause of the unresolved discrepancy between theory and observation 
lies in the convection zone, or near its base. It is in the convection 
zone that there are substantial uncertainites in solving the forward 
problem, for there nonadiabatic effects and Reynolds stresses may play a 
significant role. It is also in the convection zone that the equation 
of state appears to be most uncertain. Shibahashi et a1. (1983, 1984) 
and Ulrich (1982) have studied the influence of electrostatic interac
tions on the equation of state, using the Planck-Larkin cutoff, and have 
assessed how they effect the eigenfrequencies (see Ulrich and Rhodes, 
1983). Christensen-Da1sgaard and Gough (unpublished) have made similar 
studies, using variants of the theory used by Fontaine et a1. (1977); 
internal partition functions computed both from the static screened 
Coulomb potential, as was first used in oscillation calculations by 
Berthomieu et a1. (1980), and from the confined atom model, using the 
programme described by Dappen (1980), together with estimates of the 
additional degree of ionization induced by time-dependent perturbations 
to the bound-state potential and the influence of neighbouring neutral 
species, have all been considered. In no case has adequate agreement 
between observation and theory been achieved. Whether this implies that 
current procedures for calculating the equation of state are woefully 
inadequate or whether it implies that there is something else wrong with 
our models of the Sun is yet undetermined. It may be that an applica
tion of the inversion procedures of Phase Three will give us the next 
clue. 

It may also require Phrase Three methods to resolve the apparent 
discrepancy raised by Scherrer and De1ache (1984) and van der Raay et 
~. (1984), who claim respectively that the mean normalized period --
interval 

(Pn+1 ,R.-Pn,R.)/[R.(Hl)] 1/2 

(where Pn R. is the period of the mode of order n and degree R.) between , 
dipole and quadrupole g modes in the period range 3-5 hr is 38.6 min and 
41.2 min, whereas the mean theoretical separation of the corresponding 
modes of Christensen-Dalsgaard's standard Model 1 of the Sun is only 
34.5 min. This discrepancy may not be real, however, because the 
oscillations observed may have been misidentified. 

Formal inversions of the limited rotational splitting data from 
low-degree modes that have appeared in the literature (C1averie, et a1. 
1981; Hill et a1. 1982; Scherrer and De1ache, 1984) have already been 
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carried out (Gough, 1982, 1984; Hill et ale 1982; Campbell et al., 
1983), but, even if the data have been correctly interpreted, they are 
too sparse for a well resolved angular velocity to be inferred. This 
has led to some controversy over the value of the gravitational quadru
pole moment J2 of the Sun that is induced by the centrifugal forces, and 
its implications regarding tests of theories of gravitation, such as 
general relativity, from the precession of the perihelion of Mercury. 
It is undeniable that the splitting data, coupled with the planetary 
orbit data, do not contradict general relativity (Gough, 1982; Campbell 
et ale 1983). However, both H. Hill et ale (1982) and Campbell et al. 
(1983), using a particular kind of coarsely resolved analysis, have 
concluded that J2 is substantially greater than the minimum value per
mitted by the data, thereby challenging the analysis of the orbit data 
or supporting alternative theories of gravitation. The estimate ~ of 
the localized averaging procedure, however, is not in conflict; moreover 
the resolving width is not everywhere smaller than the scale of varia
tion of the J2 kernel J [see Figure 13 of Christensen-Dalsgaard and 
Gough (1984a)], and J2[n] does not necessarily underestimate the true 
J2 (Gough, 1982). It is important to realize that the conclusion that 
there is a conflict rests crucially on an additional assumption, which 
is not suggested by the data and which results in both the restriction 
of the space 0 of acceptable functions n by the imposition of unsubstan
tiated (and incompletely defined) constraints and the inclusion of com
ponents from the annihilator A. This would be a perfectly acceptable 
procedure if the restrictions on n were stated clearly, for then the 
plausibility of the conclusion could more easily be judged by the casual 
reader. An advantage of an inversion procedure such as the spectral 
expansion is that the truncation of (5.13) (or the inclusion of func
tions from A) makes one acutely aware of the assumptions one has made. 
What is really necessary, however, is a much larger data set, with sub
stantially greater resolving power. 

An inversion of frequency splitting of high-degree modes observed 
by F. Hill et ale (1983) has been undertaken by F. Hill et ale (1984), 
using the localized averaging technique of Backus and Gilbert (1970). 
The results suggest variations in the large-scale subphotospheric ve
locity that may be associated with giant convective cells. Aside from 
using asymptotic approximations to the frequencies (Gough, 1984), no 
(Phase Three) inversions of real solar data have yet been performed to 
obtain the density stratification of the Sun. 

What are the differences between the two principal inversion meth
ods I have discussed? Were the data to be free from error, the minimum 
value of Ai that is retained in spectral expansions can, at least in 
principle, be adjusted to make the solution satisfy the constraints 
(5.1) as accurately as one pleases. This is not so of the localized 
averaging technique, for even if errors are ignored, there is always a 
minimum resolution width of the optimal kernels. Therefore adopting 
Q(r) as a representation of nCr) can never be exact. For this reason 
some geophysicists (e.g. Parker, 1977a) prefer not to use the localized 
averages for inversions, favouring simply a particular example, such as 
is provided by the spectral expansion, of the infinity of solutions that 
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satisfy the constraints (5.1) within the limits set by the precision of 
the data. As is evident from the examples illustrated in Figures 2-4, 
those solutions have unreal small-scale struct~re. In interpreting the 
spectral representations one's eye should smooth out the wiggles, by 
imagining an average over the resolving width of the optimal localized 
kernels. That average is provided by Q(f), however, which approximates 
the ~verage of all acceptable solutions to the constraints (5.1), includ
ing those that have components in the annihilator A. It is important to 
realize that A is determined by the limitations of the observations, and 
has no other physical significance. Therefore, as Backus and Gilbert 
(1967) point out, it is only Q that is a valid representation of the 
true function n, though it is necessary to recognize that n may have 
small-scale structure not present in Q that cannot be resolved by the 
data. What the representation Q means can be assessed by inspecting the 
optimized kernels D. 

-One should appreciate also that it can be dangerous to use n for 
estimating quantities that are nonlinear functions of n. An example 
is the gravitational quadrupole moment J2, which is an integral of n2 
weighted with the nonnegative function J displayed in Figure 13 of 
Christensen-Dalsgaard and Gough (1984a). The rectification of any 
small-scale oscillatory component of n that is not present in n adds a 
positive contribution to the estimate J2[Q] of the moment, which tends 
to make J2[n] an underestimate. In addition the smoothing produced by 
the averaging causes Q to be systematically above or below the true 
functions n in regions where the curvature of n is positive or negative. 

An issue that to some is of considerable importance concerns the 
computing resources required to carry out the two techniques. The com
putation of the spectral expansion itself is dominated by calculating 
the large matrix Aij and, to a lesser extent, finding its eigenvectors 
and eigenvalues for constructing the matrix Uij' For each inversion, 
this is done once. In contrast, the construction of the localized ker
nels D(ro,r) involves a similar amount of work to that required for the 
entire spectral expansion at each point rOo Strictly speaking one should 
compute D to determine the resolving power of the data, in order to gauge 
the reliability of the spectral expansion. But since that takes much 
longer than the expansion itself, one might be tempted not to. 

Another difference between the two techniques is that the spectral 
expansion always provides a solution, whereas the localized averaging 
technique may not. The solutions by spectral expansion in Figures 2-4 
extend over the entire domain, including the region x > 12.5 about which 
the data contain no useful information and where the spectral expansion 
is incorrect. Of course one could have easily inferred that the expan
sion cannot be trusted at great depths by inspecting the kernels Ki and 
noticing that there they are all zero. However, it is less obvious that 
the representation is poor when there is a region where all the kernels 
have a similar functional form but are not zero. It is for these re
gions particularly that the resolving power must be established. Thus 
one might consider an apparent advantage of the optimal localized 
averaging procedure to be that it does not always work, either by 
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failing to provide a sharply localized kernel centred about a desired 
value of r, or even by failing to produce any suitable kernel at all. 
Of course a meticulous worker, not hampered by limitations of computer 
resources, would certainly compute the resolving power, in which case 
the advantage would not be real. However, it is then a trivial matter 
to compute Q, so it seems unwise not to do so. It is evident that the 
spectral method and the averaging technique complement one another, to 
the extent that it would often be expedient to use both. 

Finally I must mention that it is important to be able to identify 
in the observations which modes correspond to the oscillation frequencies 
that have been measured. In the past the identification has often been 
made by indirect methods, and indeed that must always be so to some ex
tent because the order n can never be measured directly. We know that 
in some cases, however, it is not necessary to have a precise identifica
tion. A systematic study of when that is so has never been undertaken. 
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ROTATIONAL INVERSION FROM GLOBAL SOLAR OSCILLATIONS 
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and National Bureau of Standards, Boulder, Colorado 

We investigate the degree to which various sets of solar oscilla
tions can resolve the solar internal rotation. Genuine observations 
were simulated by the following procedure: First an artificial angular 
velocity was invented by one of us, and from it the rotational splitting 
of a set of normal modes was calculated; to that was added some random 
noise. The result was treated as artificial data by the other author, 
acting as an observer, who attempted to recover the rotation law by 
using the Backus-Gilbert optimal averaging procedure. The observer knew 
neither the original rotation law nor the amount of noise that had been 
added. Finally his conclusion was compared with the actual artificial 
angular velocity. 

INTRODUCTION 

The purpose of this investigation was to estimate how well the 
spherically symmetrical component Q(r) of the Sun's angular velocity 
might be inferred from rotational splitting data. 

The three stages of the investigation are quite separate; the first 
was carried out by one of us (Author A) and the second by the other 
(Author B). At the time when Author A presented the first stage at the 
Workshop he was unaware of the conclusions of Author B. Author B was 
still unware of both the artificial rotation law and the level of noise 
that had been added to the data at the time he presented the second 
stage. Author A presented the third stage by laying the actual rotation 
curve over the curve that had been deduced by Author B; the two authors 
had previously agreed on a common scale (determined by Author B) so that 
a direct comparison was possible. The overlaid diagram is presented 
here in the section on-the third stage as Figure 14. Author A also 
announced the standard deviation 0 of the errors he had introduced, and 
the gravitational quadrupole moment J 2 of the solar model. 
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FIRST STAGE: CREATION OF THE DATA 

With respect to an inertial frame of reference, solar Model 1 of 
Christensen-Dalsgaard (1982) was endowed with an artificial angular ve
locity nCr), which was taken to be independent of latitude. Linearized 
adiabatic oscillations of the nonrotating model were computed, and from 
each eigenfunction the sidereal frequency splitting wI was computed as 
a perturbation using equation (4.5) of the accompanying paper (Gough, 
1984). To these were added independent Gaussian distributed errors, 
with variance cr2 • 

The modes were then divided into several sets, five of which are 
summarized in Table 1. The first set, designated ABS, contains the 
five-minute nonradial modes with degree ~ ~ 5. They represent the in
formation that one might anticipate obtaining from whole-disk measure
ments such as were obtained at Antarctica (Grec et al., 1980, 1983) or 
by the Birmingham group (Claverie et al., 1980, 1981, 1982) and from 
Stanford (Scherrer et al., 1982, 1983). The second set, DH, is a subset 
of the modes detected by Duvall and Harvey (1983) and Harvey and Duvall 
(1984j. Set WDS contains modes with £ ~ 3, as one might expect to mea
sure from whole-disk observations from space: it includes all the p modes 
with frequencies up to 3.8 mHz. In addition, it includes the f modes 
and a few low-order g modes. The lower frequency limit was estimated 
from the level of sensitivity quoted in the European Space Agency's re
cent report on the Phase A study of DISCO, coupled with amplitude esti
mates obtained from the simplified version of the formalism of Goldreich 
and Keeley (1977) that was used by Gough (1980) and Christensen
Dalsgaard and Frandsen (1983). Set A, which was used for most of the 
experimentation described in the following section, contains the set 
WDS, the five-minute modes with ~ ~ 10, the dipole and quadrupole g 

TABLE 1. Modes included in the inversions 

Designation 

ABS 

DH 

WDS 

A 

B 

Frequency Range* 
(~Hz) 

2300-3800 

2300-3800 

360-3800 

50-100 
260-3800 

2300-3800 
H 

50-100 
DH + WDS + H 

1-5 

1-6,8,10,14,20,24,30,40, 
50,60,70,80,90,100 

1-3 

1,2 
1-3 

4-10 

1,2 

*The symbol H refers to the seven modes reported by Hill et al. (1982). 

80 



modes in a frequency range comparable with that investigated by Scherrer 
and Delache (1984), and the seven modes (constituting subset H) reported 
by Hill et al. (1982). The last and largest set, B, contains all the 
modes in DH, WDS and H, together with the g modes from set A. 

It should be emphasized that although many of the modes discussed 
in this paper have been detected observationally, rotational splitting 
has yet been reported in only a very few. Moreover, the rotational 
splitting computed from the artificial rotation law is not the same as 
has been reported from observation. 

SECOND STAGE: INVERSION OF THE DATA 

Inversions were carried out using the optimal localized averaging 
procedure of Backus and Gilbert (1970) in the form described in the 
accompanying paper (Gough, 1984). To carry out the inversions it was 
necessary to specify the covariance matrix of the errors, which was not 
possible a priori. However, inspection by eye of the splitting data wli clearly showed systematic trends, so it was inferred that the errors 
were small. Therefore, Eij was set somewhat arbitrarily to 10-2 Oij' 
where 0ij is the Kronecker delta. An improved estimate was obtained 
later. The factor w in equation (5.29) of Gough (1984) was set to 

* unity, making no attempt to balance the terms Sij and wEij. ,Conse-
quently, the inversion that was judged to be optimal did not correspond 
to a value of e that is of order unity. 

In addition to applying the splitting constraints provided by the 
data, the inversions were constrained to satisfy the observed sidereal 
equatorial surface angular velocity, ns = 2.86 x 10-6 s-l. This was 
achieved by adding to the splitting constraints (5.1) of Gough (1984) a 
similar integral constraint with a delta-function kernel at r = R ,and 
with Wi = Qs ' 

Initially, inversions were carried out with 15 uniformly distrib
uted values of ro about which it was tried to centre the optimal averag
ing kernels D (see Gough, 1984). As the structure of n emerged, the 
number of points ro to be sampled was increased to 32, and they were 
distributed nonuniformly, being most closely spaced where n appeared to 
be varying the most rapidly. Before discu~sing the inversions it is 
useful to consider the splitting kernels Ki. Then it is easier to ap
preciate the results. 

In Figure 1 are displayed three typical five-minute kernels, having 
very similar frequencies Woe Near the surface the kernels appear to be 
identical; there the modes do not sense the value of~. They penetrate 
to different depths, however, which are determined by the condition that 
the sound speed c is roughly equal to wor/L, where L2 = ~(~+1) and r is 
distance from the centre of the Sun. The most striking feature of the 
kernels is that their amplitudes are greatest near the surface. 
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Fig. 1. 
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* Rotational splitting kernels Ki for three five-minute modes. 
The modes are P22(~=I), P14(~=30) and Plo(~=60), having cyclic 
frequencies 3.24, 3.25 and 3.23 mHz, respectively. 

10 
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0.2 0.4 0.6 0.8 1.0 
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Fig. 2. Rotational splitting kernels for g13(~=I) and g22(~=2), which 
have cyclic frequencies 48.3 and 49.4 ~Hz. 
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Figure 2 illustrates kernels associated with two high-order g modes 
with frequencies near 50 ~Hz. The modes are essentially confined be
neath the convection zone, and have their greatest amplitudes at low 
values of r. Therefore, one would anticipate that they would be very 
useful for measuring n close to the centre of the Sun. 

Kernels of lower-order modes are smoother; a few are illustrated 
by Gough (1982) and Hill et ale (1982). They retain the tendency to be 
concentrated near the center if they are g modes and near the surface if 
they are p modes. On the whole the f modes of high degree are confined 
to the surface layers, and those of lower degree penetrate deeply. No 
high-degree f modes have been considered in this study. 

The first inversion to be tried was with potential five-minute 
whole-disk data: all the modes with t = 1 and 2.with frequencies be
tween 2.3 and 3.8 mHz were used. It was not possible to obtain well
localized optimal kernels D at any radius, and no optimal kernel could 
be found with its centre below r = 0.6 R, where R is the radius of the 
Sun. The situation is much better for set ABS, which includes the 
Stanford-type data. In that case it is possible to find kernels weakly 
concentrated near r = 0.2 R, though not anywhere else (Figure 3). At 
first sight, this might seem somewhat surprising, because the amplitudes 

* of all the splitting kernels Ki are greatest near the surface. It ap-
pears that localization is possible at the greatest depths because pairs 
of modes with different degree of like parity can be found with almost 
the same frequency; their kernels can be made to cancel to a consider
able extent in the surface layers, where their structure depends only on 
Woe The result is a sinuous function whose amplitude variation is sub
stantially less than that of the raw kernels illustrated in Figure 1. 
There are many such pairs of kernels, and it appears that they can be 
combined to cancel in the region where all exist, leaving a relatively 
large contribution to D in the region over which the penetration radius 
Lc/wo varies. As will be evident in subsequent inversions, when modes 
of higher degree are added to the data set the region over which well
localized optimal kernels can be constructed extends to larger radii. 

It is now evident why the inversion of only dipole (t=l) and 
quadrupole (t=2) modes failed; amongst these there are no pairs with 
almost the same frequency. 

The result of inverting the set ABS is shown in Figure 4. It was 
performed with e = 1.5 x 10-3 • Several other values of e were tried, 
but as a result of studying the tradeoff, particularly that for set A 
which is illustrated in Figure 10, it was decided to adopt 1.5 x 10-3 as 
a standard value throughout, in order to save computer time. Strictly 
speaking the tradeoff curve is a function of the number and type of the 
modes that are used in the inversion. Therefore, adopting this pro
cedure does not necessarily show off the capabilities of the inversions 
to best advantage. Nevertheless, since the quality of the inversions 
varies quite slowly with e in the region containing the standard value, 
it is unlikely that the improvements that could be achieved would be 
substantial. In view of the fact that even the best kernels D are only 
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r/R 

Fig. 3. A selection of optimal kernels D(ro,r), computed from modes ABS 
with e = 1.5 x 10-3 and plotted against r/R for various values 
of roo 

40 -

o 

o 0.2 0.4 0.6 0.8 1.0 
r/R 

Fig. 4. Optimal averages nCr) computed from the kernels displayed in 
Figure 3 and joined by continuous straight lines. The estimate 
J 2[n(r)]of the quadrupole moment of the external gravitational 
potential obtained from this inversion is 5.5 x 10-6• 
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poorly localized, and then !hey are not of one sign (Figure 3), one 
should regard the estimate n(r) in Figure 4 with considerable caution. 

Inversion of the potential Duvall-Harvey set DH was much more suc
cessful. Now it is possible to find well-localized averaging kernels D 
everywhere except very near the centre (Figure 5). The inferred angular 
velocity is shown in Figure 6. It was computed with e = 1.5 x 10-3 , at 
the cost of amplifying the errors by a factor A of about 4. The error 
magnification factor A is defined to be the ratio of the mean measure £ 

of the error in the localized average nCr) (see Gough, 1984) averaged 
over all values of r, to the mean errors in the measurements. 

Figures 7 and 8 show the results of inverting the whole-disk modes 
WDS. Once again good resolution is possible; the optimal averaging 
kernels D are somewhat cleaner near the surface, and extend nearer to 
the centre of the Sun. It is the few g modes that are responsible for 
the latter. The mean error magnification factor A is 4.5. 

The inversion of set A was the most thoroughly studied. With the 
addition of the low-frequency g modes, such as those whose kernels are 
shown in Figure 2, it was possible to obtain even better localization 
near the center of the Sun than it was with the set WDS. The error 
magnification factor A was also somewhat smaller for e = 1.5 x 10-3 , 
though not as small as one would expect from using more than twice the 
number of modes. 

In Figure 9 are shown inversions for three different values of e. 
In principle, the smallest value produces the highest resolution, but at 
the expense of a very large magnification of the errors in the data. 
The lowest value produces quite small errors, but the averages are over 
such broad ranges of r that n does not provide a good estimate of n. 

The points joined by the continuous lines in Figure 10 define the 
tradeoff curve. They are the values of the error magnification factor A 
plotted against the mean width <0>, which is the average of 0 over the 
range of r within which it was possible to centre the optimal localized 
averaging kernels. It was from this curve that the standard value of 
1.5 x 10-3 for e was adopted, for it corresponds to a position on the 
bend of the curve. On either limb of the curve, the sacrifice of accu
racy or resolution for a slight improvement in resolution or accuracy is 
much greater. All the inferred angular velocity curves n near the bend 
look very similar. 

The final inversion was performed on set B. This is the 'largest 
data set, containing about 250 modes, and includes a wide range of p 
modes plus all the g modes that are contained in the other data sets. 
The optimal averaging kernels are shown in Figure 11; they are all quite 
well localized, and have centres extending to 0.04 R of the centre of 
the Sun. The inferred rotation curve is shown in Figure 12. The error 
magnification is A = 2.9. 

From all the inversions of the data sets listed in Table 1 the 
quadrupole moment J2 of the external gravitational potential was com
puted from the formula 
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Fig. 5. 
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A selection of optimal averaging kernels D computed from modes 
DR with a = 1.5 x 10-3• 

20 
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o 

o 0.2 
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Fig. 6. Inversion of data set DR. The continuous lines join the opti
mal averages computed from the kernels displayed in Figure 5. 
The dashed lines join similar averages weighted by kernels 
similar to those in Figure 5 but computed from solar Model A of 
Christensen-Dalsgaard et ale (1979). The same data wli [com
puted from Modell of Christensen-Dalsgaard (1982)] were used 
in the two cases. The continuous and the dashed estimates 
yield J2[n(r)] = 1.04 x 10-6 and 9.2 x 10-7, respectively. The 
error magnification factor A is 3.7 in both cases. 
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Fig. 7. 

Fig. 8. 
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Optimal averaging kernels for mode set WDS computed with e = 
1.5 x 10-3 • 
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Inversion of m2des WDS (continuous line) using the kernels of 
Figure 7. J2[n(r)] = 8.9 x 10-7 and A = 4.5. The d~shed line 
represents an inversion on Model A, which yields J2[n(r)] = 
1.07 x 10-6• 
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,-

,-
,-

,-
,-

/ ,-
/ ,-

I' 
,-

/ 
/ .-.-

0.08 0.12 
width 
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1. 5 x 10-3 and 
are given in Figure 

0.08 
rms 

deviation 
(11 Hz ) 

0.06 

0.04 

0.02 

Fig. 10. The filled squares are the error magnification factors A in a 
selection of inversions of modes A, plotted against <6>. They 
were computeds in order of increasing 0, with e = 10-6 , 5 x 
10-6, 5 x 10- , 5 x 10-4 , 1.5 x 10-3, 5 x 10-3, 2 x 10-2 , 
10-1• The dashed line represents the rms deviation from the 
frequency splittings wli provided for the inversion of the 
values computed from the averages n(r) using equation (4.5) of 
Gough (19§4), and thus represents the accuracy to which the 
estimate n satisfies the data. The high values at small e pre
sumably result from numerical error in the inversion procedure. 
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Fig. 11. 

Fig. 12. 
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Optimal averaging kernels for mode set B, computed with A 
1.5 x 10-3 • 
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Inversion of modes B using the averaging kernels of Figure 11. 
J2[n(r)] = 9.4 x 10-7 and A = 2.9. _The rms deviation of the 
frequency splittings computed from n by equation (4.5) of 
Gough (1984) from the actual splittings provided for the in
version is 2.6 x 10-2 ~Hz. 
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JR 2 J 2 = J(r) n (r) dr 
o 

with n represented by the localized average n. The kernel J(r) is shown 
in Figure 13! In order to evaluate the integral, it was necessary to 
extrapolate n to the origin. Little error is introduced by this proce
dure because the kernel J(r) is very small near the centre of the Sun. 

It is interesting to consider how J2 varies along the tradeoff 
curve in Figure 10. J2 is a minimum (8.3 x 10-7 ) at 6 = 5 x 10-6 • At 
the only lower value of 6 considered the spurious wiggles introduced by 
the errors cause J2 to be larger (8.7 x 10-7); at larger values of 6 the 
smoothing of n in the vicinity of the maximum of J, where the curvature 
of n is positive, raises n above n and so overestimates J2,though this is 
offset somewhat by the smoothing near r = 0.7 R where the curvature of n 
is negative. The greatest estimate of J2 is 1.06 x 10-6 , for 6 = 0.1. 

To estimate the errors in the data one might try comparing the in
versions with 6 = 1.5 x 10-3 in Figures 9 and 12. The rms difference 
between the two curves is 0.50 x 10-6 s-1 (8.0 x 10-2 ~Hz), which is a 
little less than 5 per cent of the mean value of n. Bearing in mind 
that errors in the data were amplified by a factor of 2.9, one deduces 
that the errors in the data are about 2.7 x 10-2 ~Hz if all the differ
ences between the two inversions result from errors in the data. 

To get some idea of how important to the angular velocity inversion 
it is to have an accurate model of the Sun, additional inversions were 
carried out using the solar Model A of Christensen-Dalsgaard et ale 

Fig. 13. 
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J2 kernel J for Modell, computed 
(12) of Gough (1981). To compute 
values on the ordinate scale must 
must be measured in units of 10-6 
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* (1979) to compute the splitting kernels Ki. The results of inverting 
the splitting frequencies of sets DH and WDS (which were computed from 
Model 1) are shown in Figures 6 and 8. It is interesting that when 
modes with a wide range of t are used, which penetrate to a variety of 
different depths, the result is less sensitive to the equilibrium solar 
model than when the whole-disk modes are used. Roughly speaking, sub
traction of modes of different but similar degree and almost identical 
frequencies tends to give local information situated between the pene
tration depths of the two modes. Cancellation of the eigenfunctions at 
larger radii takes place to a similar degree whatever the solar model. 
On the other hand, the low-degree modes of WDS all sample essentially 
the whole range of r. Inverting the data is more like computing the 
coefficients of a Fourier expansion of a function f, each of which de
pends on the structure of f over the entire domain. Under these circum
stances the errors introduced by misrepresenting the equilibrium model 
are greater. 

Finally, the value of J2: The most accurate inversion is probably 
the last, in Figure 12. With the error estimate inferred above, one ob
tains J2 = 9.4±0.9 x 10-7• 

THIRD STAGE: COMPARISON WITH THE ORIGINAL ARTIFICIAL ROTATION 

The angular velocity used to generate the splitting data is shown 
in Figure 14. It is compared with the inversion that was judged the 
best. For this, n is plotted with vertical bars to represent the es
timated error in its value arising from the errors in the data. The 
horizontal bars extend to ±o/2, indicating the width of the averaging 
kernel. The random errors that were added to the computed frequency 
splitting had standard deviation a = 0.01 ~Hz. The value of J2 computed 
from the actual angular velocity is 8.9 x 10-7• 

CONCLUSION 

It can be seen from Figure 14 that except near the very centre of 
the Sun the estimate of g(r) made by the observer (Author B) is consis
tent with the true angular velocity with which the solar mo~el had been 
endowed. If the estimated error in the optimized averages gis assumed 
to arise solely fro~ errors in the data, the latter are overestimated by 
! factor of nearly 3. Therefbre, we conclude that much of the error in 
g is a product of inadequate resolution, and that a substantially im
proved inversion could probably have been achieved had more modes been 
used. The gravitational quadrupole moment J2 of the solar model was 
correctly predicted by the inversion, within the limits set by the un
certainty in the latter. 

It appears, therefore, that a good inversion of rotational split
ting could be carried out if data from modes with either a wide range of 
t, such as those that have been observed by Harvey and Duvall (1984), or 
a wide range of n, such as might be measured from whole-disk observations 
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Fig. 14. The continuous line is the angular velocity nCr) from which 
the splitting frequencies wli used in the inversions were com
puted. The crosses are centred at a selection of the averages 
n obtained from inverting modes B and shown in Figure 12 (a 
few were omitted to avoid cluttering the diagram). The verti
cal component~ of the crosses represent the estimate of the 
rms error in n based on the error estimate made in Stage Two, 
and the horizontal components are of length aiR. 

from space, could be obtained. The result of the former, if the split
ting for all values of m could be measured, would give us not only infor
mation about the radial dependence of n, but also about the latitudinal 
dependence (cf. Gough, 1982). The latter would provide only broad aver
ages over latitude. Whole-disk rotational splitting data from five
minute dipole and quadrupole oscillations would be quite inadequate to 
infer nCr), though some idea of the general form of nCr) could be ob
tained if these data were supplemented with appropriate measurements of 
the type that might be obtained from Stanford. The addition of identi
fied low-degree g modes, of the type reported by Scherrer and De1ache 
(1984), would improve the inversion considerably, especially near the 
centre of the Sun. 

One might regard the inversions carried out here to present an 
overoptimistic view of what might be deduced from real solar data, 
because the errors are lower than those one might anticipate having to 
contend with from imminent ground-based observations. However, on the 
longer term, data from space or from a ground-based network of obser
vatories would be expected to provide splitting from many more modes 
than have been considered in this exercise. Not only would this in
crease the cancellation of the errors, but it would also improve the 
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representation Q (or a representation by a spectral expansion) by virtue 
of achieving higher resolving power. One might also argue that we have 

* overstated our case by using the same kernels Ki for the inversion as 
we did to compute the artificial splitting data when offering our best 
estimate of Q. This is unlikely to be an important issue. As is shown 
in Figure 6, the inferred angular velocity is insensitive to the solar 
model if modes with a wide range of t are available. And in any case, 
by the time copius splitting data wli are available there should be suf
ficient information about the stratification of the Sun obtained from 
inverting the frequencies ofaxisymmetrial modes to reduce the errors in 
* Ki well below the errors in wli. 

REFERENCES 

Backus, G. and Gilbert, F. 1970: Phil. Trans., 266A, 123-192 
Christensen-Dalsgaard, J. 1982: Mon. Not. R. as~Soc., 199, 735-761 
Christensen-Dalsgaard, J. and Frandsen, S. 1983: Solar Ph~, ~, 469-

486 
Christensen-Dalsgaard, J., Gough, D. o. and Morgan, J. G. 1979: Astron. 

Astrophys., 11., 121-128; lJ..., 260 
Claverie, A., Isaak, G. R., McLeod, C. P., van der Raay, H. B. and Roca 

Cortez, T. 1980: Astron. Astrophys., ~, L9-LI0 
Claverie, A., Isaak, G. R., McLeod, C. P., van der Raay, H. B. and Roca 

Cortez, T. 1981: Nature, 293, 443-445 
Claverie, A., Isaak, G. R., McLeod, C. P., van der Raay, H. B. and Roca 

Cortez, T. 1982: Solar Phys., l..!!..., 51-57 
Duvall, T. L., Jr and Harvey, J. W. 1983: Nature, 302, 24-27 
Grec, G., Fossat, E. and Pomerantz, M. 1980: Nature, 288, 541-544 
Grec, G., Fossat, E. and Pomerantz, M. 1983: Solar Phys., ~, 55-66 
Goldreich, P. and Keeley, D. A. 1977: Astrophys. J., 212, 243-251 
Gough, D. o. 1980: In Nonradial and Nonlinear Stellar Pulsations (ed. 

H. A. Hill and W. A. Dziembowski, Springer, Heidelberg), pp. 273-
299 

Gough, D. o. 1981: Mon. Not •. R. astr. Soc., 196, 731-745 
Gough, D. o. 1982: Nature, 298, 334-339 --
Gough, D. o. 1984: these proceedings 
Harvey, J. W. and Duvall, T. L., Jr 1984: these proceedings 
Hill, H. A., Bos, R. J. and Goode, P. R. 1982: Phys. Rev. Lett., ~, 

1794-1797 
Scherrer, P. and Delache, P. 1984: Mem. Soc. astr. Italiana, in press 
Scherrer, P. H., Wilcox, J. M., Christensen-Dalsgaard, J. and Gough, 

D. o. 1982: Nature, 297, 312-313 
Scherrer, P. H., Wilcox, J:-1i., Christensen-Da1sgaard, J. and Gough, 

D. o. 1983: Solar Phys., ~, 75-87 

93 





SENSITIVITY OF INFERRED SUBPHOTOSPHERIC VELOCITY FIELD TO 
MODE SELECTION, ANALYSIS TECHNIQUE AND NOISE 

ABSTRACT 

FRANK HILL 
National Solar Observatory, Sunspot, NM 88349, U.S.A., and 
Joint Institute for Laboratory Astrophysics, University of 
Colorado 

DOUGLAS GOUGH 
Institute of Astronomy, and Department of Applied Mathematics 
and Theoretical Physics, University of Cambridge, Cambridge, 
CB3 OHA, England, and Joint Institute for Laboratory 
Astrophysics, University of Colorado 

JURI TOOMRE 
Department of Astrophysical, Planetary and Atmospheric 
Sciences, and Joint Institute for Laboratory Astrophysics, 
University of Colorado, Boulder, CO 80309, U.S.A. 

The horizontal velocity immediately below the photosphere can be 
inferred from observations of high-degree solar oscillations by an 
optimal-averaging inversion technique. We investigate the sensitivity 
of the results to various details of both the inversion and the deter
mination of the frequencies. The results are shown to be quite stable 
to the choice of most parameters, suggesting that this procedure pro
duces reliable estimates of the subsurface velocity. 

1. INTRODUCTION 

Helioseismology has now developed to the point where we are able to 
infer the physical conditions of the solar interior from observations of 
the frequencies of the Sun's oscillations. Owing to its comparatively 
simple effect on the frequencies, the quantity most readily obtained is 
horizontal velocity. This velocity is primarily differential rotation, 
though it no doubt contains a contribution from convection cells. 
Deubner, Ulrich and Rhodes (1979) have attempted to determine the solar 
rotation from five-minute oscillation frequencies. though their method 
did not permit them to determine the depth dependence. A similar analy
sis applied to later observations failed to reproduce the earlier re
sults (Rhodes, Harvey and Duvall 1983). 
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The prospect of detecting giant cells from their effects on the 
oscillations is exciting, particularly because earlier searches for sur
face Doppler velocities with a large spatial scale have failed. This 
suggests that the photospheric velocity amplitude of giant cells is be
low the 10 ms- 1 sensitivity of the measurements (LaBonte, Howard and 
Gilman 1981). However, a theoretical model of compressible convection 
predicts that the horizontal velocity increases with depth (Latour, 
Toomre and Zahn 1983). We thus might expect to find subsurface flows 
with amplitudes substantially greater than the limits set by the ph6to
spheric observations. 

We have sought to infer the horizontal velocity as a function of 
depth from the positions of the ridges in the k-w diagram of high-degree 
(t > 100) five-minute oscillations. Here k is the horizontal wavenumber 
and 00 is the temporal frequency. Figure 1 displays a contour plot of 
one of our observed k-w diagrams, showing the ridges corresponding to 
the f, or fundamental, mode and the PI through Pa modes. We have previ
ously reported (Hill, Toomre, and November 1982, 1983) variations in the 
ridge positions from day to day that were possibly associated with the 
passage of giant cells across the field of view (e.g. Gough and Toomre 
1983). 

The possibility of inferring subsurface velocities stems from the 
fact that wave patterns are advected by a horizontal flow (e.g. Rhodes, 
Deubner and Ulrich 1979). In the case of high-degree modes, the wave
length of the oscillations is much smaller than the horizontal scale of 
the flow pattern of interest, namely the giant cells. Then the apparent 
frequency of a mode with a given (k,w) is modified by an amount 
ow = k U. Provided the variation at all detectable depths of the 
horizontal component of the subphotospheric flow velocity U across the 
field of view and throughout the observing interval can be ignored. the 
advection velocity U of the wave pattern is the vertical average of the 
equatorial component of U weighted by the energy density of the mode 
(Gough 1978). 

We have applied an optimal averaging inversion procedure to per
turbations of the ridge position that we believe are caused by large
scale horizontal flows. The inversion procedure is suggested by the 
work of Backus and Gilbert (1968,1970) and has been most fully developed 
in the field of geophysics. In our case, the frequency shift ow induced 
by the flow U is 

(1) 

where, = log10 p is used as the depth coordinate (p is the pressure in 
the equilibrium model), H is the pressure scale height and Ai is 
proportional to the kinetic energy density of the mode designated by the 
subscript i. The constant of proportionality is chosen to render H Ai 
unimodular; the limits '1 and '2 bound the interval within which H Ai 
differs significantly from zero. The inversion procedure involves the 
construction of linear combinations of equation (1), yielding 
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Figure 1. Contours of constant-power in the k-w plane obtained on day 
82 (23 March 1981). The fits resulting from the iterative ridge-fitting 
procedure are overlaid on the diagram. One of the initial boxes used to 
isolate the ridges is drawn around the PI ridge. The cross-sections 
used to determine the ridge positions are indicated on the Pg ridge. 
Our ridge classificatio~ ignores the possible existence of chromospheric 
modes. 
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f1;,2 f ai (1;) Ai(I;') U( 1;' ) H d1;' - f1;,2 D( 1;; 1;' ) U(1;') d1;' 
1,;1 1,;1 

- -1 - U( 1;) = L a k i OWi ' (2) 
i i 

The coefficients ai are chosen to make D(1,;,1;') resemble a Dirac delta 
function 0(1;-1;') as closely as possible. Then 0(1;) estimates U(l;). The 
technique of Backus and Gilbert (1970), which takes account of the 
errors in the data, was used to calculate the coefficients ai. More 
details of inversion procedures applied to similar data can be found in 
Hill, Gough and Toomre (1984), Gough (1984), and Christensen-Dalsgaard 
and Gough (1984). 

The inversion was carried out on k-w diagrams computed from obser
vations of Doppler velocities obtained at Sacramento Peak Observatory 
(SPO). Data were obtained from the Fe I 5434.5 A and Mg I 5172.7 A 
spectral lines using the diode array situated at the exit of the echelle 
spectrograph of the vacuum tower telescope. Sequential two-dimensional 
intensity images in the red and blue wings of both lines were produced 
by spatially scanning the Sun across the slit of the spectrograph. The 
scan produced a 256" x 1024" image centered on the solar equator with a 
nominal resolution of 2". Scans were repeated every 65 or 70 s for 
observing intervals of 7 to 11 hours. 

The data reduction began with the determination of the line-of
sight velocity in the manner described by November et a1. (1979). The 
resulting velocities were averaged perpendicular to the equator to fil
ter out all waves except those with a horizontal wavenumber vector 
oriented nearly parallel to the equator. The data were projected onto 
an array with a uniform spacing in longitude of 0.1183°, corresponding 
to a resolution in k of 8.54 x 10- 3 Mm- 1• The time series was extended 
with zeros to obtain a constant resolution of 1.5 x 10- 4 s-1 in w. The 
resulting data array was then Fourier transformed to produce a k-w dia
gram such as that in Figure 1. We have considered a total of six 
different k-w diagrams obtained in February and March of 1981. We-shall 
identify the data by the number of the day in the year when they were 
obtained. Figure 1 shows the diagram for day 82, which is 23 March 
1981. 

We have inverted the data to produce an estimate of the horizontal 
velocity in the 15 Mill immediately below the photosphere. The results 
are shown in Figure 2, which displays the results for the six different 
days. There is a general tendency for the horizontal velocity to in
crease with depth, and there is a variation of the order of 100 ms- 1 

from day to day in the curves. We suggest that these curves possibly 
reflect an increasing rotational velocity with depth on which is super
imposed a large-scale convective flow of about 100 ms-I. Further dis
cussion of the interpretation of these curves can be found in Hill, 
Gough and Toomre (1984). What we discuss in this paper is the 
sensitivity of the results of the inversion to variations of certain 
details of the data analysis. 
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Figure 2. Horizontal velocity as a function of depth t (:10g 10 p) 
inferred from the inversion of data obtained on 6 days in 1981. The 
curves are identified by the number of the day of the year on which the 
observations were. made. There is a general increase of velocity with 
depth, with·day-to-day variation on the order of 100 ms-l. The latter 
is probably the result of the changing position of giant cells, and is 
superimposed on a differential rotation velocity that increases with 
depth. 
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2. DETERMINATION OF THE FREQUENCIES 

Since the individual modes cannot be resolved by these observa
tions, we have estimated the frequencies by a ridge-fitting technique. 
It appears that this method is useful in overcoming some of the effects 
of mode beating and atmospheric seeing that are a source of noise. From 
the size of our resolution bins and the distribution of the solar modes 
in the k-w diagram, we estimate that we have about 30 modes in each 
bin. The beating of these modes produces a jagged mountain-chain ap
pearance to the ridges which changes markedly from day to day. Mode 
beating can actually place power outside the bin in which the respon
sible modes reside, though the extent to which this occurs remains to be 
investigated. In addition, image motion produced by atmospheric seeing 
can alter the distribution of power aiong a ridge (Hill 1984). The net 
result of these processes is to impart a small-scale variation to the 
location of the ridges which we must try to eliminate in our search for 
frequency changes due to solar effects. We have thus developed a tech
nique of ridge finding which involves a considerable amount of smooth
ing. 

The ridge-fitting procedure begins with the drawing of a polygonal 
box around each of the 18 ridges in the +w and -w quadrants of the k-w 
diagram having k > 0, using the cursor of an interactive graphics device 
to choose the vertices. The boxes define the limits of slices in the 
k-w diagram that are used to calculate initial estimates of the median 
positions of the ridges. One of these boxes, drawn around the PI ridge, 
is shown in Figure 1. The orientations of the initial slices are 
vertical (constant k) for the f ridge and the PI through P3 ridges, and 
horizontal (constant w) for the P4 through Pa ridges. Different 
orientations are chosen because the higher-order ridges have steeper 
slopes. 

The data along each slice are interpolated onto a grid of 0.1 pixel 
using a cubic spline. The median of the smoothed ridge cross-section, 
defined to be the point that divides the integral of the power in half., 
is computed. The loci of the medians in the k-w plane are then smoothed 
with a running mean and fitted with a variable-knot cubic spline. This 
type of cubic spline allows the specification of the number and the 
initial positions of knots at which the spline conditions are applied. 
These positions are then varied to minimize the rms deviation between 
the fit and the raw medians. In all cases, the initial knots were 
approximately evenly spaced along the ridges. 

Our original data analysis ended at this pOint, and used the re
sulting fit computed with 7 knots to provide the frequencies of the 
modes. We have found, however, that performing the inversion on the 
frequencies thus obtained gave inconsistent results when we considered 
different sets of modes that sample similar depths. Further investi
gation showed that the shape of the boxes drawn about the ridges marked
ly influenced the frequencies. In addition, the loci of medians comput
ed from cross-sections parallel to the k and waxes are different. This 
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arises in part from the curvature of those loci. Thus we have turned to 
an iterative scheme of ridge finding that calculates cross-sections per
pendicular to the ridges. We have also attempted to minimize the influ
ence of noise in the power spectrum by using the positions of adjacent 
ridges to choose the edges of the boxes. 

rhe orthogonal ridge fitting begins from an initial estimate ob
tained from the procedure described above, using 3 knots. This is used 
to estimate the positions of the adjacent ridges which, where necessary, 
are extrapolated using the functional form deduced by Duvall (1982). At 
any given k the direction perpendicular to the initial fit is then cal
culated from the cubic spline coefficients, and the intersection between 
this line and the adjacent ridges is determined. The values of k at 
which these perpendicular slices are calculated are evenly spaced in arc 
length along the ridge. 

Next, a small region centered on the ridge at the chosen k is used 
to provide the coefficients of a two-dimensional cubic spline inter
polation. These coefficients determine what we call a slice: the 
interpolated cross-section of the power along the direction 
perpendicular to the ridge, with resolution of 0.1 pixel. The slice is 
then truncated on both sides of the ridge, the points of truncation 
being determined by a parameter which we call the cut factor; it is 
defined as a fraction of the distance along the slice to the estimated 
adjacent ridge. The directions and lengths of the slices for a cut 
factor of 0.3 are shown superimposed on the pg ridge in-Figure 1. 

The medians of the splines along the slices (which we call the raw 
medians) are determined, and their loci are smoothed, using a 3-knot 
cubic spline. The latter we refer to as a ridge fit. This provides a 
first iterate of the position of the ridge. The procedure is repeated 
once more using the iterate to approximate the adjacent ridge positions 
and to provide the directions of the cross-sections. The final fit is 
performed with 7 knots, in order to include intermediate-scale structure 
along the ridge. Five points are removed from each end of the ridge 
before the final fit to remove end effects introduced by the running 
mean. 

3. SENSITIVITY TO ANALYSIS TECHNIQUE 

We have varied some of the parameters that enter into our rather 
complicated ridge-finding procedure to assess the sensitivity of the in
version to the somewhat arbitrary details of the analysis. The para
meters that we have varied are: the number of knots in the final fit, 
the number of knots in the intermediate fits, the number of points in 
the running mean used to smooth the final fit, the number of points in 
the running mean used to smooth the intermediate fits, and the cut 
factor. We have also computed medians using slices truncated 
symmetrically on both sides of the ridge. 
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The results are shown in Figures 4 through 9. All of the figures 
present the horizontal velocity as a function of depth inferred from the 
inversion of the data obtained on day 82. The curve that we feel is 
most reliable was produced from the orthogonal ridge-fitting procedure 
using a 15-point running mean to smooth both the final and intermediate 
medians: 7 knots for the final fit, 3 knots for the intermediate fits, 
and a cut factor of 0.3 to each ridge. This curve can be seen in Figure 
2. 

In Figure 3 we show the results of varying the number of points in 
the running mean that is used to smooth the final set of medians. A 
total of 10 different uniformly weighted means were used, ranging from 1 
(no running mean at all) to 19 points, with every intervening value 
being an odd number. All 10 curves are plotted in Figure 3, which shows 
that the procedure is quite stable to variations of this parameter; the 
greatest discrepancy between the curves is about 5 ms- I • 

Figure 4 shows the result of varying the extent of the running mean 
applied to the first iterates on the medians; the same selection of 
widths was used as for the final running mean discussed above. The 
variation, although still small, is more substantial here, being at most 
12 ms- I This possibly reflects the effect of small differences in the 
direction of the line along which the cross-section is computed. 

Figure 5 shows the effect of varying the number of knots used to 
define the final fit. A total of six cases was computed, using 3, 5, 
7, 10, 15, and 20 knots. Figure 5 shows that the resulting velocity 
curve is stable to the final number of knots as long as it is above 3. 
Though the data analysis is designed to suppress small-scale variation 
along the ridge, we must not obliterate everything. We expect to be 
able to extract intermediate scales from the noise. It appears that a 
mere three knots are insufficient for this purpose. The maximum vari
ation for the cases where the number of knots is 5 or greater is about 5 
ms- I • On the other hand, the procedure proved to be incapable of suc
cessfully finding the complete ridge when an intermediate fit of g~eater 
than 3 knots was used. This arises from changes in the ridge slicing 
direction. When many knots are used to compute the intermediate fit, 
the small-scale structure results in a rapidly varying slicing direction 
and renders the procedure unstable. 

Figure 6 compares our standard asymmetrical truncation df the 
slices with a symmetrical truncation. In the latter case the two 
truncation points were the same distance from the median, and were a 
constant factor of the distance to the nearest ridge. Thus noise is 
sampled differently. The distinction between the two methods is not 
important, however, as the maximum variation between the two curves is 
only 5 ms- I • 

Figure 7 illustrates the result of varying the cut factor. Values 
of 0.10, 0.15, 0.20, 0.25, 0.30, and 0.35 have been tried. The results 
indicate that the procedure is rather sensitive to this parameter, for 
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Figure 3. The horizontal velocity as a function of depth ~ on day 82 
calculated using 10 different widths for the {inal running mean. The 
maximum variation between the curves is 5 ms- , indicating that the 
inversion procedure is stable to variations of this parameter. 
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Figure 4. As Figure 3, but for 10 different widths of the intermediate 
running mean. The variation is greater here being about 12 ms-l. This 
is due to the effect of small changes in the direction along which the 
cross-section is computed. 
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Figure 5. As for Figure 3, but using different numbers of knots in the 
final fit of the medians. The curve labeled 3 was obtained from 3 
knots, and no doubt fails to reflect the structure along the ridge. The 
results are stable provided the number of knots is no less than 5. 
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Figure 6. As for Figure 3, but comparing the effects of symmetrically 
truncated slices whose lengths are determined by the distance to the 
nearest ridge (curve A) and asymmetrical truncations determined by the 
positions of both ridges (curve B). 
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the variation of the inferred velocity can be as much as 50 ms-l. The 
sensitivity is least for cut factors in the narrow range 0.25 - 0.35, 
where the maximum variation is 7 ms-l. Cut factors smaller than 0.25 
result in the loss of the edges of the ridges and do not provide an ac
curate median. The ridge finding procedure is incapable of finding the 
complete ridges when the cut factor is greater than 0.35, because larger 
cross sections encompass power from adjacent ridges in some locations, 
which pulls the fit away from the desired ridge in the iteration. 

4. SENSITIVITY TO MODE SELECTION AND NOISE 

The inversion technique results in the construction of a set of 
optimal averaging kernels D(~,~'). As is evident from equation (2), 
each optimal kernel provides a weight function to average the flow velo
city U, the result of which is a weighted average of the data. Because 
the original kernels Ai effectively span a space of dimension less 
than the number of data, there can be redundancy in the data, and the 
combinations that yield D reduce the effects of noise. However, there 
is a tradeoff between resolution and error. A narrower kernel D 
requires coefficients ai with greater magnitudes, resulting in a 
greater contribution from uncorrelated noise to the inferred velocity. 
Thus it is expedient to sacrifice some resolution. 

The inversion technique takes errors into account by means of a 
parameter e whose value can vary from 0 to n/2 (Backus and Gilbert 1970; 
see also Gough 1984). When a = 0, errors in the data are ignored and 
the widths of the optimal kernels are minimized to provide the highest 
resolution. Random errors are greatly magnified, and yield an 
unrealistically rapidly varying velocity. On the other hand, when 
e = n/2, the kernels Ai are ignored entirely when determining ai, 
and the velocity curve that is produced has unacceptably poor 
resolution. An intermediate value of e must be chosen by performing the 
inversion for a number of different choices for e and selecting a value 
at which the shape of the velocity curve is stable. If the inversion is 
nowhere stable, the data are too heavily contaminated by error to permit 
an inference of the flow velocity, unless one is prepared to assume some 
constraint on U. 

The procedure is illustrated in Figure 8, which shows the result of 
the inversion with e = 0.001, 0.01, 0.1, 0.5, 0.7, and 1.0. The first 
three values produce widely varying velocities characteristic of in
versions that ignore errors. The curves stabilize at e = 0.5, and the 
smaller-scale structure begins to be smoothed out as e approaches n/2. 
This can be seen more clearly in Figure 8b, which shows the curves for 
e = 0.5, 0.7, and 1.0 on an expanded scale. Figure 8b also shows that 
the depths at which the optimal kernels are centered changes as e is 
varied. We have chosen e = 0.5. 

The effectiveness of the inversion procedure in reducing errors is 
shown by comparing the noise in the raw data with the errors in the 
inferred velocity. We have defined the noise in the data to be the rms 
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Figure 7. As for Figure 3, but comparing the results from different 
lengths of the cross-section. The curves are labeled with the cut 
factor used to compute them. The cut factor is the fraction of the 
distance to the next ridge that is covered by the cross-section. The 
results vary considerably, except in the narrow range 0.25 - 0.35-. We 
have used a cut factor of 0.30 to compute the curves in Figure 2. 
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difference in pixels between the final ridge fit and the final raw 
medians. This error varies between 0.1 and 0.6 pixels, being higher for 
the higher-order and lower-degree modes. To this is added an error that 
is linear in frequency and is taken from our estimates of residual scale 
uncertainties (Hill, Toomre and November 1983). When these errors are 
translated to velocities, they range from S ms- 1 to nearly 600 ms- 1 • 
The noise in the inferred velocity is found by combining the raw errors 
using the same coefficients ai that give the velocity curve. For our 
standard case, with a = O.S, the resulting error in the velocity ranges 
from 7 to 34 ms- 1• The error is higher at greater depths, which are 
sampled by the higher-order and lower-degree modes. Table 1 summarizes 
the range of errors in the inferred velocity for the various values of 
a. 

Table 1. Errors in Inferred Velocity 

a Error (ms- 1) 

0 S - 600 
0.001 76 - 166 
0.01 40 81 
0.1 17 47 
O.S 7 34 
0.7 6 30 
1.0 S 26 

The choice of modes used in the inversion can also affect the reso
lution and accuracy of the inferred velocity. The modes, of course, 
must sample all the depths of interest, and increasing their number im
proves the resolution and decreases the final error. Figure 9 shows the 
effects of changing the size of the mode set. The full set is the one 
we have used throughout this study, and consists of 196 modes: they are 
approximately evenly spaced in 1 on the f and the PI through Pa ridges, 
except that they avoid the frequency band of the chromospheric modes. 
The half mode set consists of 98 modes and was created by eliminating 
every other mode in the list of the full mode set. The quarter mode set 
totals Sl modes and was constructed from the half mode set in a similar 
manner. Figure 9 shows inversions for the three sets, and illustrates 
the degradation of resolution that results from the use of a lower num
ber of modes. The gross features of the curve remain in all three 
cases. Again we see· changes in the depths at which the optimal kernels 
are centered as fewer modes are used. This change is similar to that 
observed in Figure 8b for larger values of e. Of course, one would like 
to include all possible observed modes, but constraints of computer 
resources prevent it. 

That the cancellation properties of the inversion procedure are 
effective in dealing with noisy data can also be demonstrated by examin
ing the velocity curves reSUlting from applying the inversion to the 
final raw medians rather than the fitted data. This is shown in Figure 
10, which compares our standard inversion obtained from the ridge fits 
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Figure 8. The effect of varying the parameter e in the inversion 
procedure. This parameter controls the amount of weight placed on the 
errors in the data: e = 0 implies no weight on the errors and e = n/2 
implies no weight on the data. Panel (a) shows the curves for e = 
0.001, 0.01, 0.1 and 0.5. A wide variation results when e is small. 
Panel (b) shows the curves for e = 0.5, 0.7 and 1.0. We have used 6 = 
0.5 elsewhere in our analysis. 
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Figure 9. The effect of restricting the number of modes used in the 
inversion. Curve F was determined using the full 196 mode set. Curve 
H was computed using only 98 modes, selected by rejecting every other 
mode from the full set. Curve Q was calculated using a set chosen by 
rejecting every other mode from H. 
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Figure 10. Illustration of the ability of the inversion procedure to 
cope with noisy data. Curve A was computed using the final fitted 
medians from the iterative orthogonal scheme, and curve B was calculated 
using the unsmoothed medians. 
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with that obtained from the unsmoothed medians. The curves are quite 
similar in shape, with that deduced from the unsmoothed medians being 
some 10 to 20 ms- 1 higher in magnitude. The inversion is thus quite 
effective in handling noisy data. We must point out, however, that 
these final unsmoothed medians do not have as noisy a character as the 
medians resulting from simply cutting the ridge in the vertical 
direction. 

5 • CONCLUS IONS 

We have shown that our iterative ridge-fitting procedure is stable 
for certain choices of parameters. Moreover, the inversion procedure is 
quite effective in reducing errors, even when dealing with the noisy 
data considered here. 

Of course, a reduction in the noise in the observations would be of 
great benefit in increasing the accuracy of the results. The increased 
stabilization of future instruments for measuring Doppler shifts will be 
of considerable advantage. Another obvious gain would come if one were 
to observe from space, where the data would be free from atmospheric 
seeing. A certain degree of improvement could also be obtained from the 
longer intervals of continuous observation that would be obtained, 
either from a spacecraft in a continuously sunlit orbit or from a 
ground-based network, but that improvement might only be moderate 
because the observing interval would still be limited by the evolution 
timescale of the giant cells. 
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- ABSTRACT 

Solar oscillation observations are in progress at the 60-foot Solar 
Tower of the Mt. Wilson Observatory. We present our results in a separate 
communication of this meeting. This note is devoted to a brief additional 
description of the working principle of the Magneto-Optical Filter (MOF) 
and a few possible optical arrangements. 

- WORKING PRINCIPLES 

The working principle of the HOF has been extensively described 
elsewhere (see e.g. A. Cacciani and M. Fofi, 1978). Here we shall 
describe it in a simpler way, avoiding mathematical formulae and using 
instead simple physical considerations. 

We consider first an incoming plane wave of non-monochromatic, non
polarized radiation which is incident on a gas or vapour cloud (e.g. Na) 
which is in turn strongly absorbing at a certain resonance wavelength, Ar • 
If the optical depth is high enough, there will be no radiation transmitted 
at Ar and the cloud will be completely opaque. (For the purpose of 
building up an imaging instrument, the monochromatic radiation which is 
isotropically scattered shortly after the absorption process is of no 
utility, and so we will ignore it for the moment.) 

Let us now suppose that at the given monochromatic wavelength, Ar , the 
cloud can absorb only one kind of polarization state, as is the case when 
the vapour is placed in a magnetic field (Zeeman effect); then the cloud 
will become transparent at Ar since the conjugate state of polarization 
cannot be absorbed. (We also note that an electric field, due to the 
Stark effect, can produce a similar behaviour.) 

Only if the incoming radiation is polarized in 
the absorption, will there be complete extinction. 
correspond to a partial transmission (maximum 50%), 
intensity being due to the light which is polarized 
state from that of the absorption. 

the same state as 
All of the other cases 
with the transmitted 
in the conjugate 

Next, we note that the behaviour of a normal polarizer is similar for 
non-monochromatic light. In this case, an absorbing gas cloud in a magnetic 
or electric field can be thought of as a polarizer for the Zeeman- or 
Stark-split wavelength A • 

r 
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Of course the stabilization of the chosen position is also 
important, but this need not be very stringent because the Doppler 
or magnetic signal is obtained performing a pixel by pixel difference 
between the two wing signals divided by their sum. Small symmetrical 
shifts will not introduce systematic velocity drifts into the measurements. 

During the spring of 1981 and the summer of 1982 one of us (A.C.) 
spent a few months at the Nice Observatory (by a joint Italian CNR 
and French CNRS agreement) testing and evaluating the filter performance 
with E. Fossat's group. A first k-w diagram was obtained (J. Blamont 
et ale 1982) and a quantitative comparison of the MOF and the scattering 
technique was perfo"rmed having in mind a possible stellar experiment 
(E. Fossat et ale 1982). In particular the stability test gave very 
good results. During 5 hours of a very clear day, in September when 
the solar line is centered within the filter wavelength, the ratio 
of transmitted-intensity to imput-intensity varied by only 4% without 
any particular temperature stabilization. This corresponds to about 
a 10~ symmetrical drift in the two transparency window positions. 
Further measurements performed at Mt. Wilson gave a shift of a few 
mR per watt of the heater power. This is a very small effect which is 
able to change the amount of the transmitted light but which is almost 
completely ineffective in changing the Doppler signal. 

- POSSIBLE MEASUREMENTS WITH A SIMPLE (SINGLE-CELL) FILTER 

A simple MOF is composed by a glass cell containing a suitable 
chemical element, a little magnet of ~ 1 KG, two calcite polarizers, 
a prefilter (30 R pass-band) and additional optics to fit the telescope 
characteristics. It transmits simultaneously the two wings of the 
solar line. In the next section we will describe how to separate 
them; in this section let us briefly review what measurements are 
possible with the simple filter. 

When operating at a low optical depth this filter selects the 
central part of the solar line. If the glass cell is filled with 
Sodium the filtered image shows chromospheric structures: faculae, 
supergranules, flares, Ellerman bombs and velocity-originated mottling 
(Fig. 2). A comparison during August, 1983, of Na images produced 
by the MOF and by the Universal Bi-refringent Filter (UBF) of the 
Big Bear Solar Observatory demonstrated the superiority of the MOF 
due to its narrower bandpass (50-80 mR instead of the 250 mR of the 
UBF), which allows it to transmit just the chromospheric core of the 
Na D lines. 

The single cell filter is also sensitive to velocity fields in 
the sun. This sensitivity was demonstrated at the Nice Observatory 
by scanning the solar disk in the E-W direction on an entrance aperture 
of rv200 arcsec. 
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In the case of a longtiudinal magnetic field, the Zeeman effect 
states that the gas cloud will behave as a circular polarizer, being 
lefthanded for the a+ components and right handed for the a- components 
(IT components are absent in this case). In the case of a transverse 
magnetic field it behaves as a linear polarizer, parallel to the magnetic 
field for the IT components and perpendicular for the a components. 

In addition to the above well-known effect in the absorption spectra 
of Zeeman-split lines, another effect operates while the light travels 
across an absorbing cloud in a magnetic field. This is less widely 
known because it reveals itself only when the input radiation is 
polarized, changing its polarization in a complicated way in a narrow 
band in and around the absorption wavelength, Ar • 

This second effect does not introduce additional absorption but rather 
is related to the behavior of the refraction index which accompanies 
the absorption coefficient. In the same way that the absorption 
coefficient is split by a magnetic field so also is the refraction index 
split by the magnetic field. The result is a retardation effect between 
any two split conjugate polarizations. 

For a detailed analytical formulation of the above two effects 
(magneto-optical effects) see the above-mentioned paper and Agnelli, et al. 
(1975) with references therein. Here it is sufficient to state that the-
absorbing gas cloud in a magnetic field acts as both: 

a) - a narrow-band polarizer; and 
b) - a narrow-band retardation plate. 

Having this in mind it is then easy to build up a narrow-band filter. 
In fact, no light is transmitted by two crossed polarizers unless a 
third polarizer or a retardation plate is located between them. In the 
MOF the third element is a vapour in a ,magnetic field. 

This brings us to the difference between the MOF and the scattering 
devices used by the Nice and Birmingham groups. The scattering devices 
take advantage of the change in the propagation state, while the MOF takes 
advantage of the change in the polarization state; the scattered light 
is spread over the entire 4IT solid angle and only a minor fraction of it 
can be collected. The MOF, on the other hand, gathers al~ of the light 
in the forward direction. In addition, the second magneto-optical effect 
(i.e. the retardation effect) is highly efficient, substantially 
increasing the amount of transmitted light. 

- SELECTING WAVELENGTHS AND TUNING 

The filter as described thus far accepts in principle any of the 
Zeeman sensitive resonance lines. Experiments are now in progress in 
order to accept Sodium and Potassium simultaneously. 
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Individual lines can, however, be selected by using interference 
prefilters. Normally we use a flat-top, 30A-passband prefilter which 
is relatively insensitive to thermal transmission drifts. In the case of 
the Sodium D lines, only 6A apart, it may be convenient to employ an 
alternative technique in order to avoid having to thermally stabilize 
such a narrow-band filter. Instead we can also use a calcite retardation 
plate of suitable thickness (~ 1.7mm) located after the exit polarizer 
but at a 45 0 angle with it. This plate creates an angle of 900 between 
the polarization directions of the two D lines so that they can more 
easily be discriminated. 

The MOF is a narrow-band filter with its central wavelength perfectly 
stable. This is its· major advantage but it is also a limitation if 
tuning across the solar line profile is needed. 

Tuning could be achieved with the help of a variable magnetic field 
but our aim is to have a compact and light weight instrument suitable for 
space applications; hence variable electromagnets have been avoided. 
Actually we have adopted a permanent magnet with a fairly low magnetic 
field of about 1 KG, which is just the minimum field strength required 
for a complete separation of the 0 components With this magnet we can 
move the two narrow transmission profiles apart, into the solar line 
wings, by increasing the optical depth in the filter. This is an 
unexpected and very important result because it simulates the behaviour of 
the 0 components in a variable magnetic field and allows us to control 
the filter's tuning by simply varying the amount of electric power provided 
to the sodium evaporators. 

Roughly speaking what happens is the following: an increase in 
the optical depth also increases the absorption line width and the 
retardation effect in the far wings, so that in the central wavelengths 
the 0 components overlap giving a dark absorption region, while in the 
far wings the filter becomes more and more transparent. The result is 
a migration towards the solar line wings of the two narrow transparency 
windbws (Fig. 1). Note further that these windOlvs are not the 0 components. 

Figure 1. Fabry-Perot transparency spectrum of the MOF with 1 KG 
magnetic field and a constant power input for the Na 
evaporator. The spectral range is about 200 ~ and each 
transmitted wavelength has about 50 mR width. 

The wavelength positions of the two transparency windows are 
determined by the optical depth in the filter and always remain 
symmetrical with respect to the central resonance wavelength. 
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Figure 2. Na filtergram taken with the simple MOF showing chromo
spheric structures. 
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The velocity signal is position dependent on the solar disk and 
time dependent during the year; nevertheless it is fairly detectable 
(Fig. 3) and a good K-w diagram has been obtained this summer at Mt. 
Wilson and shown in another communication at this meeting. Higher 
quality K-w diagrams have been obtained using a two-cell system (Rhodes, 
et al., 1984, these proceedings). 

Figure 3. Two portions of a filtergram movie (successive frames being 2.5 
min. apart) displaying the velocity signal in the y direction. 

The simple filter can also be used to compare the velocity signal 
coming from two different solar regions (e.g. the Northern and Southern 
hemispheres) versus time (Fig. 4) (Cacciani, et al. 1981) and to observe 
flares in Sodium D lines (Cacciani, et al. 1980)-.-

Figure 4. Record of five-min. oscillations taken with the apparatus 
described in Cacciani, et al. (1981). The large amplitude 
waves correspond to ~ lS-mj; peak-peak. 
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- THE TWO-CELL SYSTEM 

The best way however to detect velocity and magnetic fields is 
to get a separation between the two monochromatic images obtained with 
the narrow spectral windows of Fig. 1. 

There are several different ways to attain this result. All of 
them require an additional element called the wing-resolving element. 
Two different methods are currently under evaluation; the observations 
we are carrying on at Mt. Wilson make use of a second Na cell in a 
longitudinal magnetic field, located in front of the filter and without 
additional polarizers. 

As previously stated this second cell works as a circular polarizer, 
lefthanded for 0+ and righthanded for 0-, so that by using a A/4 
plate it is possible to descriminate between the two line wings (Fig. 5). 

Figure 5. Fabry-Perot Interferogram showing one spectral wing in each 
half of the picture. 

We note that the first filter polarizer of the two-cell system 
can be replaced by a polarizing beam-splitter yielding two simultaneous 
beams each filtering one wing of the solar line profile (Cacciani 
1981). This arrangement however is useful only when image resolution 
is not required as is the case of star or sun-as-a-star pulsations, 
since it is very difficult to avoid differences and geometrical 
distortions between the two images and the two bidimensional detectors. 

In any case it is possible to use one channel sequentially for 
spatially-resolved observations and to devote the other channel to 
integrated solar light measurements using a more efficient technique 
for recovering the signal from the noise, such as a lock-in amplifer. 

In addition, the two-cell system can give magnetic maps of the sun 
without interfering with the velocity measurements. In fact the wing
resolving cell is oppositely polarized in the blue- and red-wings of 
the line profile just as the incoming radiation from a solar plage is. 
Hence there will be complete absorption or complete transmission of the 
solar magnetic polarization depending on the direction of the magnetic 
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field. The signal is twice that normally given by a conventional 
magnetograph and can be modulated by placing a KDP cell in front of 
the whole system. This magnetograph mode of operation was recently 
tested at the Big Bear Solar Observatory with the assistance of 
Dr. H. Zirin and his staff. 

- SUMMARY 

A device has been described which allows simultaneous magnetic 
and velocity measurements (in both imaging and non-imaging modes) 
without the need for a spectrograph. In this way the stability and 
alignment problems of the spectrograph are completely overcome. Its 
major advantages are: wavelength absolute reference and stability, 
high signal-to-noise ratio and independence of the transmission profile 
from the incidence angle of the solar beam. It is an imaging instrument 
allowing high~wavenumber analysis in the solar oscillation spectrum 
and a continuousmohitoring of the image position through the chromo
spheric facular structures. 

The apparatus we have been using at Mt. Wilson is assembled in. 
a modular form. The most important part of it is a glass cell 
containing the Sodium vapour. The filter is easy to use but the cell 
is not easy to construct in an optimal way. The technology is in 
progress both to use Na and K together and to prevent the windows 
from becoming coated during a long-term operation. 
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Abstract 

As part of the study being conducted by the Solar Dynamics Obser
vatory Science Working Group a program has been developed to evaluate 
the performance of three different devices as possible space-borne solar 
velocity field imagers. Two of these three devices, a magneto-optical 
filter of the type described elsewhere in these proceedings (Cacciani 
and Rhodes) and a molecular adherence Fabry-Perot interferometer have 
been installed in a newly-constructed observing system located at the 
60-foot tower telesc~pe at the Mt. Wilson Observatory. During July 
and August of 1983 time series of solar filtergrams and Dopplergrams 
lasting up to 10 hours per day were obtained with the filter while 
shorter runs were obtained with the Fabry-Perot. Two-dimensional kh-w 
power spectra which show clearly the well-known p-mode ridges have been 
computed from the time series obtained with the magneto-optical filter. 
These power spectra will be presented and will be compared with similar 
power spectra obtained recently with the 13.7-m McMath spectrograph at 
Kitt Peak by Duvall, Harvey, and Rhodes. Next, we will discuss our 
plans for continued evaluation of these instruments at Mt. Wilson and 
our plans for the establishment of a second observing station which will 
operate in conjunction with Mt. Wilson to provide nearly continuous ob
servations with one of the instruments for a few months each year. 
Finally, the operation of the Fabry-Perot as a pressure-scanned narrow 
band interference filter will also be described. 
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1. The Need for a Compact Solar Oscillation Tachometer 

A significant increase in our knowledge of solar internal struc
ture and dynamics will occur once it becomes possible to obtain unin
terrupted observations of solar oscillations for periods ranging from 
a few days to a few years. As the title of this conference suggests, 
one possible way of obtaining such continuous observational sequences 
would be the flight of solar oscillation measuring instruments onboard 
a spacecraft which is continually viewing the sun. For such a space
flight the obvious weight, size, and power limitations all dictate that 
a compact solar tachometer must be developed in order to replace the 
large, complicated spectrographs which are currently being employed on 
the ground to make oscillation measurements. 

A basic velocity accuracy of 1 to 10 mls (Gilman, 1979) will be 
required for this instrument. The 1 mls accuracy limit has been 
estimated to be necessary for the detection of global eddies and large
scale, low-frequency oscillations. When specifying this accuracy limit, 
it is also essential to specify the measurement area on the sun to 
which the limit is applied. While a single-measurement accuracy of 
1 mls has not yet been obtained with ground-based instrumentation 
for regions of a few arcseconds across, averages of regions 4 arcseconds 
by 200 arcseconds obtained by one of us at Kitt Peak (Rhodes, et aI, 
1981) have yielded an accuracy of 30 cm/s. Thus, by effective areal 
averaging it is possible to do better than 1 m/s. 

In addition to the ability to measure velocities on the order of 
meters per second, an equally stringent requirement is the temporal 
stability of the proposed instrument. To measure the small frequency 
shifts which enable us to study the subphotospheric flow patterns at 
the base of the convection zone, a single, continuous set of measure
ments will need to last at least 5 and possibly as long as 30 days. 
Thus, the instrument must not just have a high sensitivity to Doppler 
shifts, but must also possess a high wavelength stability. The .wave
length of a solar absorption line must be known to 1 part in 3 x 108 
over the entire field of view at any time for at least 5 full days and 
probably longer. 

As a portion of the study currently being carried out for NASA 
by the Solar Dynamics Observatory Science Working Group a program has 
been developed to evaluate the suitability of three different devices 
for such a space-borne solar oscillation tachometer. One of these 
devices, the Fourier Tachometer, is currently being installed at the 
Sacramento Peak branch of the National Solar Observatory. It is des
cribed in more detail elsewhere in these proceedings (Brown, 1984). 

The other two devices are a resonance cell magneto-optical filter 
and a molecular-adherence Fabry-Perot interferometer. Both of these 
devices are currently being used to observe solar oscillations at the 
Mount Wilson Observatory. In this paper we will describe how both of 
these instruments are being tested and we will present the first solar 
oscillation power spectra to be obtained with the magneto-optical 
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filter at Mt. Wilson. (Since the conclusion of this conference we have 
become aware that a Fabry-Perot interferometer is also being studied 
for solar oscillation measurements by J. Harvey and R. Smartt at Kitt 
Peak; however no details of the experimental setup being employed there 
were presented at this conference and we are therefore unable to com
ment on how the Kitt Peak setup differs from that employed at Mt. Wilson.) 

2. The Magneto-Optical Filter 

The resonance cell filter currently being tested at Mt. Wilson was 
developed in Italy by A. Caccaini. Its principles of operation are 
described more fully in the preceding paper (Cacciani and Rhodes, 1984; 
also see the references cited therein). Here we schematically illustrate 
its operation in Figure 1. 

The experimental apparatus is shown at the top while the different 
states of polarization of the light beam are shown at the bottom. The 
unpolarized light from the Na emission lamp is passed first through a 
linear polarizer. The linearly polarized light is then passed through 
an evacuated chamber containing a small amount of Na vapor. Since 
this cell is placed in a longitudinally directed magnetic field, H, 
the light in two narrow bandpasses, equally spaced in wavelength on 
either side of the line center, is converted into a left- and right
hand circularly polarized light by the Righi effect (analagous to the 
Zeeman effect). When the light from this cell is then passed through 
a second linear polarizer, this one oriented at a 900 angle with respect 
to the first, all of the linearly polarized light located outside of the 
t\\lO narrow bandpasses is extinguished. Additionally the light in the 
two spectral windows is converted into linearly polarized light. Only 
this light in these two bandpasses is transmitted by the second polari
zer. Thus, the transmitted light from this single cell consists of two 
narrow spectral bandpasses. Actually, a pair of bandpasses is trans
mitted for both the Na Dl and D2 lines. Also, while the operation is 
illustrated here with an emission lamp the operation is the same for 
solar absorption lines. Because of the fact that light is transmitted 
through this first cellon both sides of each spectral line, the images 
obtained are sensitive mainly to temperature-induced changes in the 
equivalent widths of the input spectral lines. 

If the linearly polarized light transmitted by the second polarizer 
is then passed through a quarter-wave plate the light will be converted 
to circularly polarized light. If this light is then passed through a 
second Na-filled cell embedded in a longitudinal magnetic field, only 
one of the two spectral windows (e.g. the one located to the "red" side 
of the line) is transmitted while the light in the other window (the one 
on the "blue" side) is absorbed by the Na vapor in the cell. By rotat
ing the quarter-wave plate by 900 about the optical axis, the sense 
of circular polarization of the light entering the second Na cell is 
reversed. This reversal of polarization means that the light in the 
"red" bandpass which was previously transmitted is now absorbed while 
the light in the "blue" bandpass is now transmitted. Thus, in the two
cell mode of operation it is possible to obtain filtergrams in the light 
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Figure 1. Schematic description of the operation of the Cacciani magneto-optical filter. 



of only one of these two narrow bandpasses at a time. Furthermore, if 
the quarter-wave plate is continuously rocked back and forth between 
successive exposures, every pair of filtergrams will consist of one 
"redwing" filtergram and one "bluewing" filtergram. Finally, by sub
tracting each "red" image from its corresponding "blue" image on a 
pixel-by-pixel basis and then dividing by the sum of the two images in 
each pair, it is possible to generate a time series of Dopplergrams 
(i.e. velocity maps). Fourier transformation of one of these Doppler 
time series then results in a diagnostic (k

h 
-w) diagram.. ' 

One of the evacuated Na cells is shown here in close-up in Figure 2. 
The Na is contained in the four small "pits" which project from the 
sides of the cell. Prior to the placement of the Na in the pits the 
cell is completely evacuated in order to remove atmospheric contaminants 
and to provide a vacuum into which the Na is evaporated when the pits 
are heated. Heating wires are shown on two of the four pits of this 
particular cell. The outer diameter of this cell is about 24 mm. 

The'cell is shown in Figure 3 as it is installed in a permanent 
magnet at Mt. Wilson. With the addition of a 30 Angstrom-wide prefilter 
and the.two polarizers the cell-magnet combination is converted into a 
single-cell version of the filter. The light enters the filter from 
the right side of this figure, passing first through the prefilter 
and then through the first polarizer, the~_cell, and finally the second 
polarizer, which is hidden here at the left of the permanent magnet. 

The transmission profile of such a single-cell filter is shown 
in Figure 4. This figure was obtained by mounting the filter in front 
of the entrance aperture of the spectrograph located at the Mt. Wilson 
150-foot tower telescope and then mechanically scanning a photoelectric 
tube along the dispersion of the spectrograph. The scanning steps were 
each 3 rnA wide so that the two transmission peaks are shown to be sepa
rated by 175 rnA, while their half-widths are shown to be about 75 rnA 
each. Somewhat to our surprise we found that the separation of the two 
transmission peaks can be altered by changing the amount of power 
applied to the heater coils of the sodium cell. In particular, the 
175 rnA separation shown in Figure 4 was obtained for an input current 
of 1.375 amps at a voltage of 10 volts, while a decrease in the current 
resulted in a decrease in the separation of the two peaks. Figure 5 
shows that for an input current of 1.250 amperes at the same voltage 
the peak separation has been decreased to 100 rnA. On the other hand, 
an increase to 1.500 amperes in the input current resulted in an in
crease in the separation to about 250 rnA. In each case the transmis
sion peaks moved symmetrically about the line center and retained the 
same widths. 

From these tests we found the tunability coefficient of the 
filter to be on the order of one milliAngstrom of total separation 
per 17 milliwatts of power (or 0.5 rnA per 17 milliwatts for each of 
the two bandpasses). Since the separation of the two bandpasses is 
always symmetrical about the line center, the small wavelength shifts 
introduced by small variations in the input power supply might not be 
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Figure 2. Close-up of a single Na-filled cell. 

130 



...... 
w ...... 

Figure 3. A single-cell filter is located at the left-center. The filter consists of a prefilter, 
a linear polarizer, one Na cell, and a second polarizer. The cell is located within the 
permanent magnet and the second polarizer is hidden to the left of the magnet. The light 
enters from the right. 
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expected to introduce spurious velocity drifts in the measurements. 
However, because the observed Na D lines are asymmetrical in the sun, 
such symmetrical bandpass shifts can indeed introduce small apparent 
velocity errors. In order to test the velocity sensitivity of the MOF 
to these small input power drifts we used the observed solar NA D1 
line profile to qbtain estimates of the actual velocity errors. We 
employed two 75 mA wide ~andpasses each located 100 mA away from the 
line center. Then, for an assumed power drift of 17 mwatts (or roughly 
0.14 percent of the 12.5 watt input power) we found apparent velocity 
errors of 0.4 m/sec for the case of zero solar Doppler shift and 0.1 
to 0.9 m/sec for the case of a simultaneous 50 m/sec solar Doppler 
shift in addition to the power-supply-induced variations. 

In fact, with current spacecraft power supply designs it is 
possible to obtain better than 0.1 percent power stability (even down 
to 0.01 percent on the short-term) and so the above numbers are upper 
bounds to the spurious velocity drifts to be expected in the MOF 
due to input power fluctuations. On the other hand, the optical depth 
within the MOF cells depends not just on the level of input power but 
also on the amount of power dissipated by the cells. Hence, it may 
be necessary to place the cells in a temperature-stabilized oven to 
stabilize the power dissipation in addition to stabilizing the input 
power. Tests are currently in progress to determine the sensitivity 
of the measured velocity to changes in the amount of power that is 
dissipated during MOF operation. 

A filtergram of a portion of the solar disk obtained with the 
filter in its single-cell mode of operation is shown in Figure 6. The 
two-cell version of this filter is shown as it is currently installed 
at tit. Wilson in Figure 7. There are two identical Na cells, one 
located within each of the two permanent magnets. Located between the 
two magnets is the moveable quarter-wave plate. The housing to the 
left of the second magnet contains a reversible AC stepper motor which 
is used to drive the Geneva movement located at the front of the motor. 
The Geneva movement is in turn connected to the quarter-wave plate 
by the long horizontal arm. By alternately driving the Geneva movement 
in the clockwise or counter-clockwise directions with the motor, we 
can move the quarter-wave plate to positions of first +450 and then 
-450 with respect to the direction of the linear polarizer. Since the 
stepper motor is under the control of an LSI-II, we can periodically 
flip the quarter-wave plate back and forth throughout each observing 
run in order to generate the "red" and "blue" filtergrams needed to 
produce Dopplergrams as was described earlier. 

An example of the transmission profile for such a two-cell filter 
is shown in Figure 8. Here it is evident that the insertion of the 
quarter-wave plate has eliminated the red transmission peak that was 
visible in Figures 4 and 5, while leaving the shape of the blue peak 
relatively the same. A movement of the quarter-wave plate to the -45 0 

position would eliminate the blue bandpass while simultaneously re
transmitting light through the red bandpass. 
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Figure 6. Filtergram of central portion of the solar disk obtained 
with a single-cell filter. 
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Figure 7. Two-cell version of filter as it is currently being employed at Mt. Wilson. The 
quarter-wave plate is located between the two magnets and can be rotated through 
90° by the motor and Geneva movement located at the left. 
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3. Mt. Wilson Oscillation Observing System 

The new Mt. Wilson oscillation observing system integrates CID 
and CCD camera's, an array processor, a 32-bit minicomputer, a large
capacity disk memory system, and custom-designed real-time telescope 
hardware into the spectrograph of the 60-foot solar tower telescope at 
Mt. Wilson. This system will be dedicated to the acquisition of solar 
data. The new system was recently described to lAD Colloquium No. 66, 
(Rhodes, et al., 1983). 

First; the 60-foot tower telescope is the telescope with which 
magnetic fields were discovered on the sun (Hale, 1908) and with which 
the solar "S-minute" oscillations were discovered. The telescope is a 
60-foot tall tower with a coelostat at the top. The solar image that 
is acquired by the coelostat is aimed vertically down the tower to 
either of the two existing optical systems. In the optical system used 
during July and August of 1983 for this project a 10-inch diameter off
axis paraboloid mirror and a swing-in secondary mirror provide a folded 
30-foot focal length light path. This system forms a 3.4 inch diameter 
image at the entrance slit of the pit spectrograph located at the base 
of the tower. 

The spectrograph is a vertical pit spectrograph having a 13-foot 
focal length. It is located within a 2S-foot deep concrete pit which 
is located beneath the floor of the observing room. 

The design of our new equipment was chosen so that the existing 
sequence of daily spectroheliograms which is currently being obtained 
at the telescope could be continued each morning and then the remainder 
of that day could be devoted to this oscillation project. In this 
design the CID camera assembly is mounted in an enclosure which is 
attached to the side of the main spectrograph. Through the use of a 
narrow periscope assembly, light can be deflected through the magneto
optical filter to the CID detector array ~.;rhich is in turn located 
within aliquid..:nitrogen-cooled dewar. By allowing the whole dewar
periscope assembly to move on rails, we can position it so that it is 
completely out of the light which is used to expose the photographic 
plates placed above the spectrograph's exit slit each morning. 

Other components of the system include: 1) a high-speed rotating 
disk shutter which provides the short (1.2 sec) exposure times needed 
for this project; 2) an image rotator; and 3) a guider which can scan 
the image in two orthogonal directions under computer control. The 
instrument enclosure and moveable stage described above were machined 
at D.C.L.A. and at the Jet Propulsion Laboratory, were assembled at 
the Jet Propulsion Laboratory and are now permanently mounted on 
the side of the spectrograph. The enclosure covers a hole which was 
cut into the side of the spectrograph to allow for the movement of the 
mechanical stage and the periscope assembly inside of it. The stage 
assembly was designed to provide rotational symmetry about the center
line of the downward-looking CID chip, while also providing for focus 
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travel and motion along the dispersion of the spectrograph. When 
the stage and periscope are located within the spectrograph, the light 
arrives at the periscope from the aperture in the disk shutter assembly 
which is installed in place of the normal entrance slit assembly on . 
top of the spectrograph. The light is then reflected to a second 45 0 

flat mirror which is located in front of the magneto-optical filter. 
After passing through the filter the light passes to another mirror 
which reflects the light upward where it is imaged upon the downward
looking eln chip in the dewar. In this fashion we can completely bypass 
the grating of the spectrograph during our oscillation measurements. 
At these times we are merely employing the spectrograph as a large 
light-tight enclosure for the eln camera. 

The eln camera system was built by Photometrics, 1td of Tucson, 
Arizona. The eln chip itself is a General Electric Model n 244 x 248 
pixel charge-injection device. As previously described this chip is 
located in a dewar which is cooled to the temperature of liquid nitro
gen to minimize thermal noise. Also part of the camera head is a 
small electronics box which is mounted on the dewar. This box includes 
the 12-bit high speed analog-to-digital converter, the analog circuits, 
the clock drivers, and the line drivers and receivers for the cables 
connecting the camera to the controller and to the array processor. 

This camera is similar in overall design to the 244 x 248 pixel 
camera currently in operation at Kitt Peak, since it was designed by 
the same man, Richard Aikens of Photometrics, who designed and built 
the Kitt Peak system (Aikens, 1980). However, this camera has been 
improved over the Kitt Peak camera in several respects: 1) it is faster 
than the Kitt Peak system, with a pixel read time of only seven micro
seconds; 2) it provides in-camera row-crosstalk correction; 3) it 
contains enough memory to store a single bias frame (i.e. a low-inten
sity, artificially-exposed frame) within the camera; and 4) it subtracts 
the bias frame pixel-by-pixel from each data frame before outputting 
the digitized pixels. 

The eIn camera system is controlled by an 1SI-ll microcomputer 
which functions solely as a control microprocessor. The 1SI-ll obtains 
interrupt pulses from the rotating cylindrical shutter and commands the 
camera to alternately build up exposures or read them out. It also 
commands the bias-frame exposures and flat field exposures. The 1SI-ll 
also controls the guider whenever it is used to move the solar image. 

From the eIn camera the data passes through an auxiliary I/O port 
into a high-speed eSPI MAP 300 array processor. The camera is designed 
to signal the I/O device upon the completion of each exposure and to 
signal it as each pixel within a single frame is ready to be output to 
the array processor. The eSPI MAP 300 processor is designed for high
speed asynchronous applications and is configured with memory on three 
different internal buses. Thus, the eln camera system can send one 
picture of data to the MAP 300, while the processor is computing with 
the previously-transmitted picture's data. This double-buffered 
approach allows for a very high speed, yet it is completely synchronized 
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to the operation of the camera on a frame-by-frame basis. 

The array processor divides each input filtergram by a previously
stored flat-field exposure on a pixel-by-pixel basis. In the case of 
a single-cell filter observing run these corrected filtergrams are then 
sent to a Systems Engineering Laboratories (SEL) 32/77 computer before 
storage on one of three 300-megabyte disk storage subsystems. The 
SEL 32/77 is a 32/bit superminicomputer containing 1.25 megabytes of 
600-nanosecond MOS memory. During each observing day the SEL 32/77 
routes the filtergrams directly to the disks and then at the conclusion 
of each day's observations, the SEt reads the data back from the disks, 
converts the three-dimensional (x,y,time) arrays into two-dimensional 
(x,time; or y,time) arrays and then computes the two- or three-dimen
sional power spectra which result from each day's worth of data. 

4. July-August 1983 Magneto-Optical Filter Results 

The first data obtained during July 1983 was obtained with the 
single-cell version of the filter. Several series of filtergrams 
similar to that in Figure 6 ranging in length up to 9 hours were ob
tained. The intensities within a 128 x 128-pixel square at the center 
of the illuminated circle were averaged along columns. Thus, each 
filtergram was converted into a set of 128 average intensities. This 
averaging process was then repeated for all of the filtergrams within 
a given run. The resulting (x,t) array of intensities was then trans
formed into a two-dimensional kh-w power spectrum. The power spectrum 
which resulted from one such time series is shown here in Figure 9. The 
solar p-mode ridges are present in this spectrum; however, as we will 
shortly demonstrate they are not as distinct from the background noise 
as they are when velocity measurements are used in place of intensity 
measurements. 

After completing these single-cell runs we installed the second 
cell and the quarter-wave plate as was shown in Figure 7 and began to 
acquire time series of alternating red and blue filter-grams. As with 
the single-cell images the data was first transferred to the MAP 300 
array processor for flat-field correction. Then in some cases the 
corrected filtergrams were stored on. the disks while in other cases 
each pair of filtergrams was converted into a Dopplergram with the 
following simple formula: 

velocity = constant * 
I - I 
red blue 

Ired + Iblue 

where Ired and Iblue refer to the intensities of a given picture 
element in the red and blue filtergrams, respectively. 

A sample Dopplergram which resulted from this operation is shown 
in Figure 10. This Dopplergram covers an area on the sun of about 
800 arc seconds in diameter. The rotation of the sun is visible here 
as the transition from positive to negative velocites across the image. 
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Figure 9. Two-dimensional (kh-w) power spectrum obtained from a 
9-hour time series of filtergrams obtained with single
cell filter operatton (i.e. only intensity information 
was used in computing this power spectrum). 
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Figure 10. A Na D Dopplergram obtained by differencing a "red" and a 
"blue" filtergram obtained with the two-cell mode of opera
tion. This Dopplergram covers only the central 800" of the 
solar disk but solar rotation is clearly visible as the 
variation in mean gray level running from lower left to 
upper right. 
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In order to study the lineari,ty of the MOF over the 4 km/sec 
dynamic range introduced by solar rotation, a series of several 
Dopplergrams similar to that of Figure 10 was obtained at a series of 
different positions across the solar disk. The intensity differences 
in each Dopplergram were then averaged and then resulting average values 
of IR-IB/IR+IB were plotted as a function of position across the sun. 
One of the first plots obtained in this fashion is shown here in 
Figure 11, where the "E" and "w" refer to positions near the east 
and west limbs respectively. Overall the MOF appears to be linear 
over the required dynamic range (the small wigg1es are mainly due 
to imprecise positioning of the various images across the solar disk 
in this first hand-positioned run). 

Evidence that the MOF is in fact sensitive to actual line-of
sight velocities between Mt. Wilson and the sun is shown in Figure 12 
where we plot the mean values of IR-IB/IR+IB from 1024 successive 
Dopplergrams. The low-degree "S-minute" oscillations are visible in 
the mean intensity differences and also the earth's rotation is visible 
as the curve during the day. A calibration program is nearing comple
tion at Mt. Wilson which will soon enable us to compute the sun-earth 
radial velocity component at the time of each Dopplergram. Then we 
will perform a linear regression analysis of IR-IB/IR+IB upon the 
computed velocity in order to determine the slope of the ~I-vs-
radial velocity curve. This slope will tijen enable us to convert 
measured intensity differences directly into radial velocities. 

In order to obtain kh-w power spectra from the time series of 
Dopplergrams we obtained with the MOF we first spatially av~raged the 
intensity differences (since we didn't yet have the calibration coeffi
cient available) in a single Dopplergram along its columns. This 
spatial-averaging process resulted in 128 column-average "velocities" 
from each Dopplergram A sample of the spatial temporal "velocity" maps 
which resulted from applying this frame~by-frame averaging process over 
an entire day's observing run is shown in Figure 13. The 128 column
averaged intensity differences ("velocities") from each frame are 
plotted using a set of gray levels. Since time runs in the direction 
illustrated by the arrows, it is possible to follow how the radial 
velocity varied at each spatial point by tracking that point in the 
direction given by the arrows. The "five-minute" oscillations show up 
in this format as the alternating white and black stripes throughout 
the run. 

Each (x,time) "velocity" data set was then converted directly into 
a kh-w power spectrum with the same program used to convert the "inten
sity" dataset into Figure 9. Two such "velocity" kh-w power spectra 
are illustrated here in Figures 14 and 15 (although Figure 14 is act
ually an £-v diagram). The first of these was obtained on July 27, 
1983 during a 9.1-hour observing run, while the second was obtained 
during a S-hour run on August 4, 1983. The solar p-mode ridges are 
clearly visible in both power spectra and are more sharply defined than 
they were in the intensity-only power spectrum of Figure 9. (Another 
version of Figure 14 in which the theoretical p-mode eigenfrequencies 
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Figure 11. A calibration curve showing mean normalized intensity dif
ference as a function of position across the solar disk. 
The normalized intensity differences within a small square 
area were averaged together and then the image was scanned 
across the entrance aperture of the filter and a new aver
age was computed at each position. The slight deviations 
from a straight line are mainly due to the imprecise posi
tioning employed in this preliminary test. 
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Figure 12. The normalized intensity difference was averaged over a 
128 x 128-pixel square located at the center of each suc
cessive Dopplergram in a single observing run. The result
ing mean values of IR-IB/IR+IB are plotted here as a func
tion of time. Both solar oscillations and the rotation of 
the earth are visible here. 

145 



qO~VMN·AVERAGE VELOCITI E 

Figure 13. A space-time diagram showing temporal variability in 128 
column-averaged velocities over the course of a day-long 
observing run. The "S-minute" oscillations are visible 
here as the alternating pattern of light and dark veloc
ities. The run is broken into two halves for display and 
so the bottom segment is the continuation of the upper 
segment during the afternoon. 
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kh-W power spectrum obtained from July 27, 1983, observ
ing run. This power spectrum was computed from the 
column-averaged velocities (i.e. IR-IB/IR+IB values) 
shown in Figure 13. Compare the quality of the kh-w 
spectrum with that of Figure 9 which was obtained using 
intensity information alone. The<pixel size in ~kh and 
~W is shown as the small solid rectangle near the right 
center of the spectrum. 
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Figure 15. An average of two 5-hour Na D velocity power spectra both obtained concurrently on 
August 4, 1983. The telescope was moved between two nearby regions on the sun after 
every Dopplergram and in this way two independent time series were built up at the 
same time with only a small time lag between samples at the two locations. Comparison 
of Figures 14 and 15 shows the improvement which can be realized by improving the duty 
cycle of the observations. 



have been superimposed on the observed ridges is contained elsewhere 
in these proceedings in Ulrich, et al., 1984.) 

One of the reasons that the 5-hour spectrum of August 4 is 
almost as distinct as the 9-hour spectrum of July 27 is that on August 
4 the guider was moved to one of two different locations on the sun 
after every Dopplergram. In this fashion two spatially separate time 
series of Dopplergrams were built up on this date. Each time series 
was analyzed separately and then the two resulting kh-w power spectra 
were averaged together to yield Figure 15. Thus, Figure 15 is indic
ative of the kind of gain in signal-to-noise ratio which is possible 
in a kh-w diagram due to the use of an improved duty cycle during the 
acquisition of the data. Had twice as many frames been available on 
July 27, then the spectrum of Figure 14 would be even better than that 
shown. Hence, it is clear that the spatial baseline on the sun should 
be longer than 500 arc seconds (= 128 pixels at 3.9~ per pixel) and 
that the duty cycle of the acquired frames should be as high as possible 
in order to yield further improvements in a kh-w power spectrum. 

An'alternative way of demonstrating the relatively high signal
to-noise ratio already present in the spectrum of Figure 14 is shown 
here in Figure 16. Here we show a slice at constant kh (or constant 
degree,~) through the power spectrum of Figure 14. The p-mode ridges 
stand out sharply against the relatively low noise floor which is 
located between the ridges. 

The appearances of both Figures 14 and 15 are indicative of other 
solar velocity power spectra obtained with spectral lines formed at 
chromo spheric altitudes. In particular the noise which is located 
between the p-mode ridges' relatively low values of i or kh and which 
extends to both higher and lower values of v or w has been seen in 
numerous other solar kh-w power spectra obtained at Kitt Peak and 
Sacramento Peak using the Na D lines, Call A8543, and Ha (Rhodes, et ale 
1981). As an example, Figure 17 contains the average of two full-day-
power spectra obtained at Kitt Peak during September 1981 by Duvall, 
Harvey, and Rhodes. The two power spectra were obtained from Ha obser
vations but all other chromo spheric power spectra obtained at Kitt 
Peak looked similar. Another example for A8542 is contained in Rhodes, 
~ ale (1981). In every case of a chromospheric line the p-mode ridges 
have not been as distinct as in the case of photospheric-line power 
spectra. 

5. Recent Modifications to the Mt. Wilson System for Full-Disk 
Observing 

Subsequent to the recording of the data which resulted in the 
power spectra of Figures 14 and 15 we have i~stalled a new lens in the 
60-foot tower telescope which has 3.5 meter focal length. With this 
lens we are now able to form an image of the entire sun on our CID chip 
where before we could only form an image of a portion of the sun on the 
chip. With this lens we have already obtained a few full-disk Doppler
grams, each of which has 8 arcsecond spatial resolution. Such a 
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Figure 16. This is a one-dimensional slice at constant kh through the 
power spectrum shown in Figure 14. The p-mode ridges are 
clearly visible here as the two groups of spikes present 
near the left and right ends of the w-axis. Here the 
negative-frequency half of the power spectrum is displayed 
above the Nyquist frequency, wNY' The low noise of the 
filter is shown here as the low level of power away from 
the p-mode spikes. 
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Figure 17. An average of two kh-w power spectra obtained at the Kitt Peak National Observatory on 
September 19 and 20, 1981, by T. Duvall, J. Harvey, and E. Rhodes using the McMath 
spectrograph. The spectral region used was near the core of Ha and the observing run 
on each of the two days was roughly 12 hours long. The randomly-distributed power at 
low values of kh seen here was characteristic of all other chromospheric-Ievel power 
spectra obtained at Kitt Peak. 



spatial resolution is not adequate to study the high-degree solar 
p-modes but it is sufficient to let us study intermediate-degree 
modes as Duvall and Harvey (1983) recently did. 

6. CCD Camera Tests and Plans at Mt. Wilson 

As described above full-disk Dopplergrams recorded with our 
existing CID camera have a spatial resolution of only 8n• Consequent
ly, we have begun experimenting with an 800 x 800 pixel CCD camera 
supplied by the Jet Propulsion Laboratory. With this number of pixels 
our full-disk images will have a spatial resolution of about 2.5°, or 
enough to study p-modes of reasonably high degree. Special interface 
circuitry and new cables have been constructed and we have been able 
to transfer pixels from the JPL camera into our array processor; 
however, we have not yet transferred entire CCD frames onto our disk 
memory. We are currently planning to install a 1024 x 1024-pixel CCD 
camera at Mt. Wilson during the coming summer. This camera will be 
fast enough to have a 1.2-second readout speed and will enable us to 
obtain full-disk Dopplergrams with the MOF in less than 3 seconds. 

7. Other Planned Magneto-Optical Filter Tests 

We have also recently built two home-made magnet assemblies 
which will enable us to obtain 2700 Gauss each as opposed to the 1100 
Gauss we are currently employing. We intend to employ these new 
magnet assemblies at Mt. Wilson during the summer of 1984 in efforts 
to see whether or not it will be possible to decrease the input power 
required substantially below the levels mentioned earlier. Because 
the higher magnetic field strengths will move the Zeeman components 
farther apart from each other we hope that a lower optical depth will 
be needed to yield the 200 rnA bandpass separation than that which is 
currently required. 

We have also acquired and plan to test a pair of potassium-filled 
cells. In this case we hope that the smaller dynamic range available 
due to the narrower line profile will still be adeguate for a langrangian 
point halo~type spacecraft orbit where the sun-spacecraft velocities 
are always very small. The principal reason for trying the potassium 
is that since its spectral line at A7699 is a photospheric line we 
hope to find an even cleaner-appearing kh-w power spectrum than those 
shown earlier for sodium. 

We have also obtained the first magnetograms with the two-cell 
Na MOF during a one-day test in August, 1983, at the Big Bear Solar 
Observatory and the magnetograms we obtained looked promising enough 
that we hope to ob.tain more at Mt. Wilson during the coming summer. 

8. Plans for Twd~Station Observing with Magneto-Optical Filter 

We currently are planning to collaborate with Drs. Harold Zirin 
and Ken Libbrecht of the Cal tech Solar Astronomy program in a program 
of coordinated MOF observations at Mt. Wilson and at Tel Aviv University. 
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Initally we plan to install a second pair of MOF Na celis in Tel Aviv 
and then employ a video camera and video tape recorder at Tel Aviv to 
record the filtergrams while we are continuing to observe at Mt. Wilson 
with our CID and possibly also with our CCD cameras. Our initial 
observations are scheduled for August, 1984, with hopes to return 
in 1985 with enough additional electronic equipment to obtain digital 
images at both sites. Past experience of the Caltech group has shown 
that it should be possible to obtain uninterrupted oscillation obser
vations for between 20 and 22 hours per day in this fashion. 

9. ·Ptessure-Scanned . Fabry-Perot Interferometer Tests 

As a possible alternative to the MOF we have been studying the 
suitability of the Fabry-Perot Interferometer (FPI) for the acquisition 
of solar Dopplergrams. In particular we have been employing a 
normal incidence .FPIas a narrow-band interference filter to image the 
sun in the light of the solar photospheric Fe I line at 1.5576. The 
particular FPI we are using is of the molecular adherence design in 
which the two etalon plates are held parallel at a fixed separation by 
a pair of silicon (eventuallY zerodur) spacers. The FPI is 5 centi
meters in size with a 3 centimeter diameter working area. It has a 
finesse of about 30 and was manufactured in France. It was obtained 
for this project with the assistance of J. Blamont. 

Because the two reflective plates in this interferometer are 
maintained (to first order) at a constant separation we have been 
investigating the so-called pressure-scanned method of tuning as a 
means of alternating between the "red" and "blue" wings of the 1.5576 
line. In our approach this has meant placing the FPI in an oven 
which is heated to roughly 550 C and which is filled with a gas. Changes 
in the pressure of the gas filling the oven result in changes in the 
index of refraction of the thin gap located between the etalon plates. 
These refractive index variations in turn tune the FPI to various places 
within its fixed free spectral range. Thus, for this method of opera
tion two different gas pressures are employed which "tune" the Fabry
Perot between two bandpasses which are separated by roughly 150 rnA 
and symmetrically located in both wings of the 1.5576 line. 

In order to carry out these tests at Mt. Wilson we had to first 
design, build, and install an entirely new optical path at the 60-
foot telescope which would be large enough to accommodate the pressure
scanning oven housing the FPI. This was completed in May of 1983. We 
also had to modify our LSI 11 system to put out square-wave analog 
voltages of variable frequency. This was also done during May of 1983. 

During our summer, 1983, FPI observing tests we employed an 
optical arrangement in which the FPI is placed in a collimated beam 
and in which an image of the entire solar disk is formed within the 
central "spot" of the interference fringe pattern at the focal plane 
of the CID camera o With this type of optical arrangement a systematic 
wavelength shift is introduced between the center of the solar disk and 
its limbs o One of our experimental goals was to determine the extent 
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to which this wavelength shift could be "calibrated out" of the 
resultant full-disk Dopplergrams. (Alternative optical schemes are 
also available in which the FPI is placed at a pupil plane and the 
systematic center-to-limb wavelength shift disappears; however, we have 
not yet converted our optical system over to such a scheme.) 

The biggest problems we encountered during 1983 were in keeping 
the pressure constant enough during each camera exposure to minimize 
the refractive index-induced Dopplershifts during those exposures 
and in getting a high-quality image through the system. In order to 
deal with the pressure-scanning difficulties we have temporarily 
replaced the initial pressure-scanning system (which employed a Peltier 
cooler to change the temperature of a small drop of liquid hexane and 
which in turn changed the pressure within the oven) with a system of 
air reservoirs and electromechanical valves. With this system we can 
keep the pressure constant to roughly one percent during each square
wave plateau. While this will not ultimately be accurate enough we 
plan to at least obtain a time series of Dopplergrams with this system 
during the summer of 1984. Modifications to the original hexane 
pressure-scanning apparatus are also in progress in France and will 
be tried out at Mt. Wilson once they have been completed. 

10. Summary 

Studies of the suitability of both the MOF and the FPI (at least 
in its pressure-scanned method of operation) for use as a compact 
spaceborne solar oscillation tachometer have been initiated at the Mt. 
Wilson Observatory. One- and two-dimensional (~-w) power spectra have 
thus far been obtained only with the MOF; however, the results with 
the MOF have been encouraging enough to warrant a continued series 
of tests with this device. Problems in employing the pressure-scanning 
approach with the FPI have been identified and alternatives devised 
to circumvent them. Further tests will be necessary before the FPI 
can be conclusively evaluated. Two-station ground-based observations 
with the MOF will begin during August, 1984. 
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THE FOURIER TACHOMETER II -- AN INSTRUMENT FOR MEASURING GLOBAL SOLAR 
VELOCITY FIELDS 

Timothy M. Brown 
High Altitude Observatory 
National Center for Atmospheric Research 
Boulder. CO 80307 

ABSTRACT The High Altitude Observatory and Sacramento Peak Observatory 
have jointly constructed a second version of the Fourier Tachometer. which is 
now undergoing final integration and testing. This is an interferometric instru
ment for measuring the Doppler shift of solar spectrum lines. The principal 
features and performance goals of this instrument are: simultaneous velocity 
observations over a 2-dimensional. 100 x 100 pixel field of view; measurement of 
absolute Doppler shifts with 1 mls accuracy; noise level for moderate-l oscilla-' 
lion modes of 1 cm/s for a i-day observing run; flexibility and ease of use. 
Early (though incomplete) testing suggests that these goals should be attain
able with the current instrument. 

1. Principles of Operation 

The principles of operation of the Fourier Tachometer (henceforth FT) have 
been described elsewhere (Beckers and Brown 1978, Brown 1980). but I will 
review them briefly here. The incoming solar image from the feed telescope 
first passes through an interference filter to isolate the solar line of interest. 
The bandpass chosen for this filter is the result of a trade-off between sys
tematic and random sources of error; the value we have adopted is about 3 ~. 
The solar image is then combined with the image of a suitable laboratory 
wavelength reference. These two light sources occupy different parts of the 
instrument's field of view, but otherwise traverse the same optical components. 
The beams then pass through a Michelson interferometer with a path difference 
of about 1 cm. The sinusoidal transmission-vs-wavelength characteristic of this 
element is about 0.3 l( from peak to peak. and can be shifted through at least 
one complete fringe by a subsequent modulating element. When one observes 
the output of this device integrated over wavelength. the effect of shifting the 
transmission pattern is to modulate the contribution of the light in each 
wavelength interval sinusoidally. with an amplitude proportional to the bright
ness at that wavelength and with a phase that depends only on the wavelength 
itself. If the prefilter passband is wide and smooth enough, its net contribution 
to the observed modulation is zero. since the different modulation phases 
present across its width cancel one another. However. if a localized feature 
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such as a solar line is present within the passband, this cancellation is incom
plete. In this case, one observes a modulation of the total output intensity, with 
an amplitude that depends on the depth and width of the solar line, and with a 
phase that depends on the line's wavelength, Le. 

I(¢) = Iocos( ¢ +'I/J) , 
where'I/J depends only on the wavelength of the solar line being observed. 

Determining a solar Doppler shift thus reduces to measuring the phase of a 
sinusoidal variation (of known frequency) in the light output. Since the modu
lator imposes this sinusoidal variation simultaneously at all points in. the 
interferometer's field of view, the device may be used to measure independent 
and simultaneous velocities everywhere in a 2-dimensional field, without spatial 
rastering. Further, by continuously monitoring a reference wavelength in a 
selected part of the field of view, one can measure and compensate for any 
inadequacies in the action of the modulator. Employing a wavelength standard 
also permits the solar wavelength measured to be tied directly to a known 
laboratory wavelength. This allows one to measure velocities relative to the 
telescope, rather than relative to some solar average. 

Many schemes are possible for demodulating the signal. We use one of the 
simplest: the detector output is integrated and sampled over segments of the 
modulation cycle 90 degrees apart. One can then see that, relative to a time at 
the center of the first sampling interval, 

/1 - Is = the signal's cosine component, 

while 

12 - 14 = the signal's sine component. 

The desired phase is then given by 

12 -/4 1/1 = arctan --
It -Is' 

and the corresponding velocity signal is 

QV = £.1.0..:i.. 
21f A ' 

where A is the wavelength of the modulated feature, and oA is the fringe spacing 
produced by the interferometer. 

The FT has both advantages and disadvantages. On the positive side, it 
shares with certain filter-based approaches the ability to measure Doppler 
shifts over a full 2-dimensional field of view. Unlike most filter systems, it is 
inherently stable and easy to calibrate against laboratory wavelength standards 
at any visible wavelength. The detection scheme is linear, in two important 
senses. First, the output signal is accurately proportional to the line shift (as 
long as the line does not change shape), even for very large shifts from the rest 
wavelength. Second, averages of velocity over many pixels in the image plane 
depend linearly on the sine and cosine components measured in the individual 
pixels. This means that intensity-weighted areal averages of velocity are 

158 



independent (within the linearity of the detector itself) of any seeing-induced 
rearrangement of light within the area. The filters and interferometers used in 
the FT are high-throughput devices. which makes it possible to use detectors 
that have large charge wells and correspondingly low noise. For the same rea
son. one can reduce the time for each detector readout. in order to minimize 
noise from atmospheric scintillation and varying transmission. Finally. detect
ing a low-amplitude sine wave is a chore well-suited to current detector tech
nology. since one need not worry about pixel-to-pixel variations in the gain or 
dark current of the detector. or about time variations in these quantities. 

There are two principal disadvantages inherent in the FT approach. The 
more serious is that. for an acceptably low level of sensitivity to the charac
teristics of the line-isolating prefilter. the bandpass of this prefilter must be 
rather large compared to the width of the solar line. This causes a large. 
unvarying background to be superposed on the modUlated signal one wishes to 
measure. The background contributes nothing to the signal, but does add to 
the noise. Thus, the FT suffers from noise levels that are poor relative to the 
best theoretically achievable by some other means. However. as we will see 
shortly, the noise level one should be able to reach with the FT compares favor
ably with the best current practice. and is quite good enough to provide new 
information about the Sun. The lesser problem with the FT (at least for most 
applications) is that the detection scheme explicitly ignores all line shape infor
mation. except for a strength parameter that is similar to a measurement of 
equivalent width. Experiments that require detailed line shape information. 
such as efforts to deted atmospheric gravity waves. will probably not profit 
from the FT. 

II. Fourier Tachometer II Features and Capabilities 

The new FT is being installed and tested at the Big Dome of Sacramento Peak 
Observatory (now part of the National Solar Observatory). It is intended to be a 
user instrument. and for this reason it has been designed with enough flexibil
ity to address a large range of observational problems. Most of the features 
outlined below are already functional. though some are not. These are expli
citly noted. and in any case are expected to become available within the next 
year. 

The interferometer used in the new FT is a polarizing, wide-field Michelson 
that has been described in detail by Evans (1980). This device behaves like a 
single Lyot filter element, retarding one polarization component with respect to 
the other by roughly 1 em. However. by comparison with a Lyot element it 
admits a very wide field. With proper construction. the 2nd order variation of 
retardation with field angle can be made to vanish. leaving the 4th order term 
as the most important. Moreover. by proper choice of glasses in the two legs. 
the thermal variation of retardance can be made quite small. Considering the 
probable errors in published values for the variation of the glasses' refractive 
index with temperature. the thermal variation of apparent line position will 
probably be less than 700 mls per degree C. Modulation of the fringe position 
is accomplished by rotating a half-wave plate following the interferometer. 
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Since the polarizing beamsplitting coatings available can be optimized only 
over a limited wavelength range, and since the best interferometer path differ
ence is inversely proportional to the width of the line one wishes to measure, we 
will eventually have three different interferometers. Only one of these is yet 
available; it is designed for weak solar lines between 6300 and 6800 A. The 
second will also have a path difference appropriate to weak lines, but will be 
coated to operate between 5300 and 5800 A. Finally, there will b~ an inter
ferometer with a significantly smaller path difference, optimized and coated to 
allow observation of the Na D lines and the Ca II infrared triplet. 

By choosing among prefilters and interferometers, one will be abJe to 
observe up to 6 solar lines in quick succession, and in any order. Typically 
about 1 s will be required for the computer to move from one filter to another. 
We plan to have a number of standard filters available, including ones for Fe I 
5434, 5576, 6302, 6678, Na D 5896, and Ca II 8542. Observers wishing to use 
some other line will be able to do so, simply by providing an appropriate pre
filter. The only filter currently available is for Fe I 6678. 

A variety of reference wavelength sources are available for use with the FT. 
For calibration of field-dependent errors in the velocity signal, one may use 
either an image of the objective lens or the light from a Zeeman-stabilized He
Ne laser. The objective image has the advantage of providing an absorption 
feature of nearly the same width as the line actually being observed, and at the 
same mean wavelength. It has the disadvantage of not being tied to a particular 
laboratory wavelength; as a result it shows variations in its center wavelength 
on all time scales, arising from motions of the Earth, variations in the atmos
pheric extinction seen across the solar disk, and various solar processes. The 
stabilized laser is of the type described by Baer and Hall (1980). Its stability on 
time scales of a day or so is probably a few times 10-1°, while for timescales of a 
year the stability is likely to suffer from variations in the gas pressure in the 
laser tube. These variations should cause shifts in the output wavelength of a 
few times 10-9 , corresponding to velocity errors of about 1 m/s. The principal 
advantage of the laser as a calibration source is thus its ability to provide a 
bright source of light at a known wavelength in the lab. Its disadvantages are 
its very narrow line width, and the large wavelength interval between the 6328 A 
laser line and most of the interesting solar lines. 

For continuous monitoring of the modulator performance, and of drifts in 
the interferometer, we have a neon discharge lamp with filters to select neon 
lines near a wide selection of solar lines. These lines are expected to have a 
relative wavelength stability of 10-8 or so over the life of the discharge tube, 
and to vary litUe from day to day. Filters for the neon source may be selected 
and changed under computer control. 

The solar image for the FT is provided by the 40 cm coronagraph at the Big 
Dome. The feed optics provide three image scales, corresponding roughly to 20, 
5, and 1.2 arcsec per pixel at the detector. At the 20 arcsec per pixel scale, the 
entire solar image fits on the detector at one time; at the 1.2 arcsec per pixel 
scale, one can see an area on the Sun roughly the size of a typical active 
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region. The selection of image size is done manually. and about a minute is 
required to change image scales. Currently. we have computer control of the 
image rotation on the detector. Shortly. however. we expect to add a system 
that will allow complete control of the position of the image center on the solar 
disk. 

All of the computer-controlled functions of the instrument (filter selection, 
image rotation, light source selection, timing and data taking) are controlled by 
a special-purpose instrument programming language (the Hands-On Operating 
and Programming Language, or HOOPLA). Besides providing a convenient and 
flexible means of operating the instrument, this language provides a powerful 
set of real-time diagnostic displays, and supervises all data transfers to the Big 
Dome's PE 3220 mainframe computer. Software available on the 3220 provides 
for both short and long term data storage. and for a variety of analysis and 
display functions. 

A number of sources of error are likely to affect the velocity measurements 
done with the FT. Until testing is complete, it will not be clear which of these is 
causing the most trouble. However, simple estimates suggest the following may 
be of some importance. 

If the solar line being observed lies on a sloping part of the prefilter 
transmission curve, its apparent wavelength will be shifted towards the direc
tion of decreasing transmission (for an absorption line). A similar shift results 
from transmission variations in other optical elements. caused for example by 
fringing effects. The size of this line shift is proportional to the width of the 
line being observed, so the laser and neon reference lines are much less 
affected than the solar lines, and cannot be used to remove the problem. We 
expect that this will be the major source of error in the average solar velocity 
as measured by the FT; with plausible temperature control on the pre filters, the 
noise from this source should be a few m/s, with most of its variation at periods 
longer than about ten minutes. 

Readout and shot noise in the Reticon appear to be almost completely ran
dom. both in space and in time. The observed ratio of peak signal to rms noise 
is about 2000:1. With an assumed modulation fraction of 0.02 and an integra
tion time of 60 s, this leads to an estimated random velocity noise of less than 5 
m/s for each pixel. Spatial spectra of the noise show that about 1% of it is 
correlated among the pixels of a given line. and about 0.1% arises from an as 
yet unidentified source of harmonic noise. These facts suggest that the noise 
will decrease as desired when spatial filtering operations are performed on the 
data, giving a readout noise contribution to full-disk average velocity measure
ments of only a few cm/s in a 60 s integration. 

Besides the two just mentioned, several other noise sources are expected to 
be less important. These include uneven rotation of the modulator waveplate, a 
number of atmospheric effects. variation of the interferometer field-dependent 
errors with temperature and time, and instability of the reference wavelength 
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sources. Of course, only complete testing will reveal whether the importance of 
these effects is as small as calculations indicate, and whether some other signi
ficant source of noise has been overlooked. However, assuming that the calcu
lations are approximately correct, one can assemble a list of reasonable perfor
mance goals for the FT. These take the form of the minimum amplitude narrow 
band signal that one might detect in an B-hr observing run, given as a function 
of the frequency 1/ of the signal and of its total angular degree l. These values 
are given in the accompanying table, in units of cm/s. For l = 0, the principal 
limit to detection will likely be the variations of filter passband wavelength. At 
frequencies below 1 cycle per day, the errors from this source will probably be 
2 m/s or so, improving little with lengthening observing time. At higher tem
poral frequencies, it seems reasonable to take the noise power as proportional 
to 1/1/, with the ultimate goal of reducing the rms noise integrated over fre
quency to below 1 m/s. For l values above 10, or for 1/ larger that 1 mHz, one 
expects the dominant source of noise to be the spatially and temporally white 
detector readout noise. A plausible goal is thus to detect oscillations in this 
range with amplitudes of about 1 cm/s. If the noise proves to be truly white, 
one might do someWhat beUer. For 1;he intermediate range of l values between 
1 and 10, and for 1/ below about 1 mHz, one can expect something between the 
two previous cases. Exactly how well one should expect to do is not clear, how
ever. 

REASONABLE PERFORMANCE GOALS 

1-10 3-8 1 1 

FREQ <1 8-40 ? 1 
(mEz ) 

0 .200 ? 1 

0 1-10 >10 
l 

In summary, the Fourier Tachometer now being installed at SPO will be a 
user instrument with many capabilities. It will provide a 2-dimensional field of 
view, a noise level competitive with the best current velocity instrumentation, 
great temporal stability, and access to a number of solar spectrum lines and 
image scales. Its first applications will undoubtedly be to solar oscillations, 
where it may make valuable contributions. 

Two institutions and many people have been involved in the construction of 
the FT II. Sacramento Peak Observatory took principal responsibility for the 
optical and mechanical components, while the High Altitude Observatory was 
responsible for most of the electronics, the stable laser, and the software for 
instrument operation and data reduction. While it is not possible to list 
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everyone involved. a few people deserve special mention. At SPO the prime 
mover has been Jack Evans. assisted by George Streander. Al Healy and Wayne 
Jones. At HAO. most of the credit goes to David Elmore. Greg Muir. Terry Leach 
and Howard Hull. The National Center for Atmospheric Research is sponsored 
by the National Science Foundation. 
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OBSERVATIONS OF INTERMEDIATE-DEGREE SOLAR OSCILLATIONS 

J. W. Harvey 
Kitt Peak National Observatory* 

T. L. Duvall, Jr. 
Laboratory for Astronomy and Solar Physics, 
NASA/Goddard Space Flight Center 

Abstract. A progress report on observations of intermediate degree oscillations is 
presented. We list frequencies of zonal p-mode oscillations with amplitudes in excess of 
........ 2 cm s-l. These frequencies show systematic disagreement with recent theoretical 
calculations. We compare the frequencies with asymptotic formula estimates. Small 
scatter is obtained for low degree modes but large scatter at large degree. A first look 
at sectoral harmonic observations shows that magnetic active regions provide a major 
signal at low frequencies. 

1. Introduction. 

In 1980 we undertook a series of observations of solar oscillations of intermediate 
spherical harmonic degree, I. The initial motivation for these observations was to 
obtain frequencies of p-modes in the previously unobserved degree range from ,-....5 to 
........ 100. Further motivation was to try to observe rotational splitting of these modes, to 
observe g-modes of low and intermediate degree and to explore the latitudinal variation 
of oscillation patterns. 

This report follows two previous reports (Duvall and Harvey, 1983; Pomerantz 
et al., 1982) on aspects of this observing program. 

2. Observations. 

We have observed solar oscillations by means of the Doppler shifts they produce in 
photospheric spectrum lines and also the intensity fluctuations they produce in spec
trum lines formed near the atmospheric temperature minimum. The Doppler observa
tions were made at Kitt Peak using a large grating spectrograph equipped with a two
dimensional diode array camera at the spectrograph focal plane. The techniques 
were developed from earlier measurements of high-degree oscillations made in collaboration 
with E. Rhodes, Jr. and are partly described by Rhodes et al. (1981) and Duvall and 
Harvey (1983). Some intensity observations were made at Kitt Peak but the bulk of 
our intensity measurements were made in collaboration with M. Pomerantz from the 

*Kitt Peak National Observatory is operated by the Association of Universities for Research in Astronomy, Inc. 
under contract with the National Science Foundation. 
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geographic South Pole. The latter observations are described by Harvey et al. (1982) 
and Pomerantz et al. (1982). 

To simplify the data handling without compromlsmg our scientific goals too 
much, we restricted the angular scale of the observations to about 10 arc seconds. This 
restriction leads to considerable attenuation of modes of degree larger than .-....200. We 
observed the full image of the sun but, in the case of the Doppler measurements, the 
image was optically averaged in one dimension before entering the spectrograph slit. 
To isolate zonal harmonics the slit is aligned parallel to the rotation axis of the sun, 
defined by the Carrington rotation axis, and the image is averaged in the perpendicular 
direction. To isolate sectoral harmonics the geometry is rotated 90 degrees. The 
degree of isolation of zonal harmonics offered by this technique is fairly good since 
zonal harmonics project onto the plane of the sky as nearly one-dimensional functions 
that are not distorted much by our optical averaging. The isolation of sectoral har
monics is not as good because of the curvature of the meridians as seen in projection. 
In practice, the zonal observations have a degree resolution of about 3 and the sectoral 
observations about 4. The full disk intensity measurements should isolate degree with 
a resolution of about 2. The same numbers characterize our ability to isolate modes of 
different angular order, m. 

In the reduction phase, the raw observations are treated by various numerical 
filters to reduce the effects of instrumental noise. Each cleaned-up time sample is 
transformed into a series of numbers that is the product of the image times a set of 
slightly modified, projected spherical harmonic functions. Although we have experi
mented with several techniques for filling the data gaps caused by clouds and night, 
our results to date are based on simple Fourier transformation of unwindowed and 
unapodized, gapped data strings in time. Thus a. significant amount of oscillatory 
power appears m spectral sidelobes. Table 1 is a summary of the best observing 
sequences. 

type 

Doppler 

Intensity 

3. Results 

Table 1. Observation summary. 

angular dates coverage 
order (%) 
zonal 1981 June 4-7 40 

1982 September 13-18 34 
sectoral 1983 May 10-28 47 

all 1981 December 24-25 
1981 December 5-
1982 January 10 

92 

20 

duration-1 

(pHz) 

3.8 
2.0 
0.7 
5.2 

0.3 

Results from the June 1981 observations have been given by Duvall and Harvey (1983). 
We present here preliminary measurements of the September 1982 zonal observations 
that are substantially better than the June 1981 data.. Figure 1 shows a spectrum of 
the September 1982 observations. The noise level in quiet parts of the spectrum is .-....1 
em s-1 amplitude in a frequency and degree resolution element. 'With this noise level 
one sees p-modes with radial orders, n, from 1 to 25 as ridge structures. The strongest 
modes have amplitudes of .-....10 cm s-1 so the signal-to-noise ratio is only about 10. As 
the noise is instrumental, there is room for much improvement in solar oscillation 
spectroscopy! 

166 



5 

.....,. 
N 

l: .4 
E 

o 50 100 150 

Spherical Harmonic Degree 

Figure 1. Spectrum of zonal p-modes observed in September 1982. The fre
quency range shown is 1383 to 5550 JlHz and degrees from 0 to 170 are plotted. 
The faint ridge in the lower right corner is radial order one. 

To determine the frequencies of individual modes in the presence of imperfect. 
degree and frequency resolution, we use an echelle method of displaying the data. 
Briefly, each ridge is displayed on an interactive graphics terminal with the base fre
quency of each successive value of degree shifted so that the ridge appears to be a 
straight vertical line. This is done by fitting a spline function to either the centroid of 
the ridge or individual modes whenever the latter are clearly identifiable. This pro
cedure yields frequencies that are good to a few JlHz. The frequencies are then 
improved by manual examination of a printed version of the spectrum. Table 2 is a 
list of frequencies from the September 1982 data determined in this manner. The 
weakest identified modes have amplitudes of ......,2 cm s-l. 

Compared with our previously published list of frequencies, the present list con
tains more modes and should be more accurate, i.e. about ±1 JlHz. There is a typo
graphical error in our previous list. The I 4, n=20 mode should have been printed as 
3137 pHz. With that correction, we find that the present frequencies are 0.41 JlHz 
larger than the previous values, with a standard deviation of the differences of ±1.13 
JlHz. There is a considerable amount of fine structure in the spectrum of many of the 
modes which limits the attainable frequency precision. 
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Table 2. Frequencies of individual zonal modes (IlHz}. 
I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

n 
9 1950 1984 

lO 1865 1904 1946 1985 2023 2058 2095 2128 2162 
11 1918 1963 2004 2086 2126 2164 2201 2236 2271 2306 
12 2052 2100 2143 2185 2225 2264 2303 2340 2376 2412 2446 
13 2083 2235 2280 2324 2362 2402 2440 2480 2515 2551 2587 
14 2161 2222 2323 2371 2459 2499 2539 2579 2617 2654 2692 2727 
15 2293 2352 2408 2459 2505 2549 2596 2636 2676 2716 2756 2795 2833 2869 
16 2427 2487 2542 2641 2688 2731 2815 2855 2896 2934 2971 3012 ...... 

'" 17 2620 2677 2728 2777 2870 2912 2954 2994 3034 3075 3113 3150 00 

18 2757 2812 2866 2914 2961 3004 3050 3092 3132 3174 3213 3251 3291 
19 2828 2&90 2948 3000 3050 3097 3142 3187 3229 3271 3312 3354 3392 3431 
20 2962 3024 3082 3136 3187 3235 3281 3324 3368 3410 3450 3493 3534 
21 3098 3161 3219 3272 3324 3371 3414 3463 3506 3551 3634 3678 3713 
22 3233 3295 3354 3409 3460 3508 3555 3601 3644 3690 3729 3854 
23 3368 3491 3545 3597 3645 3691 3785 3831 3871 3913 3958 
24 3506 3567 3628 3683 3733 3785 3833 3926 
25 3641 3703 3763 3821 3871 
26 3779 3840 3904 3962 
27 3917 3980 
28 4058 



Table 3 is a list of frequencies of the spline functions that were fit to each ridge 
of constant radial order. These frequencies may be in error by as much as ±10 pHz, 
especially at high degree. 

Table 3. Frequencies of spline functions (ltHz}. 
I 20 40 60 80 100 120 140 160 180 200 

n 
1 1722 1810 1892 1987 
2 1694 1849 1978 2091 2198 2300 2400 
3 1781 1989 2148 2299 2428 2549 2664 2770 
4 1741 2009 2234 2424 2591 2742 2884 3014 3125 
5 1941 2235 2472 2679 2870 3042 3196 3340 3483 
6 2134 2441 2700 2928 3133 3318 3490 3650 3798 
7 2317 2644 2923 3168 3388 3590 3782 
8 2050 2497 2845 3134 3398 3640 3863 4058 
9 2204 2675 3035 3346 3625 3876 4103 

10 2352 2849 3227 3552 3846 4115 4362 
11 2498 3020 3415 3756 4084 4342 4597 
12 2645 3189 3598 3957 4277 4560 
13 2791 3355 3793 4152 4487 4791 
14 2937 3515 3962 4340 4689 
15 3081 3683 4152 4536 
16 3224 3838 4318 4723 
17 3368 4002 4521 4939 
18 3514 4152 4876 
19 3655 4302 4854 5306 
20 3799 4448 5027 
21 3943 4600 5173 
22 4091 4751 

\Ve have used the frequencies in Table 2 to fit the well-known asymptotic 
approximation for n> > I. The equation is given in a nonstandard but more practical 
form here as, 

V "" ~[(n+.i.+,)-tf (n+.i.+fj2-4AI~I+l)+S1) 1 
2 2 l 2 

For the ranges I (1-5) and n (11-27), an unweighted least squares fit gives v Q = 138.66 
pHz, A = +0.2752, f =-= +0.2553, and fJ = -49.99. The residuals in the range were 
about ±2 pHz but were rapidly increasing at the limits of the range. 

We used the frequencies in Table 3 (and for every intermediate value of I as well) 
to fit various asymptotic formulae for frequencies of high degree. None of the formulae 
we tried worked very well. Residuals were quite large. Our conclusion was that even 
/-200 is not a "high" value in the asymptotic sense. A new formula, based on the 
cavity model of p-modes (Duvall, 1982), has been derived that fits all the frequencies 
for degrees greater than 0 and will be described elsewhere (Harvey and Duvall, 1984). 

It is interesting to compare our measurements with recent theoretical calculations 
by Shibahashi et al. (1983). This is done in the echelle plot of Figure 2. The observed 
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frequencies are systematically greater than theory for degrees 1,2 and 3. Agreement at 
degree 4 is quite good. A systematic discrepancy that reverses sense at high and low 
frequency appears at degree 5. 
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Figure 2. Comparison of observed frequencies from September 1982 (-) with 
those computed (III) by Shibahashi et al. (1983) for their model 1. (There is an 
error in their tabulation for 1-4, n=16.) This echelle plot has a step frequency 
of 135 pHz. 

The modes are significantly narrower in frequency width at low frequency than at 
high frequency. This has been noted previously (e.g. Cree et al., 1983). Presumably 
this is due to a relatively short lifetime of high frequency modes in accord with theoret
ical predictions (d. Christensen-Dalsgaard and Frandsen, 1983). 

At low frequencies, the faint structure that appeared in our June 1981 spectrum 
at a frequency around 450 pHz does not appear in the September 1982 observations. 
The cause of this artifact is not clear to us. We have looked for g-modes in the Sep
tember 1982 data but our poor frequency resolution and noise from harmonics of one 
day prevent us from clearly seeing any g-modes. Any such modes would have to have 
amplitudes less than 10 em s-1 or they would be clearly visible in the September 1982 
spectrum. 
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At this time only very preliminary results from the May 1983 sectoral observa
tions are available. Figure 3 shows a time and space plot of the Doppler shifts 
obtained using two different spectrum lines observed simultaneously during this observ
ing sequence. Comparison with daily magnetogram observations shows that the light 
features that rotate across the disk are active regions. Thus, a systematic red-shift of 
........,10 m s-1 is associated with magnetic activity in our observations. The two spectrum 
lines respond somewhat differently to the active regions in the sense that the higher 
excitation potential line shows a smaller red-shift. This suggests that the active region 
signal may be due in part to temperature sensitivity and that a different spectrum line 
might show a much weaker response to active regions. In the May 1983 data, it is 
clear that the major signal at low frequencies is due to active regions and not to instru
mental effects. 

east west 

1 

Ni I 6191.2 1.68v Fe I 6191.6 2.43v 

Figure 3. Seventeen consecutive days of observations of the Doppler shifts of 
two sprectrum lines from the east to west limbs. Each measurement is a 
north-south integration across the disk in an effort to isolate sectoral modes. 
The Doppler shifts are shown as red (light) and blue (dark). Active regions are 
seen as light streaks rotating from east to west. 
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Work is in progress to measure frequency splittings of the sectoral p-modes from 
degree 1 to 200 with a precision of ,-....,0.1 pHz using both the May 1983 and South Pole 
data. Rotational splitting in the May 1983 data is clearly visible from degrees 1-200 
and will be presented elsewhere (Duvall and Harvey, 1984). The South Pole data will 
also be used to probe latitudinal effects from measurements of the frequencies of 
tesseral modes. 
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DETECTION OF SOLAR GRAVlTY MODE OSCILLATIONS 

Abstract 

Philip H. Scherrer 
Center for Space Science and Astrophysics 
Stanford University, ERL 
Stanford, California 94305 - U.S.A. 

An analysis of solar velocity data obtained at the Stanford Solar Observatory 
has shown the existence of solar global oscillations (Delache and Scherrer, Nature, 
in press). The oscillations are in the range 45 to 105 J.iHz (160 to 370 minutes) and 
are interpreted as internal gravity modes of degree l= 1 and l=2. 

The Data 
Observations of the global solar velocity field have been recorded at the Stan

ford Solar Observatory since 1976. These observations have recently been exam
ined for long period oscillations at periods other than 160 minutes. Delache and 
Scherrer (1983) have reported the results of this analysis. This report will review 
that work and expand on the methods used to find significant peaks in the power 
spectrum in the presence of noise and gaps in the data. 

Scherrer and Wilcox (1983) have described the observing procedures and prel
iminary data reduction applied to the observations. The observations are 
differential measures of the line-of-sight velocity of the solar surface. They are 
made by comparing the average doppler shift from the center of the solar disk with 
the doppler shift from a concentric annulus. Since it appeared that interesting 
features were present in the low frequency part of the spectrum, the computation 
was extended down to 1/=0. Since only the low frequency part of the spectrum is 
examined here, the data was averaged into 5-minute intervals and normalized 
within each day as in the previous analysis. 

First the Fourier transform of the 4 years of Stanford data (1977-1980) was com
puted using a standard fast Fourier transform code (FIT). It was found that the 
largest power is in the range 45 J.iHz - 105 J.iHz (about 160 to 370 minutes). The 
resulting power spectrum shows a number of sets of lines with separations 
corresponding to day side bands (Le. 11.57 J.iHz) which obviously come from the 
nightly gaps in the data. Comparing the 4-year spectrum with individual yearly 
spectra, it was found that the strongest lines were more prominent in 1979 than in 
the other years. This may be due to the relatively clear skies and the distribution 
of observing times in 1979. As a first step, the analysis was restricted to that year. 
Figure 1a shows the 1979 spectrum. The observations were begun on 7 April and 
continued through 23 July with most of the data collected in late May through July. 
There were a total of 240 hours of data available. As described in the previous 
report (Scherrer and Wilcox, 1983) the data were scaled for each observing run to 
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have the same daily variance. The daily normalization factor used is highly corre
lated to the integrated signal power in the 5-minute band. suggesting that the varia
tions in power are due to instrumental changes. Although the analysis was done 
using this daily normalized data, the results were rescaled using the average nor
malizing factor to provide an approximate scale in m/s. This normalization has 
both desired and undesired effects. It allows combining data from different years 
and from different observation sets where the raw data shows jumps in average sig
nal due to variations in the instrument with time and to variations in the prelim
inary data reduction procedures. This method also removes apparent sensitivity 
changes that may result from variations in solar activity. The main structure of the 
spectrum is the same for both the normalized and raw data, so the normalized data 
were used to allow direct comparisons with different intervals of time. 

Significance of Spectrum 

An estimate of the number of peaks in the spectrum that are significantly 
above the noise can be made by examining the cumulative distribution of the spec
trum. A power spectrum computed from a normally distributed noise source will 
have an exponential distribUtion, thus the logarithm of the cumulative distribution 
will decrease linearly with power. A departure from a straight line is an indication 
of the presence of si~nificant spectral features and the slope of the line is a meas
ure of the variance (a ) in the spectrum. 

N 

~ 
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b 

0.0 ~s..WIo.M.&'t~M..6I:Lll.t'I.~II..!l.L!..!o.I.rr.&l~~~..II.A"!J!~~I.U.t..I&ltJI 
45 FREQUENCY (JkHz) 105 

Figure 1. The power spectrum of velocity observations from the Stanford Solar Observatory 
in 1979. The spectrum in the range 45-105 J..!-Hz (360 to 160 minutes) is shown. Part (a) shows 
the Original spectrum, part (b) shows the spectrum to the same scale after fourteen peaks 
were identified and the associated sinusoidal waves subtracted from the data. The scale 
shown has been corrected for the average normalizing factor. From Delache and Scherrer 
(1983). 
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Figure 2 shows this plot for the '45-105 ,uHz range of the 1979 spectrum. The 
actual data is represented by large dots. The smaller points are for a spectrum 
computed the same way from data constructed by taking the original data for each 
day in reversed order, thus keeping the original window function. Any coherent sig
nal present in the original data will be eliminated by this procedure. The noise 
statistics for the modified .data power spectrum should be unchanged for periods up 
to the average daily observing time, Le. for frequencies higher than 40 ,uHz. It can 
be seen that in the actual data there are more peaks with value above 0.25 (m/s)2 
than in the reversed data. The level at which the actual distribution begins to 
depart from the noise distribution is around 2.5 0'. Since the spectrum was com
puted with a resolution of 0.02 ,uHz but has a natural resolution of only 0.11 ,uHz, 
there will be about five points shown for each significant peak in the spectrum. 
Also, since the data has gaps at night, the day sidelobe structure introduces 2 to 4 
apparently significant artificial peaks for each true peak. This reduces the number 
of independent spectral estimates to about 200. These considerations suggest that 
there are about 10 independent peaks above the 2.50' level. 

Qeaning the Spectrum 

Since the spectrum appears to be dominated by the sidelobe structure from 
the observing times, a procedure must be performed to eliminate these sidelobes. 
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Figure 2. The cumulative distribution function of the spectrum in Figure la. 
The log of the number of spectral estimates with size larger than a given value is 
plotted vs that value. The large dots correspond to the observed spectrum. The 
small dots are from a similar spectrum computed with the data within each day 
taken in reversed order. The small dots then refer to a spectrum with the same 
window and noise characteristics but no coherent oscillations. The variance which 
is deduced from the slope is a2=(20cm/s)2. 
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(a) 

(c) 
Figure 3. The spec
trum of the original 
data (a), the spec
trum after removing 
the largest peak (b), 
after removing the 
second peak (c), and 
after removing the 
third peak (d). (from 
Scherrer, 1983). 

N 

freq. period 
II-H'7. rrlin 

58.25 286.1 
59.52 280.0 
64.13 259.9 
65.30 255.2 
73.43 227.0 

"'73.84 225.7 
83.50 199.6 
95.70 174.1 
96.94 171.9 

"'50.72 328.6 
56.33 295.9 
59.52 280.0 
63.12 264.1 
66.65 250.0 
46.23 360.5 
62.29 267.6 
92.21 lBO.7 

power 
(m b:j2 

0.15 
0.52 
0.17 
0.22 
0.18 
0.98 
0.09 
0.23 
0.31 
0.07 
0.49 
0.52 
0.42 
0.13 
0.25 
0.98 
0.10 

(I) -E 

o 
45 

l 

1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 

n 

10 
10 
9 
9 
8 
8 
7 
6 
6 

20 
18 
17 
16 
15 

day/4 
-

davlB 

(b) 

(d) 

11Hz 105 45 

Table 1. Frequencies of the 14 peaks found 
in the 45-105 /tHz range of the 1979 spec
trum. The frequencies are in MHz with the 
corresponding periods shown in minutes. 
The power is shown as amplitude squared 
(m/ s )2. The classification of n and I are 
described in the text. The 2 peaks 
marked with an asterisk are an alternate 
identification for the peak at 62.29./tHz and 
its associated side-lobes.' Note that the 
peak at 59.52 /tHz could be identified as 
part of either an l= 1 or l=2 series and is in
cluded in the table twice. 

An iterative peak removal technique was used to find and remove the peaks one at a 
time. First an FFT was computed and the largest peak determined. Next that peak 
was accurately found with a fine resolution simple Fourier transform in the vicinity 
of the peak. Finally the corresponding sinusoidal signal was subtracted from the 
original data. This procedure was repeated, producing a list of frequencies free of 
day sidelobes. Figure 3 shows the original spectrum and the spectrum after remov
ing each of the first 3 peaks. It can be seen that for each peak removed, the entire 
sidelobe structure is also removed. Selecting peaks with amplitudes greater than 
about 30 cmls, 14 peaks were found in the frequency band 45 to 105,uHz. Using the 
same amplitude criterion, another 8 peaks were found at frequencies in the range 
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extending to 165 ,uHz. These higher frequency peaks will not be discussed here. 
The list of 14 peaks is given in Table 1. Note that since the spectrum is assumed to 
consists of a set of line spectra, the scaling used in this paper is amplitude squared 
rather than power in the usual sense. To convert to the usual power spectrum scal
ing all values must be divided by 4 and would refer to intervals on 0.11 ,uHz (see e.g. 
Bath~ 1974, plB3). 

To see the effect of removing the complete set of peaks from the original dat~, 
the spectrum of the residual data after subtracting these 22 sinusoids is shown in 
Figure lb. Figure lb is shown to the same scale as Figure la. It is clear that far 
more than 14 peaks in the band shown have been removed in the resulting spec
trum. This method of peak identification appears to be a powerful tool for analysis 
of power spectra computed from data with complicated windows. The method finds 
a table of periods, phases and amplitudes that best clean the spectrum. From 
experiments with artificial data, we have concluded that while the correct peak is 
usually found, a side lobe introduced by the window is occasionally selected. This is 
a weakness of the procedure that requires care in examining the resulting peaks. 
We have also found that the amplitudes determined from data with a complicated 
window are not to be relied upon. 

The method described above relies upon the single assumption that the exam
ined signals consist of coherent sine waves. It is then not surprising that for each 
frequency removed, a complete day-sidelobes set of lines disappears from the spec
trum. A further check is necessary to determine whether or not the signal is 
coherent for the full span of the observations. For that purpose, the data with the 
tabulated frequencies removed was divided into two parts, 7 April through 15 June 
and 16 June through 23 JUly. Figure 4 shows a set of nine spectra resulting from 
this division. The top row shows the original spectrum (left), the spectrum of the 
first half of the data (middle), and the spectrum of the last half of the data (right). 
A large variation in the appearance of the spectra is obvious. A first impression is 
that these spectra represent either very noisy data or unrelated data. Examination 
of the bottom two rows shows that the first impression is wrong. The second row 
contains the residual spectra similar to Figure 1 b for each of the intervals in the 
top row. The middle row, left spectrum is essentially the same as Figure lb. The 
center and right frames are for two halves of the interval but cleaned by subtract
ing the sinusoids found for the entire interval. The spectra of each part separately 
do not show any of the removed frequencies. If any of the frequencies removed 
were not present in both halves of the data, they would have been artifiCially put 
into the cleaned data by the subtraction of the sinusoid over the entire interval. In 
that case they would show in the spectrum of one or both halves of the cleaned 
data. This is strong evidence that the Signals are all present in both halves of the 
observations. The bottom row demonstrates the variability in amplitude caused by 
the observing window. Using only the times of observa~ions and the list of frequen
cies and phases found above, a cleaned dataset was reconstructed. The spectra 
from the entire interval and the two halves are shown in the bottom row. Note that 
all three frames are computed from artificial data generated from the same set of 
frequencies and phases. The only difference between frames on the bottom row is 
the observing window. The conclusion is that for windows obtained at Stanford 
(which are similar to the average distribution of observations in the Crimea and at 
SCLERA), the relative amplitudes of peaks may be dominated by interference 
caused by data gaps. 

Peak Identification 
Returning to table 1, two of the 14 peaks are apparently day aliases at 1/4 and 

liB of a day. (With only 3 months of data the previously reported peak at 160.01 
minutes can not be distinguished from 1/9 of a day and is masked by the sidelobes 
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Figure 4. Spectra of the entire interVal and both halves of the interval. The first 
column contains spectra for the entire data intervaL The center column is for the 
first half, the right column is for the last half. The top row is the original data, the 
middle row is the residuals after subtracting the peaks found in the entire interval 
(Similar to Figure lb), and the bottom row is data reconstructed from the peak list. 



of the lower day-harmonics). This leaves 12 peaks for further analysis. There is 
some ambiguity in the true identification of the largest of the remaining peaks. The 
first l/day sidelobe is of the same amplitude as the main peak. This could be due 
to two true peaks with separation l/day or 2/day. By careful examination of the 
peak shapes, the peak at 62.29 .uHz has been identified as the true peak with a 
smaller peak at 96.94 Jl-Hz, although the identification could have been made as a 
true' peak at 73.84 Jl-Hz with smaller peaks at 50.72 and 96.94 Jl-Hz. The alternate 
identifications are shown in parentheses in Table 1. 

Interpretation 
In order to interpret the peaks found in this spectrum, one must seek guidance 

from theory. Estimates for the spacing of g-mode oscillations made from the full 
asymptotic apprOXimation (Tassoul 1980) and calculated from complete solar 
models (Berthomieu, Provost, and Christensen-Dalsgaard, private communications) 
suggest that the g-mode oscillations of the same degree l should be about equally 
spaced in period for order large enough (n > 6). Therefore the list of prominent 
peaks was examined for equal spacing in period. Three of the four largest peaks are 
separated in period by 15.5 minutes. This is very close to the spacing of the stan
dard solar model for g-modes with degree two and order greater than 10. 

To aid in further identification of the modes the asymptotic approximation 
(Tassoul 1980) is used. This approximation shows that for sufficiently large order n 
the period Tis: 

l 1 
T = To (n + '2 - 4 ~ / ..j l (l + 1) 

If the three peaks with 15.5 minute separation are part of an l=2 series, then To and 

Figure 5. The observed modes are 
plotted within the structure of the 
asymptotic formula described in the 
text. The line is determined from 
the three largest peaks that have 
been assigned. From Delache and 
Scherrer (1983). 
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thus the probable spacing for the l=l and l=3 series can be computed. Doing this, 
it is seen that most of the remaining peaks are likely to be part of the l= 1 series. 
USiflt the estimate for l, the observed periods can be plotted as 
T ..Jll + 1) vs (k + l/2 - 1/ 4) where k is an integer increasing with period. If the 
peaks are consistent with the model and the correct degree l has been assigned, 
the points will all lie on a straight line. From the intercept of t.his line both the best 
value for n and the correct value for -1/4 term can be determined. This has been 
done in Figure 5. 

The three largest peaks were used to define the l=2 series and thus to find To. 
The rightmost dots in Figure 5 represent the three largest peaks which determine 
the l=2 series. The other modes identified in Table 1 are also shown. The line was 
found from the three large l=2 peaks only. It can be seen that the other peaks are 
organized in the expected g-mode structure. The To implied by the identified 
modes is 38.6±0.5 minutes. The intercept of the best fit line with the abscissa is 
expected to be 0.25 and is found to be 0.2±0.1, thus the order n is most likely 
correctly determined. If n is decreased by one for each peak, To becomes about 41 
minutes but the scatter is increased somewhat. 

The largest peak at 62.29 j.tHz appears not to be consistent with the asymptotic 
formula with the To we have found. If the alternate choice of the 62.29 j.tHz-73.84 
j.tHz pair were chosen, the largest peak would be at 73.84 j.tHz which would be 
identified as l= 1. n=8. In this case a peak at 50.7 J-LHz shows up in the peak finding 
procedure and would be identified as l=2, n=20. 

Note that in several cases two peaks have been assigned to one order n in the 
l=l series. These peaks have an average separation of 1.2 j.tHz and could be evi
dence of rotationally split modes. Assuming the l= 1 modes are m=±l, the 1.2j.tHz 
separation would correspond to a rotation rate O=7.5x10-6sec-1. The rotational 
splitting kernel for these modes has a broad maximum between 0.2 and 0.5 R 
Assuming a smooth form for O(r) as in Figure 2 of Gough (1982), J 2 can be calcu
lated and is of order 1.7xlO-6. This value differs from that found by Hill et al. 
(1982). . 

The sensitivity of the Stanford instrument to degree l=2 g-mode oscillations 
must be considered. For the previously reported acoustic mode oscillations in the 
5-minute range, the Stanford velocity differencing scheme is most sensitive to 
modes of degree l=3 to l=5 but is not sensitive to modes of degree l=l or l=2. For 
low frequency g-modes, Gough and Cristensen-Dalsgaard (1982) have shown that for 
periods around 160 minutes the Stanford instrument is most sensitive to modes 
with degree l=5 to l=7. For longer periods however, the instrument begins to be 
relatively more sensitive to modes with lower degree. This variation with period, 
unlike the case for the p-modes, is due to the importance of the horizontal motions 
induced by the internal gravity modes. To properly estimate the sensitivity to the 
various modes the oscillation energy must also be considered. In the simplest case, 
the combined effect of equipartition of energy between modes and the mode visibil
ity with the Stanford instrument yields the greatest sensitivity for l= 1 and l=2 at 
these longer periods. 

The theory predicts several hundred periods for low degree g-modes in the 
period interval examined. Only the most visible handful of peaks has been exam
ined and has been found to be consistent with the theory. The relative peak sizes 
and simplicity of the analysis leads to the present mode identification. Alternative 
identifications are quite possible but they can only be tested with more data from 
other years or from other observatories. 
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Note Concerning Lifetimes 

There are some general considerations concerning the appearance of power 
spectra of data containing oscillations of finite lifetime that must be remembered 
when interpreting such spectra. It is generally recognized that the spectrum of an 
oscillator with a lifetime T greater than the observation time T will be a "line" that 
will appear as a sinc 2 with width 1/ T. It is also recognized that an observation of a 
single oscillation event with lifetime T and observation time T will result in a similar 
spectral line but with width 1/ T. What is sometimes forgotten is that if the observa
tion duration includes several, but not many instances of an oscillation lifetime, i.e. 
T>T but not T»T, the spectrum will be a complex structure of lines of width 1/ T 
in an envelope of width 1/ T. If T =2T the spectrum will look similar to that of a 
rotationally split l = 1 mode. Figure 6 shows spectra computed from artificial data 
constructed with T = 3-days through T = 100-days and T = 3 days through T » 100 
days. There were no data gaps assumed. The plot scales were adjusted such that 
the plots almost fill the frame. An examination of Figure 6 shows that caution must 
be used in interpreting spectra of oscillatory signals of unknown lifetimes, 
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SOLAR GRAVITY MODES FROM ACRIM/SMM IRRADIANCE DATA 

ABSTRACT 

Claus Frohlich1 and Philippe Delache2 

1 Physikalisch-Meteorologisches Observatorium, World Radiation 
Center, Davos, Switzerland; 
20bservatoire de Nice, Nice, France 

The record of 280 days of continuous data of the ACRIM radiometer on 
board the Solar Maximum Mission satellite is analysed in the frequency 
range from 10 to 80 ,uHz. Gravity modes of degree one and two with orders 
from about 10 to several hundreds can be localized. 

A statistical method to determine the fundamental period To and the 
rate of rotation VR as seen by rotational splitting is described and the 
results for 33.5 < To < 45.5 minutes and 0.4 < VR < 2.0 ,uHz presented. 
They indicate a rather high To and it cannot be excluded, that it is 
above the upper limit analysed. 

INTRODUCTION 

After the detection and identification of solar gravity modes by 
Scherrer and Delache (1983) it became obvious, that the ACRIM-SMM record 
of 280 days during 1980 would be an ideal test for the identification, if 
such modes could be seen as irradiance fluctuations. Furthermore, it 
would allow us to extend the accessible range of frequencies substantially 
to lower frequencies as no daily observational window deteriorates the 
power spectrum below about 30 ,l.lHz. 

The theory of gravity modes predicts a visibility in irradiance at 
frequencies below about 60 ,uHz (Berthomieu, 1983). Thus, the time series 
of orbital means of the SMM data is just ideal for this kind of analysis, 
as the Nyquist frequency of this sampling is 86 ,uHz. A first attempt to 
search for g-modes in the SMMI ACRIM data has been presented by Frohlich 
and Delache (1984, in the following referred as F&D). In the present 
paper the method is refined and the range of analysis substatially exten
ded. 
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SMM-ACRIM DATA SET AND POWER SPECTRUM 

The excellent data set of the ACRIM radiometer consists of indivi
dual readings of the irradiance with a sampling of roughly two minutes. 
Due to the orbit of SMM around the earth, data are lacking for about 30 
minutes out of 96 minutes. In order to get a homogeneous data set a 
strictly periodic triangular weighting function with a length of the base 
of the triangle of 66 minutes and a period of 96 minutes was used to 
calculate "orbital means". Further details on the data themselves and the 
methods used to ensure the quality may be found in F&D. 

For the frequency analysis the FFT technique is used and the data 
are supplemented by zeros in order to oversample the frequency by a fac
tor of about four. This is to allow an unbiased estimate of the location 
of the peaks in the spectrum. The natural resolution of the spectrum is 
0.04 tLHz. Figure 1 shows a smoothed spectrum for the range from 2 to 80 
tLHz. An obvious feature of the spectrum is its increase toward lower 
frequencies. From the highest frequencies down to about 15 tLHz it follows 
roughly a 1/f behaviour and turns toward lower frequencies to a 1/f2 law. 
The latter may be due to g-modes as their number density per unit fre
quency interval also increases with 1/f2 and the density of the modes 
above about 15 tLHz is already so high that they can no longer be re
sol ved. In order to assess the statistical significance of the peaks, in 
F&D a power density analysis of the unsmoothed spectrum was performed. 
The results for the frequency range 10-80 tLHz show a mean deviation from 
the straight line at a power of about 50.10- I> HZ-i. This result means, 
that about 120 peaks of the unsmoothed spectrum extend beyond this limit 
and are thus significant in the sense that they are larger than the ones 
one would expect from a pure noise spectrum. 

STATISTICAL METHOD FOR G-MODE SEARCHi'NG 

At frequencies where the g-modes are expected to be seen in the 
irradiance their number density for each degree is already high and the 
structure significantly complicated by the rotational splitting, the li
mited resolution and the noise of the spectrum. Therefore, it would be a 
very tedious and complicated task to try to identify each peak indi
vidually and it seems that only a statistical method can be used success
fully. 

The order of the g-modes in the frequency range below 80 tLHz is 
always higher than about 10 to 20 for IJ= 1 and 2. Therefore, an asymp
totic behaviour as described by Tassoul (1980) could be assumed. This was 
the basis for the analysis by F&D. However, as the periods considered can 
no longer be regarded as short compared with the rotational period it
self, coupling between the modes has to be taken into account. Berthomieu 
et al (1978) have developed the necessary formalism to treat this effect. 
Results show that at the limit of low radial orders the effect is negl i
gible and the Tassoul formula is still valid. For periods above about 40 
tLHz the deviations become important. Thus all frequencies of the g-modes 
are now determined by directly calculating the eigenvalues of the trun-
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Figure 1: Smoothed power spectrum of 280 days of ACRIM irradiance measu
rements in the range from 2 to 80 J,lHz. Smoothing reduces the natural 
resolution to 0.1 J,lHz. 
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cated infinite tridiagonal matrix of Berthomieu. To reduce the computer 
time a two dimensional interpolation scheme with a 4x5 matrix of function 
values covering the envisaged range of To and VR for each g ,m,n combina
tion is used in the program of the analysis. 

For a fixed fundamental period To and a fixed rotational rate VR the 
line positions of the g-modes of different orders n for each g,m combina
tion are calculated and bins are filled with the power from the spectrum 
to be analysed within the width of the natural resolution and centered at 
this mode frequency. The powers of all orders n of one mode of one g,m 
combination within the frequency range concerned are summed up and a mean 
power per mode g,m is calculated. By varying To and VR five two qimen
sional arrays of mean power per mode can be constructed (g=1,m=-1,+1; 
g=2,m=-2,O,+2) . 

Rotational Rate VR <,..,Hz) 

... 
" 

3 
" .!. 

... 
" '" 
3 
" I 

'" 

!..F..!.i.::lg.::!u!.!.r~e_=.2",-: Ana lysis of a synthetic spectrum with To =38.6 minutes and 
VR =1.2 j1Hz for the modes g =1, m=±1 and g =2, m=±2, 0. Each point corre
sponds to the mean power per mode at the correspond i ng To and VR and the 
darker the point the higher the power is. 

As an example the results of the analysis of a synthetic spectrum of 
g-modes with To = 38.6 minutes and 1.2 j1Hz is shown in Figure 2. The 
synthetic spectrum is noise free and a constant power of 1 is attributed 
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to each mode R ,m,n at the frequency determined with the method described 
above. As expected, the two-dimensional pictures show one peak for each 
mode R,m at 38.6 minutes and 1.2 J.lHz. But they show also some structure 
outside the peaks. This is partly due to the fact, that in a limited 
frequency range a change in To can be compensated by a change in lJR and 
vice versa and partly due to some interference of modes not corresponding 
to th~ mode analysed. An obvious example of the first kind is the slant 
ridges in the R =1 diagrams and the curved ridges in the D =2, m=O ones. 
The curvature of the latter is due to the coupling between the modes; the 
asymthotic approximation would yield a rotation independent R=2, m=O 
mode. 

The same analysis has been performed for a simulated noise spectrum 
with no g-modes incorporated. For the simulation a random amplitude and 
phase of the signa 1 are assumed. This yields a X2 -distributed power spec
trum with a degree of freedom of two. Furthermore the mean power is 
assumed to vary as 1/f in order to simulate the behavior of the ACRIM 
spectrum in the range between 10 and 80 J.lHz (cf Figure 1). The results 
are shown in Figure 3. Again a structure similar to one found in the 
synthet i c data is d i sp 1 ayed; however peaks in one diagram do no longer 

Rotational Rate VR <,...Hz) 

Figure 3: Same as Figure 2, but for a simulated noise spectrum in the 
range from 10-40 J.lHz. 
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correspond to peaks in the others. Moreover the structure in the rotation
ally split R =2 diagrams is more or less lost. In order to reduce random 
peaks and to amplify the possible coincidence of peaks at a given To and 
VR the different diagrams may be summed together. Figure 4 shows the 
corresponding results for the noise spectrum and indeed most of the indi
vidual peaks are now buried in the noise. 

e-l.2 m= -2.-1.0.+1.+2 

Fundamental Period To (Minutes) 

Figure 4: Diagrams of power, summed over the two R=1, the three R=2 and 
all five together for a simulated noise spectrum in the range 10-40 iL Hz . 

Similar diagrams can be calculated for the frequency range 40 to 80 
tLHz. As the number of modes in this range is much smaller, the peaks for 
the synthetic spectrum are now sharper and some blank space with no power 
at all is found in the diagrams. The noise spectrum on the other hand has 
less structure~ Thus, this range would be much better suited for the 
determination of To and VR than the range with the longer periods. But in 
contrast to the synthetic spectrum the amplitudes of the real spectrum 
decrease toward the higher frequencies. 

RESULTS AND COMPARISON WITH OTHER DETERMINATIONS 

The results of the analysis of the ACRIM spectrum in the ranges 10-
40 and 40-80 tLHz are shown in Figures 5 and 7 for the individual modes 
and in Figures 6 and 8 for sums. The mean span, that is the mean differ
ence between the minimum and maximum of a diagram in units of the mean 
power of the corresponding spectrum for the ACRIM is about 1.45 and 1.65 
times greater than for the corresponding noise spectrum. The two numbers 
refer to the lower and higher frequency ranges. Thus, the ACRIM spectrum 
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Figure 7: Same as Figure 2, but for ACRIM spectrum, 40-80 ~z. 
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Fundamental Period To (Minutes) 

Figure 8: Same as Figure 4, but for ACRIM spectrum, 40-80 ~z. 
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shows significantly more structure than the one of simul"ated noise. 

Several maxima are present in the diagrams. However, it is not ob
vious that one can be found, which occurs in all modes and the two fre
quency ranges at the same place. For the lower range the sum of the .£ =1 
diagram shows maxima at To of 35.7,37.7,38.1,43.4 and 44.9 minutes. In 
the higher range only the one around 45 minutes is strong enough and 
found in both m values at the same place. This peak coincides with the 
one in the lower range and both are at a rotational rate of about 1.0 
J,lHz. These results would therefore indicate a To = 45.0±0.2 minutes and a 
VR = 1.00±0.05 J,lHz. 

As to the /1=2 the situation is less comfortable: In the lower range 
strong peaks are found around 42 minutes and somewhat weaker ones at 
35.8, 41.5, 43.3 and 44.6 minutes. The diagrams of the higher range show 
a strong peak line just at the edge of. the diagram at 45.5 minutes. Other 
smaller peaks may be localized at 37.2 and 38.7 minutes. But these are 
only present in the m=O and not in the m=±2 diagrams. In any case it 
seems, that at least for this frequency range the m=±2 modes are quite 
weak, if they exist at all. 
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Figure 9: Same as Figure 2, but for the Stanford data, 40-80 J,lHz. 
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The only other determination of g-modes by Scherrer and Delache 
(1983) yields a To of 38.6 and lJR of about 1.2 tLHz, which has been con
firmed by the analysis of F&D in a very restricted range of To and lJR. 

This latter is obviously overriden by the present more extended analysis. 
In order to compare the Stanford with the ACRIM data a "synthetic" spec
trum with amplitudes of 1 at frequencies of the lines below 80 tLHz ex
tracted from the Stanford spectrum is produced. The same type of analysis 
is made, but the bin width is increased to 0.16 tLHz in order to account 
for the different resolution of the original data. The results are shown 
in the Figures 9 and 10. It is somewhat disturbing that only the fJ=2, m=O 
diagram shows a peak at 38.6 minutes. This may be due to the fact, that 
some lines - mainly identified as fJ =1 - have been omitted, because they 
lie above 80 tLHz. However, the resemblence with the ACRIM diagrams of the 
higher range is striking: For both the fJ=1 peak lies towards the higher 
end of the diagram and no maximum is seen close to 38.6 minutes. On the 
other hand, both show the 38.6 peak line in the fJ =2, m=O diagram. These 
coincidences suppprt the· realism of most parts of the patterns. However, 
the nonexistence of a coincidence of the maxima in .0=1 and 2 is distur
bing and may mean that the true maximum is outside the analysed range and 
probably above 45 minutes. 
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Figure "10: Same as Figure 4, but for the Stanford data, 40-80 tLHz. 
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OBSERv.ATIONS OF LOW-DEGREE MODES FROM THE SOLAR MAXIMUM MISSION 
(Extended Abstract) 

Martin Woodard 
center for Astrophysics and Space SCiences, c-o~~ 
University of California, San Diego 
La Jolla, california 92093 

Mean frequencies, amplitudes, and linewidths for the solar s-min 
p-mode oscillations of degree 0, ~, and 2 have been obtained from "280 days 
of SMM-ACRIM total irradiance data (Woodard and Hudson, ~983). The 
frequencies are in good agreement with measurements obtained from velocity 
data, and are given in the Table. The amplitudes of the modes lie along a 
well defined envelope of power vs. frequency, which peaks at 3.~ mHz and 
has a width of 0.7 MHz (FWHM). The r. m. s. amplitude of the highest peak in 
the spectrum (n=2~, t ... ~) is .. 3 ppm of the total flux. The linewidths of the 
narrowest t-o modes are .. ~ P.Hz (FWHM). A broad "continuum" of power caused 
both by solar surface granulation and by instrumental noise interferes 
with the analysis of s-min modes. The continuum spectral power in a ~ P.Hz 
band near 3 MHz corresponds to an apparent r.m.s. variation of "0.5 parts 
per million of the mean solar flux. 

These results have been interpreted in terms of a model in which the 
amplitudes of the separate (ntm) modes obey a damped harmonic oscillator 
equation and are excited stochastically by broad-band noise. The full 
width at half maximum of the implied Lorentzian line profiles, Ilw (angular 
frequency), is related to the e-folding decay time, T, of the squared mode 
amplitude: 

giving T- -2 days for the longest-lived t-o modes. Consistent with this 
estimate is an upper limit T - 6 days inferred from the dispersion in the 
power of the dominant 1-0 modes. To obtain this limit, I assume that the 
spread in power within the ensemble of peaks in the overall spectrum 
indicates the time variations in the power of a typical individual mode. 
The chaotic oscillator model predicts the relation 

2 a .. 2T/T 

for the fractional variation in power, 0, in an interval of duration T. 
Allowance was made for dependence of the mode power upon frequency by 
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taking the deviation in mode power about a best-fit parabolic envelope. 

No fine structure of the type claimed by the Birmingham group 
("rotational" splitting) is seen in the t=l or 2 modes. The t"'l modes 
appear to be broader than the t=O modes, an indirect indication of 
splitting. If, as seems reasonable, the m-substates of t-1 multiplets have 
the same width as the 1=0 modes, then the observed 1-1 widths can be used 
to measure solar internal rotation. Experiments with simulated data show 
that the signal-to-noise ratio of the ACRIM data is capable of 
distinguishing the splitting (~O. 43 J1.Hz per m-state) expected from 
uniform solar rotation at the surface rate from the splitting 
corresponding to a mean interior rotation rate exceeding twice the surface 
rate. Precise limits will be the subject of a future paper. 

Several additional analyses have been performed. Time variations in 
the power of indi vidual ! -0 modes (n-19, .. , 23) among non-over lapping 
-50-day sub-intervals of data have been measured directly and imply a 
lifetime between 1 and 5 days, in agreement with the 2-day lifetime 
inferred from linewidth. An attempt was made to measure secular changes in 
the frequencies of normal modes by dividing the data into "100-day data 
sub-strings. The amount of variation is consistent with the random 
fluctuation expected from the oscillator model of excitation and with the 
amount of background noise in the data. If the frequencies of the main taO 
and 1 modes vary in unison then the amount of variation which occurred over 
the N10 month observation span must be significantly less than 1 J1.Hz. 
Uncorrelated frequency drifts of this magnitude cannot be discounted, 
however. 

The statistical uncertainty, Ov, in the frequency estimate from a 
data string of length T, computed with the aid of the chaotic oscillator 
model, is ideally given by 

2 
(21TOV) = 1/2TT 

so that for T= 2 days and T = 300 days Ov = 0.05 J1.Hz. More realistic error 
estimates which take into account the background noise level of the data 
imply errors of NO.2 J1.Hz for the dominant modes. These error bars are 
significantly less than the frequency splittings expected from uniform 
solar rotation and indicate the accuracy to which the solar internal 
rotation rate can eventually be inferred from p-mode data. Detailed 
results concerning frequency and amplitude variations and the method of 
error analysis will be presented in a future paper. 

The author thanks Roger Ulrich for covering his travel expenses, and 
Hugh Hudson for useful discussions and continuing support. 

Reference 

Woodard, M. and Hudson, H.S., 1983, Nature 305, p. 589. 
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Table of frequency centroids (P.Hz) 
(Note that the errors quoted here are larger than those in 
the reference article, as a result of further tests with 
simulated data.) 

Degree, I.. o 2 

Order n 

17 2559.2±0.3 2619.7±0.5 
18 2629.S±0.S 2693.7±0.2 2755.0±0.5 
19 2765.0±0.4 2828.7±0.2 2890.0±0.4 
.20 2899.1±0.3 2963.S±0.2 3024.5±0.3 
21 3034.0±0.2 3098.7±0.2 3160.0±0.3 
22 3169.4±0.2 3233.4±0.2 3295.2±0.S 
23 3303.8±0.3 3369.5±0.2 3433.2±0.5 
24- 3439.8±0.3 3505.1±0.3 
25 3642. 5±0.5 
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IMPLICATIONS OF OBSERVED FREQUENCIES OF SOLAR P MODES 

J0rgen Christensen-Dalsgaard 
HAO/NCAR. Boulder. Colorado, USA and NORDITA. 
Blegdamsvej 17, DK-2100 K0benhavn 0, Denmark 1 ) 

Douglas Gough 
Department of Appl i ed Mathemati cs and Theoret i cal 
Physi cs and I nst i tute of Astronomy, Uni vers i ty of 
Cambridge, England 

Abstract: We present a preliminary comparison of the 
observed frequencies of 5-min modes reported by Duvall & 
Harvey in these proceedings with theoretical frequencies for 
a traditional solar model. The differences between 
observations and theory can be understood qualitatively in 
terms of two separate sources of error in the frequency 
calculation, one near the solar surface and the other at the 
base of the convection zone. There is no indication of 
errors in the deep interior of the model. 

1 Introduction 

Duvall & Harvey (these proceedings) present tables of 
frequencies of individual 5-min p modes of degree ~ from 1 
to 14, as well as frequ~ncies at selected values of ~ from 
20 to 200 obtained by fitting spline functions to ridges in 
a two-dimensional power spectrum of the data. The accuracy 
of the former set of frequenc ies is given as 1 ~Hz ; the 
latter set is less accurate. These resul ts const i tute the 
largest set of solar osci llation data publ ished to date. 
Undoubtedly such and even better data will eventually be 
used for an actual inversion (Gough. these proceedings); 
however it is of immediate interest to compare them with the 
frequencies predicted by a traditional solar model. The 
simple comparison presented here was carried out during the 
meeting, with the help of a pocket calculator, using a 
printed table of theoretical frequencies. 

Before considering the results 
discuss briefly the behaviour of 

1. Present address 
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oscillation (see also the review by Toomre. these proceed
ings). A mode with g > 0 penetrates to the point where its 
wave number vector is horizontal. at a radius n given by 

(1) 

where c is the adiabatic sound speed and II is the cyclic 
frequency of oscillation. Radial modes propagate vertically 
and penetrate to the centre. The modes considered here have 
a fairly restricted range of v. Consequently the positions 
of the turning points n are determined chiefly by g and by 
the variation of sound speed in the equilibrium model. Plots 
of n have been given by Duvall & Harvey (1983) and by 
Christensen-Dalsgaard (1983). For a mode with given g and lI. 

the frequency is sensitive only to the structure of that 
part of the model which lies outside r = n . 

At a given radius r in the model, the sound propagation 
time across a horizontal wavelength is 

(2 ) 

Thus at r = n. th is equal to the period l)- 1 of 
oscillation. Further from the centre tn exceeds the period. 
and so there, roughly speaking, there can be no horizontal 
propagation of information across a wavelength during a 
period. and the horizontal structure of the mode, as 
specified by g, has little direct influence on the dynamics. 

Thus the eigenfunctions of modes with approximately the 
same frequency, but different degrees, should be very 
similar except near the turning points. This has been 
confirmed by numerical computations. 

These simplified arguments suggest how one might 
recognize the effects on the oscillation frequencies of 
localized changes in the equilibrium model or in the 
oscillation calculation. A modification very close to the 
surface of the model should cause changes in the frequencies 
that depend on frequency but not on degree. A modification 
located in a deeper region has no effect on modes with 
turning points above that region, but it causes changes for 
modes with turning points in or slightly below it that 
depend on both frequency and degree. Frequenci es of modes 
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with turning points considerably deeper suffer changes that 
are determined predominantly by frequency. and only to a 
1 esser extent by degree. These propert i es are used in the 
following interpretation of the observations of Duvall & 
Harvey. 

2 Results 

Fig. 1 illustrates differences 8V between frequencies 
observed by Duvall & Harvey and corresponding adiabatic 
frequenci es computed f or Mode 1 1 of Chri stensen-Da 1 sgaard 
(1982). For clarity. frequency differences for modes of the 
same degree have been connected with continuous (for i , 20) 
or dashed (for i ~ 40) lines. 

One is struck by the fact that the modes appear to fall 
into two distinct groups. Modes of degree i , 20 all lie 
within a sloping band with a width of a few ,uHz: here, 
therefore, 8v is almost exclusively a function of v, the 
variation with i being largely consistent with the scatter 
in the observed frequencies. Similarly the modes with i ~ 40 
have frequency differences within a somewhat broader band 
with a steeper slope. Here the scatter is larger. There is a 
slight hint of a weak systemati c dependence on i. though 
that may be the result of observational error. which Duvall 
& Harvey quote as being ± 10 ,uHz. In particular, the large 
excursions between adjacent modes. seen for example for i = 
60 and i = 200, are almost certainly observational. 

3 Discussion 

The results shown on Fig. 1 may be interpreted in terms of 
the discussion in Section 1. The fact that f1v is 
predominantly a function of v wi thin each band indicates 
that for each group of modes the errors in the computation 
of the frequencies arise in a region that is substantially 
closer to the surface than are the turning points for all 
the modes in the group. For the group wi th i ~ 40 th i s 
implies that the .sources of error are localized to the outer 
5 per cent by radius of the Sun. The difference in the slope 
between the two bands may be understood in terms of 
additional sources of error located between the turning 
points corresponding to i = 20 and i = 40, namely at a 
fractional radius of 0.6 0.7. Apparently these partly 
compensate for the errors at the surface, thereby reducing 
f1v for low degrees. Finally it is worth noticing that the 
absence of significant variation of f1v with i when i , 20 
suggests that to within the accuracy of these observations 
the deep interior of the Sun is correctly described by a 
traditional solar model. 
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Figure 1. Differences hv between the frequencies observed by 
Duvall & Harvey (these proceedings) and adiabatic 
frequencies computed for a traditional solar model: hv is 
shown as a function of frequency v, and for clari ty modes 
with the same degree have been connected with cont i nuous 
U ~ 20) or dashed U f 40) lines. The values of Rare 
indicated in the figure. 
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Tests have shown that numer i ca 1 errors in the 
calculation of the equilibrium model cause frequency errors 
that are smaller than the /lv obtained here by a factor of 
about 4. The numerical errors associated directly wi th the 
frequency calculation are quite insignificant (see also 
Christensen-Dalsgaard 1982). Thus there must be significant 
errors in the physical assumptions behind the calculation of 
the frequencies. 

Several effects may contribute to the errors near the 
solar surface. Nonadiabaticity is important only very near 
the surface. but its effect on the frequencies is probably 
substantially smaller than the observed /lv. Furthermore it 
has a much stronger dependence on v than that found here. 
However one cannot exclude the possibility that the 
exci tation of the modes, whatever its source, might cause 
frequency shi fts comparable with the di f ferences observed. 
Within the framework of adiabatic oscillations. inaccuracies 
in the equation of state might cause errors in the adiabatic 
exponent f1 which would affect the oscillation frequencies; 
it is plausible that such errors would largely be restricted 
to the outer 5 per cent or so of the model. In addition, the 
e igenfrequency cal culat i on does not account for turbul ent 
pressure, which may modify the structure of the equilibrium 
model and affect the dynamics of the oscillations near the 
surface. 

Concerni ng the errors in the i nteri or of the mode I, it 
should be noticed that their inferred location is quite 
close to the lower boundary of the convection zone. This 
could indicate an error in the depth of the convection zone, 
or that the neglect of convective overshoot in the 
calculation of the solar model has a significant effect on 
the calculated frequencies. 

4 Conclusion 

The differences between the frequencies observed by Duvall & 
Harvey (these proceedings) and those calculated for a 
traditional solar model (Christensen-Dalsgaard 1982) can be 
understood in terms of two separate sources of error in the 
frequency calculation: one located near the surface of the 
model and the other near the base of the convection zone. 
The former might be caused by, for example, the excitation 
of the oscillations, errors in the equation of state or 
effects of turbulent pressure; the latter could result from 
an error in the depth of the convection zone. or from the 
neglect of convective overshoot. The results give no 
indication of errors in the energy-generating part of the 
model; it remains to be seen whether that is consistent with 
the partial mixing that Berthomieu, Provost & Schatzman 
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(1984) have proposed to account for the period spacing 
observed for high-order g modes. 

The present analysis is clearly preliminary, and 
largely qualitative. To verify the existence of two separate 
sources of error more and better observations are needed, in 
particular for modes with degree higher than 20. In addition 
it would be useful to study the effects on the frequencies 
of specific changes in the equilibrium model, attempting to 
reproduce the features of the observed ~v and to place 
1 imi ts on the set of models that are consistent wi th the 
observations. The effects on the frequencies of mode 
excitation and turbulent pressure must also be studied. 

A formal inversion of the data will be attempted, to 
determine the change in the model required to bring it into 
agreement with the observed frequenc i es. Th is. however. is 
not completely straightforward owing to uncertainties in the 
physics of the oscillations close to the solar surface. It 
is unlikely that adequate theories of turbulent pressure and 
mode excitation will be formulated in the near future. 
Therefore the inversion procedure discussed by Gough (these 
proceedings) will probably need to be extended to include a 
component of the frequency difference that accounts for 
these uncertainties. 

NCAR is sponsored by the National Science Foundation 
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INTRODUCTION 

Solar oscillations are manifested in the solar atmosphere as 
spatial and temporal perturbations in the local thermodynamical and 
mechanical properties. When measuring the solar radius/diameter, these 
perturbations enter the observation through changes in the radiative 
source function and opacity at the extreme limb. When compared to the 
disk center, the observable portion of these perturbations is changed 
in spatial character by projection effects and oblique optical-depth 
geometry. The time-varying solar radius signal at SCLERAl is produced 
by an edge definition sensitive to the resultant changes in the spatial 
shape of the limb intensity profile. The object of this study is to 
interlace theory and observation in an attempt to further determine the 
shape and properties of the limb signals which display these global 
solar oscillations. The following sections review the observations and 
discuss the methods and results of this study. 

1 . 
SCLERA is an acronym for the Santa Catalina Laboratory for 

Experimental Relativity by Astrometry jointly operated by the 
University of Arizona and Wesleyan University. 
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Fig. 1. The detector geometry for the 1979 SCLERA data set. The 
numbers label the locations of the six limb intensity 
photodetectors. 

CHARACTERISTICS OF THE 1979 SCLERA DATA 

The data considered in this analysis were collected in the summer 
of 1979 using the SCLERA instrument. Both the instrument and the 
details of the data analysis have been described in other works 
(Stebbins 1975, Bos 1982); therefore, only a brief summary of the 
salient points will be given here. 

Over a period of 41 days, time strings were recorded of intensity 
profiles at the extreme limb; the measurements were taken at six 
position angles near the solar equator. The detector geometry is 
shown in Figure 1. Off-line, the finite Fourier transform definition 
(FFTD) was applied twice to each profile with window sizes of 27~'2 and 
6~8 [see Hill, Stebbins and Oleson (1975) for a detailed description 
of the FFTD]. Differences were then taken between the two defined 
radii to form six time strings of radius functiona1s primarily 
sensitive to changes in limb profile shape. Finally, linked baseline 
temporal Fourier transforms were performed on the six time strings over 
the entire observing period. 
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By linearly combining the six transforms, different symmetry 
conditions can be enforced, controlling the parity of the spatial part 
of the oscillation about the solar equator or the north-south line. 
Mathematically, the solutions which describe an oscillation are products 
of a radial eigenfunction and a spherical harmonic, with order numbers 
nand' (.Q., m) respectively. Setting the parity amounts to assigning 
the .Q. and m order numbers to be even or odd. This property somewhat 
reduces the spectral peak density in a given linear combination and 
aids in the identification of modes. 

Two linear combinations are used in this analysis; Fl and F2 refer 
to the sum and difference, respectively, of the two diametrically 
opposite groups of limb signals. Each group consists of the sum of 
three individual radius functiona1s. Since the Fourier transform is 
a linear operator, combining the individual transforms is equivalent to 
combining the radius functional time strings; these procedures therefore 
may be used interchangeably. The properties of the observed signal 
combinations may be quantified by first assuming the spatial and 
temporal form of the intensity perturbation at the limb to be 

r~m (u,t) = r;,o <u) 'exp {i < ~m + m ~ +wt ) } 

where u is the distance from the nominal disk edge, Ii (u) is the 
m = 0, t = 0 radial perturbation, ~ is the standard an~le in a 
spherical coordinate system, ~ is the initial phase angle of the 
particular state in the ~ dire~tion, and 00 is the temporal angular 
frequency. We define the two combinations to be 

F1 = FFTD [f 1 (.Q., m, ~m' ~, 00, t)] 

F2 FFTD [f2 (.Q., m, ~ , ~, 00, t)] = m 

where 

[1 + ~-l/"'] 
fl = [Re Iio cos(~ +oot) - 1m I~ sin(~ + oot)] mom 

{<_llm/Z [1 +z<-1)mj cos m (~ _ ~+) 
<m-1)IZ [1-<-1lm 

] .in m (: - ~+) I + (-1) 
2 
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[
1 + (_l)R,+m] 

f2 = 2 [Re I~o sin ( <l>m + w t ) + 1m I~o cos(<I>m +wt )] 

_ (_1)(m-l)/2 
[ 

1 - <-l)m

1 
(1T)} cos m - - <1>+ 

2 ' 
2 

and <1>+ is <I> measured positively from the disk edge toward the center. 
The notation FFTD [ ] symbolizes the conversion of changes in the limb 
darkening function into radius functionals defined as differences 
between two FFTD edges; Fl and F2 are in units of distance. 

Specific information about I' can be obtained by taking a ratio 
between these two quantities at tfi~ assigned temporal frequency for a 
given mode of oscillation. This procedure allows the testing of the 
spher~.cal harmonic representation of the eigenfunction, particularly 
the e1m<l> portion. An additional consistency test of the symmetry 
properties may thus be made. Measurement of the radial shape and 

(3) 

phase of the intensity perturbation is also possible. Further, by 
taking the ratio of Fl and F2 , cancellation is effected of differences 
in modal amplitude due either to excitation or spatial filtering of the 
PR, (e, <1»; comparison between modes is then possible. In practice, 
ex~raction of the above information requires that the ratio be studied 
as a function of azimuthal order number m. This method implicitly uses 
the frequency splitting of the states into resolved multiplets. 

In the work of Hill and Bos (1984), a series of 32 rotationally 
split multiplets has been identified; these states vary in degree R, 
from 2 to 22 and in nodal index n from 1 to 3. The frequencies range 
between 450 and 800 ~Hz, implying the p-mode assignment. At ~he time 
of this writing, four of these multiplets were available for ratio 
analysis (see Table 1). Figures 2 and 3 display separate averages of 
the real and imaginary parts of the ratio, with negative m states 
having been reflected through the origin and averaged with positive m. 
Given the size of the error bars, significant structure is present in 
both the real and imaginary portions. The object of this analysis is 
to invert the structure evident in this data and extract the properties 
of the source intensity perturbation. 
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TABLE 1. Four Multiplets Used in Inversion Analysis 
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Figure 2. Imaginary part of ratio (F2/Fl ) averaged in m for four 
multiplets. The smooth curve is not a fit. 
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Figure 3. Real part of ratio (F2/FI ) averaged in m for four multiplets. 

RESULTS OF THE INVERSION TECHNIQUE 

A simple representation is needed for the initial inversion. The 
present work assumes that the intensity perturbation is all of one 
spatial phase; this phase is also chosen so that I~ (u) is real. The 
radial form of Ii (u) is expanded in a generalized °power series where 
a minimum number °of individual components are selected to give the best 
fit to the ratio data. Hence, 

The aa will be determined by the fitting procedure, the g (u) are 
members of a subset of all monomials of the form a 

±j/k ± -1 -~ u (i.e., u, u ,u ,u ,etc.), 

a is the pointer into this subset, and 

Hu) ~ cos -1 (1 + ';Q) 
where Re is the radius of the sun. Again, u is a linear distance 
measure on the solar disk, with the origin at the nominal edge and 
defined positively outwards. Note that, although the coefficients 
aa will generally be complex, they are real in this simplification. 
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Applying the FFTD operation to the individual components of this 
representation, we define two new functions 

and 

t/J (m) = FFTD , a 

S (m) = FFTD 
a 

[ga(U)osin m~(u)] 

[gaCU)OCOS mtCU)] 

(6) 

where ~ (m)'and S (m) are units of distance and u has been removed by 
integra~ion in th~ FFTD procedure. Equation (2) shows the relationship 
between Fl and ~ (m) and between F2 and S (m). The form of the ratio 
discussed earlie~ is now defined to be a 

R(m) 
S (m) 

a 
(7) 

where the 'temporal dependence and amplitude cancel. A fitting procedure 
must now be applied to determine the a. Clearly, without loss of 
generality we may set a = 1 independen~ of the form of g (u). Several 
fitting procedures haveobeen developed to handle the gen~ral problem of 
complex coefficients. A simple approach was chosen here to illustrate 
the sensitivity of this method. In future work, a general technique will 
be used to invert the more complete set of ratio data including all 
32 multiplets. 

In the simple approach, the subset of g (u) used is 
U

o u+ 1 +~ .. h d . . a f 1 f , ,u necess1tat1ng t e eterm1nat10n 0 on y two ree 
parameters, a, and a2 " The coefficient a is set to unity as discussed 
above. Requiring R(m) to be infinite at om = 9 and zero at m = 16, 
values of a

1 
= -0.0709 and a2 = -0.5664 are obtained. A continuous 

evaluation of R(m) is given in Figure 4, and Figure 5 shows a 
reconstruction of I2 (u) for this model. For comparison, R(m) is 
calculated and plott~d for a constant I2 (u) (i.e., a = 1, a l = 0 = a2); 
these results appear in Figure 6. 0 0 

Comparing the results for the simple model to the ratios averaged 
over four multiplets in Figure 3, we see that the general structures 
are quite similar, notwithstanding the difference in overall magnitude. 
Conversely, the data and Model 2 show little similarity. 
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Figure 4. Resultant ratio curve when a singularity is imposed at 
m = 9 and a zero at m = 6. 
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Figure 5. Reconstruction of intensity perturbation fit which gives 
ratios in qualitative agreement with data. 
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Figure 6. Resultant ratio curve for a spatially constant I~o(m). 

CONCLUSION 

The simple example presented above serves two purposes. First. 
it illustrates the potential sensitivity with which radiative 
processes in the solar atmosphere may be probed. A comparison of 
Figures 4 and 6 graphically demonstrates this aspect. Second, the 
shape of the intensity perturbation at the extreme limb must be 
peaked in the outermost layers of the solar atmosphere, a result 
consistent with previous work at SCLERA (Hill and Caudell 1979; 
Knapp et al. 1980). The model used in this work is a simplified one 
and was applied only to a subset of the data; therefore, the present 
results must be considered preliminary. 

This work was partially supported by the Air Force Office of 
Scientific Research anrr the National Science Foundation Division 
of Atmospheric Sciences. 
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OPTIMIZED RESPONSE FUNCTIONS FOR TWO-DIMENSIONAL OBSERVATIONS OF 
SOLAR OSCILLATIONS 

J¢rqen Christensen-Dalsqaard 
HAO)NCAR1Y .Boulder. ~olorado. USA and NORDI~A. 
Blegdamsvej 17. DK-2100 K¢benhavn 0. Denmark 2) 

Abstract: Reasonably realistic response functions are 
calculated for solar oscillation observations made in 
Doppler velocity which is averaged over a grid of 30" x 30" 
pixels. In a simulation of an analysis scheme proposed for 
the HAO/SPO Fourier Tachometer the responses for the 
individual pixels are combined using Chebychev weighting 
functions. It is shown how a technique developed for 
geophysical inversion may be used to find linear 
combinations. concentrated within a fairly narrow range of 
D - and m-val ues. of these transf ormed responses. The 
extension of this analysis to bidirectional observations is 
discussed. 

1 Introduction 

Before observations of solar oscillations can be used for 
helioseismology. the individual modes of oscillation that 
are present in the timestring must be isolated and 
ident i f i ed. Thi s. however, is great I y compl i cated by the 
extreme richness of the spectrum of solar oscillations. 

As discussed in the review by Toomre (these pro
ceedings) the structure over spherical surfaces of a mode of 
oscillation is described by a spherical harmonic y~(e. ¢), 
which is characterized by its degree D, measuring the total 
wave number (or, equi val ent I y. the total number of noda I 
lines on the surface) and its azimuthal order m, that gives 
the number of nodal meridians. For each value of D and m the 
Sun can support a large number of modes. which differ in 
their frequencies and in the radial variation of their 
eigenfunctions, and which are characterized by their radial 
orders n. When rotation is neglected the frequencies are 

1. NCAR is sponsored by the National Science Foundation 
2. Present address 
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independent of m: in the presence of rotat i on th is 
degeneracy is lifted. and so to each pair (n.R) there 
correspond 2~+1 different frequencies, distinguished by the 
value of m. 

In the absence of an adequate theory for the excitation 
of solar oscillations there is no way to predict a priori 
wh i ch of these poss i bl e modes will be preE:\ent, However it 
appears from the observations that the excitation mechanisms 
are generally br'oad-band. so that a substantial proportion 
of the modes in a given region of the spectrum is excited. 
In particular. in the 5 min region the average amplitude per 
mode depends only weakly on P (Christensen-Dalsgaard & Gough 
1982); here most modes in the frequency range between about 
2 and 5 mHz are excited to sufficiently high amplitudes to 
permit their detection in present observations. 

An observation made at a single point on the disk of 
the Sun is equa 11 y sens i t i ve to a 11 modes: al thouqh power 
spectrum analysis in time provides separation between modes 
in frequency. the spectra are far too complex to permi t 
isolation of the individual modes. If instead the signal is 
averaged over an aperture of characteristic size d (in units 
of the solar radius). the sensitivity falls off for P > d- 1 

roughly like (Q d)-1. and so here the number of P -value:::, 
contr i but i ng to the observat ions is 0 ( d - 1 ). However unl ess 
d is of order uni ty. so that the aperture covers a large 
fraction of the disk of the Sun. the data still contain too 
many modes to permit their isolation. 

Thus more soph i st i cated schemes are needed. 
Observations of 5 min modes of high degree have generally 
averaged the signa 1 in the North-South direct i on: in th i s 
way modes with ,71::: P are selected. From the resulting 
dataset in one spatial dimension partial modal isolation in 
m can then be accomplished by Fourier transform in the 
azimuthal angle ¢. possibly neglecting the curvature of the 
Sun (e.g. Rhodes. Ulrich & Simon 1977: Deubner. Ulrich E" 

Rhodes 1979: Hill. Toomre & November 1983). Similarly Duvall 
& Harvey (1983: these proceedings) made averages in the 
East-West direction to isolate modes wi th ' m ::: 0 and 
performed a Legendre transform in the North-South direction: 
in this way they were able to isolate quite effectively 
modes with P between 1 and about 140. 

Limb measurements (e.g. Brown. Stebbins & Hill 1978: 
Yerle 1981: Bos & Hill 1983) constitute a dis\tinct type of 
1-d i mens i ona 1 observa t i on2.. Bos &. Hill obta i ned some 
discrimination between modes by combining observations made 
at 6 different positions on the solar limb: however the 
density of peaks in the resulting spectrum was still. in the 
most favourable part of the spectrum. close to the limit of 
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the frequency resolution corresponding to thei~ 41 day time 
string (cf Christensen-Dalsgaard 1982). Gough & Latour 
(1984) recently showed how the Backus & Gilbert (1970) 
technique of optimal averages could be modified to set up 
combinations of large numbers of observations at the limb so 
as to obtain optimum isolation of the modes. They found that 
little separation between modes with the same value of P - m 
could be obtained: this is a general difficulty associated 
with limb observation. 

To get a more complete modal separation in both P and 
m. observations in both spatial dimensions must be used. If 
observations covering the entire solar surface were 
possible. the modes corresponding to a given (R. m) could be 
completely isolated by using the orthogonality of the 
spherical harmonics. This is not possible with observations 
from only one direction. or. as in the original SDO proposal 
for satell i te observat ions of solar osc i llati ons. from two 
directions in the plane ~f the ecliptic. The present paper 
considers how to set up such observations to obtain the 
optimal isolation. 

In considering the criteria for adequate modal iso
lation, one must take into account the possibility of more 
or less accidental degeneracy between the frequencies of 
modes of different P. Ulrich has pointed out that for 
degrees from about 4 to about 12 there is a fai r 1 y large 
number of cases where vn,~,m ~ vn-l,~+3, m' for 1m - m'l < 3 
(see also Mihalas. Christensen-Dalsgaard & Brown. these 
proceedi ngs); here \.In, t ,.. is the cyc 1 i c frequency of the. 
mode (n. P. m). If a given observing scheme with maximum 
sensitivity at P = Pc has significant sensitivity at P = Pc 
± 3. the modes at P = Pc may therefore be affected signi
ficantly by interference: this can result in difficulties in 
mode identification. or in apparent changes in the inferred 
frequencies or amplitudes (Loumos & Deeming 1978: 
Christensen-Dalsgaard & Gough 1982). Thus a natural goal for 
the observ i ng scheme is to limi t the sensi ti v i ty to modes 
with I.e - .e c I ( 2, for Pc =4 - 12: in this way one ensures 
that the modes at the maximum in sensitivity are unaffected 
by interference. At higher degrees similar degeneracies 
occur between modes with a separation in .e of 4 or more; but 
this is less likely to cause problems. 

In principle the observing scheme could be set up by 
determining directly the weights to be applied to each pixel 
in such a way that the modal isolation is optimized: this 
would correspond to the approach used by Gough £, Latour 
(1984), This is possible in the two-dimensional case 
provided the resolution is sufficiently coarse. However with 
more than a few hundred pixels the computational effort 
becomes excessive. In this case one must make an initial 
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analysis. with a preliminary set of weights. possibly based 
to some extent on observational convenience. The results of 
this preliminary analysis can then be combined by using the 
Backus & Gilbert technique to optimize the modal isolation. 
As an example of this we have considered combinations of 
observations for a scheme using Chebychev weighting. pro
posed by T. M. Brown (private communication). Here the 
optimization resulted in a considerable improvement of the 
separation of the modes. 

We have also applied the Backus & Gilbert technique to 
form optimal combinations of observations made from two 
separate directions in the plane of the solar equator. This 
pro v i des a longer base li ne in if;. and correspond i ng I y a 
better resolution in m: there is no significant direct 
improvement in the resolution in P, in particular for small 
m. 

A bas i c assumpt i on is that we can characteri ze the 
sensitivity of the observations to a specific mode by a 
spatial response function 3) (e.g. Dziembowski 1977: Hill 
1978: Christensen-Dalsgaard & Gough 1982). which may be 
calculated by considering the mode in isolation, neglecting 
other velocity fields in the solar atmosphere. The combined 
observed signal then consists of the sum over all the modes 
present of their apparent velocities, weighted by the 
response. wi th the addi tion of the effects of the other 
velocity fields which contribute to the noise in the data. 
This would be true for a strictly linear observing scheme. 
such as the Fourier Tachometer (Brown. these proceedings): 
however for a scheme that is not linear. such as the 
magneto-opt i cal f i Iter (Cacc ian i & Rhodes. these pro
ceedings) the other velocity fields directly affect the 
sensi t i v i ty of the observa ti ons. Brookes. Isaak & van der 
Raay (1978) discussed the effect of solar rotation on the 
sensitivity of whole disk resonance cell observations; the 
effects of nonlinearity on spatially resolved observations 
have yet to be analyzed. 

3. Starting with Hill (1978) the term 'spatial filter 
function' has been employed to denote the sensitivity of 
observations of solar oscillations to specific modes. 
This. however. is in conflict with the well-established 
practice of using 'filter' for the weights applied to a 
signal. Thus we propose henceforth to use 'spatial 
response function' instead of 'spatial filter function'. 
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2 Mathematical preliminaries 

For a single linear. undamped mode 
velocity field on the solar surface 
spherical polar coordinates (8. ¢) 

of oscillation· the 
can be written. in 

+ 
v 0 (e,lP;t) n, x',m 

m { m + = (-1) c Re V Po(cose)a r R-,m n,R-,m x, 

m 
U rdPn(cose)+ + n,R-,m x, 

/R- (R-+1) L de a e 

+ ~ pm(cose) Et en., R-,m n, R- ,m 
. ] i (m<.p-w t+€ ) } 

sJ.ne SL <.p , (2.1) 

where PT is the associated Legendre 
(-1)11 was introduced for consi stency 
the spherical harmonics. Furthermore 
ization constant chosen such that 

function~) The factor 
with the definition of 
Go > 0 is a normal-

N ,m 

r 1 
C 2 J P~ (x) 2 dx = 

R- ,m N 

4 
1+0 ' 

mO 
(2.2) 

where 0 is the Kronecker del ta: then I v" . ! • II I and I a.. ! • m I 
are the rms over the so lar surf ace of the vert i cal and 
horizontal components of the velocity. We neglect the 
variation in v".t. II and a..!. II with height in the 
atmosphere. and assume that v".!... > O. F i naIl y Wn ,!. II = 

4. No unique sign convention has apparently been established 
f or the assoc iated Legendre funct ions. Here we follow 
Abramowitz & stegun (1965), so that for m> 0 

m 
P fi, (x) 

and 

-m m (R--m)! m 
P SL (x) = (-1) (SL+m)! P SL (x) 

where P, (x) is a Legendre polynomial. 
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2Jtv ... I ... is the angular. oscillation frequency. which is 
real. 

The ratio [~. t • fA I Vn. t. fA is det.ermined by t.he linear 
eigenfunction. Christ.ensen-Dalsgaard & Gough (1982). equa
t.ions (4.5) (4.7) give a simple approximation to this 
ratio. according t.o which 

(2.3) 

with approximate equality when Vn.t.fA is substantially 
smaller t.han the acoustical cut.-off frequency in the solar 
atmosphere. Here Va 2 = CHI ( 4Jt2 .R 3) (where Gis the grav i
tational const.ant and Hand .R the mass and radius of the 
Sun), corresponding to Va ~ 0.1 mHz. In the last approximate 
equality in equation (2.3) we used that for moderate or 
large ft. fti/2 V• ~ Vo.t.o. the frequency of the f mode (e.g. 
Gough 1980). We are here principally concerned with modes 
with V greater than 2 mHz and ft less than 50. Here 
[~.t ... /v;,d ... < 0.1. This justifies that we neglect the 
horizontal component of the velocity in the following. It 
could. however. be included without any fundamental 
difficulty. 

We assume that the observed spectral line shift is 
simply caused by the Doppler shift corresponding to the 
line-of-sight component of the velocity vector in equation 
(2.1). For simpl i city we choose a coordi nate system with 
polar axis in the plane of the sky, and take the line of 
sight to correspond to the ¢ = 0 axis. With this choice the 
line-of-sight velocity for a single mode is 

V n (8,tp;t) 
D;n,x"m 

= V ( -1 ) m pm ( 8 ) n,5I"m c5l"m 51, cos (2.4) 

x cos (mtp-w n t +£ n ) s in8 costp , n,x',m n,x',m 

and the combined local line shift is given by 
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V
D 

( e , (f) ; t) = I v ( e , (f) ; t) 
n D;n,)/",m n,!V,m 

( 2 .5 ) 

The frequencies Vn • J • '" are in fact. only well-defined 
when the po I ar ax i s coi nc ides with the ax i s of symmetry 
(provided it exists: cf Isaak 1982, Gough 1982, Dicke 1982), 
and we assume that thi sis the ax i s of surf ace rotati on. 
Thus equation (2.4) is only valid twice a year, when the 
rotation axis is in the plane of the sky. Otherwise the 
inclination of the rotation axis, if not corrected for, 
causes a mixing of modes with the same 4egree. As discussed 
in Appendix A this may be calculated using the trans
formation formulae for spherical harmonics (e.g. Edmonds 
1960): for g = 10 the mixing involves about 5 values of mat 
the maximum inclination of 7.25°. 

The quantity resulting from the observation can in 
general be represented as 

(2.6) 

where M.8,¢:11) is a set of weight functions. labelled by 11. 
and the integration is over the area A of the solar disk: we 
assume that the weight functions are real (the possibility 
of complex weights is briefly discussed in Section 4. 
below). From equations (2.4) and (2.5) we obtain 

Vobs(t;lJ) = 

+ s m 

I V t/J [8' I l(lJ)cos(w t-£ ) 
n n,)/",m m )/." m n,)/",m n,)/",m n,!V,m 

( lJ ) sin (w n t - £ n )] n,!V,m n,!V,m (2.7) 

where the spatial response function ~J.m is deEined by 
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rv 

(-1)mJ w(e,~;~)c~ p~(cose)cos S~,m(~) = m~ sine cos~ dA 
A ,m 

, 

for m ~ 0 

S ~, -m (~) = (-1)mJAw(e'~;~)C~,mP~(COSe)Sin m~ sine cos~ 

for m > 0 . 

Furthermore the sign factors s and ~ are defined by m m 

1 for m > 0 

Z;;m = { 0 
-1 

for m = 0 

for m < 0 

(2.8) 

dA , 

(2.9) 

and ~m = 1 for m ~ 0, ~m = (_1)11 for m < O. The added 
complication of having to introduce ~m stems from the sign 
convention for P~ (cf. footnote 4). 

Finally, assuming an infinitely long observing se
quence. the temporal Fourier transform of the observed 
signal is 

VObS(W;~) 1 
J vobs(t;~) 

e iwt dt = 2'fT 

1 I V {r rv + i Z;;m S ~ , _ I m I (~) ] = "2 t/J m LS~,lml(~) x 
n,~,m 

n,~,m 

(2.10) 
iE: 

e n,~,m o(w-w 0 ) 

n,x',m 

for a finite time string. or for damped oscillations. the 
delta function is replaced by a line profile of finite 
width. 
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3 The calculation of the spatial response functions 

Instead of using directly equation (2.6) to calculate the 
response of the observations to a mode of oscillation. it is 
convenient to use a procedure that follows more closely the 
actual analysis of the observations. We shall assume 
throughout that the observations record apparent spectral 
line shifts. interpreted as velocities, associated with 
individual pixels in a grid on the solar disk. and that 
these pixel observations are combined linearly in such a way 
as to isolate a restricted set of modes. Correspondingly the 
response calculation can be divided into two parts: 

i) Calculate the responses of the individual pixels to a 
specific spherical harmonic. 

ii) Combine these in the same way as are the observations. 

Clearly step i) includes all the assumptions about the 
response to the oscillations of the observed spectral line. 
possibly taking into account the height variation in the 
eigenfunction. the combined effects of velocities and 
temperature perturbations on the spectral line. etc .. 
whereas step i i) should be as sImilar as possible to the 
analysis of the actual data. 

As discussed in Section 2. we assume that the observed 
spectral line shift is solely due to Doppler shift caused by 
a purely vertical. height-independent velocity field. Then 
the response of a pixel Pi to a single mode is simply the 
intensi ty-weighted average of Vo n (cf. equation (2.4» 'n N m over Pi . and may be wri tten as ", 

v(p) (t;i) = V 1jJ [S(P)I I (i) cos(w t-£ ) 
n,~,m n,~,m m ~, m n,~,m n,~,m 

( 3 . 1 ) 

+ 1;; S(p) (i)sin(w t-£ )] 
'm ~,-Iml n,~,m n~~,m 

where the pixel responses are given by 
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S'(p) (i) = 
9, ,m ~;~)m J I(e')C9, pm(cose) cos m~ sine cos~ dA , 

I (i) P. ,m 9, 
1 for m ~ 0 

( 3 . 2) 

s(p) (i) = 
9" -m 

(_l)m J m 
(p) I(8')c9, p (cose) sin m~ sine cos~ dA 

I (i) P. ,m 9, 
1 

for m > 0 . 

Here 1(8') is the intensity. where 8' (given by cos 8' = 
sin8cos¢) is the angle between the radius vector and line of 
sight: we use for 1(8') the continuum limb darkening 
function, and as in Christensen-Dalsgaard & Gough 
approximate it by a quadratic fit (Allen 1973). I(p) (1) is 
the intensity associated with PI , 

I (P) (i) = J I (e ') dA • 
P. 

( 3 . 3 ) 

1 

The combination of the observations is specified by a 
set of transformation weights {W(p) (i: /.1)}, i = 1. 2. "" /.1 
= 1. 2. . Here i labels the pixels, whereas /.1. as in 
Section 2. labels the different transformations. Thus in the 
u-th combination the observed velocity is 

= 

I 
n,9"m 

v(p) (i;t) 
n,9"m 

[
"" (t) I V 1); 8 1 1 (]J) cos (w n t-E: n ) 

n n,9"m m 9" m n,x',m n,x',m n, x',m 

+ 1:;; 
m 

rv( t) 1 
89, _I 1 (]J) sin(w n t-E: n ) J ' m n,x',m n,x',m 

where the transformed response functions are 

(3.4) 

(3.5) 

As in Section 2 we assume that the weights, and hence the 
transformed responses, are real. 
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We have computed pixel responses for a set of quadratic 
pixels with sides 0.033 x 0.033 R. where R is the radius of 
the solar disk. Tl"H'0! pl}~els were alignE!d in the North-South 
and East-West directions. with no gaps. All pixel~~ lyinq 
entirely within a circle of radiu~ 0.9 R and centred on the 
dis}{ were included (8ee FiS!. 1). Th(? integral:::, in equation::., 
(3.2) and (3.3) were evaluated using Simpson quadrature in 8 
and 1, . Further detail:;:, about the computation are given jn 
Appendix B. 

A8 an example of a transformation we have used a 
modified version of a scheme ori9inally propo2,ed (but now 
abandoned) for the analy::;'t3 of the Four'ier T."tcliorneter ded:.:J 
(T. M. Brown. private communication). Her-e the weight IE; 
apr)roximately 

where dis t.he <"i28 of the pixel. in unitE; .:,[ P: 

~. = 
1 

x. 
1 

x max 

('3.6) 

(3.7) 

where (.\;. }~) are thE:' rectanc.rul.31- c(lOrdinate2, of the centre 
of the pixel, 2Ymax is tiH':' he19ht of the pixel. c(ilumn .:tt "I; . 

and 2xmax is the total length of the (!quatocidl co:,; ,:,f 
p i }( e 1 ~~ (8, e e Fig. 1). U and {~ are C h e bye h e v pol y n 0 rn i a 1 :", 0 f 
the sec 0 n d 1\ 1 n d, and t. hE: J. abe lUi:: I) r 1: e s P I) r: c1.::. t. i) the p ct 1 r 
(P. q). Thi::::, weiqht function was de:::;icrnecl to be ::,oln8what 
2,imilar to a 2.phericfll harmonic, ye:t '"ittl cert·a:i.n fE'dt'..lLt'E. 

aimed at reducing the ncd::::,e in the original ver:,:~ion of the 
Fourier Tachometer. 

It might be noted that the corre8pondence between these 
Chehychev weights and the spherical harmonics is incomplete: 
the latter have straiqht horizontal and curved vertical 
nodal lInes. whereas th~ weight functions given by equation 
(J.E,) have curved hori;~ontal and .3traight vertical nodetl. 
lines. Thus one can expect that these weight functjons 
provide a mode separation inferior to that produced by. f r 
example. weight functions based on spherical harmonjcs. 
Ther'sfore theY'H8 well suited to test the opti.mi.::'.,=;l:i.r'n 
procedure to be discussed in Section 4. 
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Figure 1. Lay-out !)f the pi;.{el:.:, on the disk of the ::~un: x:: 
sine cos¢ and _v:: eosR are rectangular coordinates. measured 
in units of the radius R of the disk. For the purpos',e of 
defining the weight W'p) (.1; 11) (ef. equdtion (3.6)) the 
pt}{el Pi, whose centre has coorc1inateE:~ (,~j. _l-'i). is 2,hown as 
black. and the column of pixels to which Pi belongs. as well 
as the equatorial row of pixels, are hatched. 

When the pixeL:, are placed E:~ymrnetrically with respect 
to the centre of the diE:dc, as in the present calculation. 
the transformed respOnE:~e2, ;:\atL:~fy certain selection rules. 
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Figure 2. Transformed responses S~~:. (u). for Chebychev 
weight (cf. equation (3.6» with p = q = O~ At each ~. m a 
"+" is shown if S~~? (u) > O. and a "-" if S~~? (fJ.) < D. The 
size of the symbol is proportional to IS1~~(J.l)I. As q is 
even, the responses corresponding to m < 0 are all zero (see 
Table 1). 

due to the symmetry properties of the spherical harmonics. 
Thus the transformations may be divided into four symmetry 
classes. such that in each class Sl~? (fJ.) is only non-zero 
for selected ~ and m. These are described in Table 1. 
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Figure 3. Transformed responses g~!~ (~) for Chebychev weight 
with p == 7, q = D. See caption to Fig. 2. 

Table 1 

Symmetry classes for Chebychev transforms 
,.., 

Class p, q satisfy 3~ ! ~ (1.1) 'I 0 only for 

1 p even. q even P-Ill even. III f 0 
2 p odd. q even .Q-Ill odd. III ~ 0 
3 p even. q odd P- m even. III < 0 
4 p odd, q odd P-Ill odd. III < 0 
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Figure 4. Transformed responses §~~~ (M) for Chebychev weight 
with p::: 6, q::: 2. See caption to Fig. 2. 

Examples of responses transformed wi th the Chebychev 
weights are shown on Figs. 2 - 5, for various combinations 
of p and q. It is obv i ous that these we ights succeed in 
concentrating the sensitivity reasonably well within Ie ± 3, 
where Ie is the va 1 ue of ,~ correspond i ng to the max i mum 
sensitivity, with a similar range in m. This might be 
considered an encouragingly good performance. in view of the 
qua li tat iva d iff erence in behav i our between the Chebychev 
weights and the spherical harmonics. However it would still 
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Figure 5. Transformed responses gl!~ (~) for Chebychev weight 
with p = 0, q = 8. See caption to Fig. 2. 

cause considerable interference in anyone observation 
between modes separated by 3 in degree. and hence it does 
not solve the problems with accidental degeneracy discussed 
in Section 1. 

234 



4 Optimal combination of the observations 

It may be desirable to combine the results of an initial 
analysis of the observations, as given in equation (3.4), in 
such a way as to improve the modal isolation. To do so we 
seek a combination 

( 4 • 1 ) 

that is predominantly sensitive to modes with (p, m) close 
to (Po,n~). This can be written as in equation (3.4), but 
with S1~~ (~) replaced by the optimized response 

( 4 • 2 ) 

Similarly. as in equation (2.10). the temporal Fourier 
transform of v~ g ~ is 

"'(0) 
vobs(w;.Q,o,m o) = 

(4.3) 

If the 8/1 (Po ,flO) are assumed to be real. this is also 
true of the optimized responses S~?~(go.flO). In this case 
the integrated power associated wi th the mode (n. g. m) is 
the same on the positive and negative w-axis and is 
proportional to 

= ( 4 • 4 ) 

where 
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(4.5) 

and we may take S!~~ ~ O. It should also be noticed that 

= ( 4 • 6 ) 

thus, because of the purel y real we ight i ng, there is no 
distinction between modes with positive and negative m. On 
the other hand. by using complex all (.110 , no) it is possible 
predominantly to have sensitivity to positive m on the 
positive w-axis: the negative w-axis is then predominantly 
sensitive to negative m. Such complex weighting is also 
implicit in the Fourier transform in if> employed by, for 
example. Rhodes et al (1977). Complex weighting may be 
employed in the optimization procedure: however we shall not 
consider it further here. 

To determine the coefficients all (.IIo,llb) we use the 
Backus & Gi lbert (1970) technique, as did Gough & Latour 
(1984). Specifically we determine the aq(.llo,llb) that 
minimize 

( 4 .7) 

subject to 

( 4 • 8 ) 

Here [/(D,lml: Do,llb) is a suitable weight function that is 
"small" at D = Do, Iml = Illb I, and "large" elsewhere. Notice 
that in accordance with the symmetry in equation (4.6) we 
apply equal weight to m and -m. The resul t of the 
minimization of 1J' subject to r:f = 1 is to concentrate as 
far as possible S~~~ at D = Do and Im(= no: the choice of the 
actual value of the normalization in equation (4.8) is 
clearly arbitrary. 

This procedure is not strictly equivalent to the normal 
Backus & Gilbert technique (see the review by Gough, these 
proceedings). In the latter the normalization is applied 
directly to the linear combination of, for example, the 
rotat i ona 1 kerne Is: in contrast we have normal i zed on the 
sum of squares of the combined responses, thereby, ina 
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loose sense, fixing the total power. This modification is 
natural, in view of the fact that both positive and negative 
responses are involved: a normalization that included the 
sign of the optimized responses would have little meaning. 

The optimi zed responses are to some extent determi ned 
by 'the choi ce of 1I. We have used 

(4.9a) 

where 

x = ~ [ (9,- 9, 0) 2 + (I rn I - _ I rno I ) 2] ; (4.9b) 

this has the desirable property that equal weight is applied 
to all (P. m) pairs far from (Po, I1l:J ). However no extensi ve 
experimentation has been carried out so far to determine the 
optimum form of If; possibly different forms may be indicated 
in different situations, to obtain specific properties of 
the resulting response. 

It is easy to show that the' minimization of equation 
(4.7) subject to equation (4.8) is equivalent to determining 
the smallest eigenvalue A .. I n of the generalized eigenvalue 
problem 

I A",v av = A I Q a v ~ v ]l,V v (4.10) 

where we have suppressed the arguments (Do, 11l:J) of a,,; here 

A = 
]l,v (4.11) 

and 

=~I 
9, ,m 

S'(t) (]l) S'(t) (v) • 
t,m t,m (4.12) 

Then the minimum of 11' is v: I n = A .. In. If the spatial 
responses S~~~ (~) are linearly independent, the matrix 
{QII,v} is positive definite, and equation (4.10) may be 
solved using standard techniques. The generalized eigenvalue 
problem arises because of the quadratic normalization used 
here; in ordinary Backus & Gilbert inversion equation (4.10) 

237 



is replaced by a set of linear equations for the coef
ficients {a }. 

\) 

It may be shown that when the input responses separate 
into symmetry classes. as in the case of the Chebychev 
weighted responses (cE. Table i), this is true also for the 
optimized responses: thus only coefficients ~"i" for which v 
belongs to a particular symmetry class are non-zero. It is 
then natural to seek the m.inimum of 1/ in the symmetry class 
correspondi ng to the (Do, 1l1J) desired. The symmetry may be 
exploited computationally by condensing the matrices {A#.v} 
and {Qu.v} to include only elements for which u and v have 
the correct symmetry. 

We have used the optimization technique on the Che
bychev-we ighted responses computed inSect i on 3. Chebychev 
indices p and q (cL equation (3.6)) between 0 and 9 were 
used. and the summation over P and m included values between 
o and 50. A few typical optimized amplitude responses 
S~~~(Do,ll1J) are shown on Figs. 6 9. By comparing with 
Figs. 2 - 5 it is obvious that a substantial improvement in 
concentration has been obtained. In particular the sens
itivity is now quite low at Do ± 3, and so the interference 
due to frequency degeneracy between modes separated by3 in 
P should be substantially reduced. In fact in the 
"hide-and-seek" experiment by Mihalas et al (these pro
ceedings), which used these responses, the modes could be 
uniquely identified and their frequencies were recovered 
within the frequency resolution given by the length of the 
time series: this indicates that interference had no serious 
effects. 

These results show that well-concentrated responses can 
be obtained on the basis of the Chebychev-weighted re-
sponses. However the resu I t i ng coe f f i c i ents ,"iu (Do ,1l1J ) 
corresponded to an amplification by a factor of up to about 
two of the errors contained in the original Che
bychev-we ighted data. Similar probl ems with error ampl if
ication occur in ordinary Backus & Gilbert inversion (see 
Christensen-Dalsgaard & Gough, these proceedings). As there, 
they may be solved by adding to 'It in equation (4.7) a 
measure of the variance. with a weight that can be ~djusted 
to get a reasonable trade-off between the degree of 
concentration and the error amplification. This was done by 
Gough & Latour (1984) for the optimized combination of limb 
observations. We plan to pursue it in future. 

It might be noted that al though the ~"i/l are fairly 
large, the weights applied to the individual pixels are 
reasonable. From equations (4.2) and (3.5) the optimized 
responses may be written as 
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Figure 6. Opt.imizer:! responses St~~Uo./lo). defined in 
equations (4.4) and (4.5). for t.he amplit.ude deduced from a 
power spect.rum. wit.h Ro = ~ = O. The responses are shown in 
t.he same way as on Fig. 2 - 5 (see capt.ion t.o Fig. 2). It. 
should be noticed. however. that t.he S~~~ are defined such 
as to be non-negative and independent of the sign of m (cf. 
equat.ion (4.6)). 

S'(p) (i) 
R-,m 

(4.13) 

where 
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Figure 7. Optimized responses S~~~ (.go,llIJ) with go = 
= O. See caption to Fig. 6. 

W (0) (1',· no' m 0 ) = \' a (n m) W (p) (1' ., I) N l.. NO' 0 ,,.., 
lJ lJ 

10, IlIJ 

(4.14) 

and here the weights W( D) (i: Ro , 1lIJ) are comparable in size 
to the original Chebychev weights w< p) (i: /1). Thus it is 
possible to combine the pixel data to obtain a fairly high 
degree of concentration, without serious error ampli
fication. As might have been expected, the optimized weights 
are, at least qualitatively, similar to spherical harmonics. 
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Figure 8. Optimized responses S~~~ <Do ,/10) with go= 10, ITO 
= 5. See caption to Fig. 6. 

5 Optimization of bidirectional responses 

It is straightforward to extend the techniques discussed in 
Section 4 to the combination of two different sets of 
observations. Thus we can investigate the improvement that 
would result by having, as in the original concept for the 
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Figure 9. Optimized responses S~~~ (Po,l1O) with go = 10. 110 
= 10. See caption to Fig. 6. 

SDO. observations from two separate directions relative to 
the Sun. 

For simplicity we assume that. bot.h observing st.at.ions 
lie in t.he plane of t.he solar equat.or. t.he angle bet.ween 
t.hem being t; we also assume t.he observat.ional set.-up t.o be 
identical for t.he t.wo st.at.ions. It. is then easy to show t.hat. 
t.he Fourier transform of t.he t.ime st.ring obt.ained at. t.he 
second station is 
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u(t) (W'l1) = 1 I v \jJ 
obs' 2 n n, fL , m m n,)V,m 

x {fs(t) (l1) + is 8'(t) (l1)]e
i

£n,fL,m eim~o(w_w n ) 
L fL, \m\ m fL,-\m\ n, )V,m 

+ [8' (t) (l1) -is 8'(t) (11) Je -i£n, !L,m e -im<Jl o (w+w n )}; 
fL, \m\ m fL,-\m\ n,)V,m 

(5. 1 ) 

the Fourier transform v~~; (W~ ~) of the time string at the 
first station is given by an equation· corresponding to 
equation (2.10). We now seek a combination 

(5.2) 

that optimizes the concentration~ as in Section 4 we assume 
that all coefficients are real. This may be written as in 
equation (4.3), but with 

(5.3) 

where 

S (t) (l1) = 
fL ,m 

cos m~ 8'(t) (l1)-sin m¢ 8'(t) (l1) 
fL,m fL,-m 

( 5.4 ) 

As before the coefficients {a"Uo,Pb)}, {lj"Uo,Pb)} 
are determined by minimizing equation (4.7) subject to 
equation (4.8). This again leads to a generalized eigenvalue 
problem. where the eigenvector is now the combination {<7/1: 
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Figure 10. Bidirectional optimized responses S~? ~ (Po ,flO) for 
the ampl i tude deduced from a power spectrum. wi th Po = 10. 
flO = 0, obtained by combining data from two stations in the 
solar equatorial plane separated by <P = 90 0 • The responses 
are shown in the same way as on Figs. 7 - 10. 

A·}. It should be noticed that the symmetry conditions in q 
(or equivalently m) no longer apply. because of the com
bination of positive and neqative m in the calculation of 
Si~~ (~). However there is -still a separation into two 
symmetry classes according to the parity of R - m. 

For the Chebychev-weighted responses it was found 
computationally that the coefficients satisfied symmetry 
relations. which may be written as 
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Figure 11. B idirecti onal opt imi zed responses S1 ~ ~ (Do, Il1:J ) , 
with Do :: 10. Il1:J :: 5. See caption to Fig. 10. 

b = a(fI"m) (-l)q a 
V V 

(5.5) 

in the relatively few cases considered (J was -1 only for 
even D and odd m. and 1 otherwise.' That relations of this 
nature should exist seems reasonable. considering the 
symmetry of the problem; in particular it is natural that 
the symmetry in ¢ of the weight, given by the value of q, 
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Figure 12. Bidirectional optimized responses S1 ~ ~ (Po ./lb ). 
with Po = 10. /lb = 10. See caption to Fig. 10. 

should come in. However we have not attempted to prove that 
these relations are always true. nor have we made an 
exhaustive numerical search to try to verify them for a 
representative set of cases, Such relations. when firmly 
established. can be used to reduce the effort required to 
calculate the optimum combinations. It is obvious that this 
can apply only when the two observing stations are 
identical. ' 

Examples of combined bidirectional. Chebychev-weighted 
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responses are shown on Figs. 10 - 12. These all assumed ~ = 
900 : results for ~ = 600 and 1200 have also been computed. 
and are similar. The improvement over the mono-directional 
responses shown on Figs. 7 - 9 is quite striking. It should 
be noticed. however. that because the extension of the 
baseline is in ¢ this improvement occurs principally in 111. 

Thus for 110 = 0 the sensitivity is as high for D = Do ± 2. 111 

= O. as in the mono-directi onal case. I n contrast. f or Do = 
110 the responses are essentially conf i ned to D = m. and so 
the reduction of the spread in m of the response causes a 
reduct i on of the spread in D to D = Do. Do ± 1. Further 
improvement in the mode isolation in D would probably 
require additional observing stations away from the plane of 
the solar equator, but this seems entirely impractical in 
the foreseeable future. 

6 Discussion and conclusion 

We have attempted a reasonably realistic simulation of the 
observing process. in the sense that the spatial responses 
are based on averages of the spherical harmonics over 
individual pixels. This evidently neglects the effects of 
the variation with height of the eigenfunction. as well as 
the details of the perturbation in the spectral line 
profile. Such details are undoubtedly important in obtaining 
reliable measurements of the oscillation amplitudes 
(expressed in terms of. e.g., photospheric velocities) from 
the observed apparent line shifts: but they are unlikely to 
change qualitatively the conclusions obtained here. 

Our main result is that one can combine velocity 
observations made on a set of pixels lying within 0.9 solar 
radii from the centre of the solar disk, in such a way as to 
concentrate the sensitivity within about 5 consecutive 
values of D. Thus frequencies of modes at the central degree 
Dc are not significantly contaminated by modes with almost 
coincident frequencies at P = Pc ± 3. This seems to weaken 
considerabl y the· argument that bidirect i onal observat ions 
are required to resolve adequately the modes of degree 5 to 
15. In· fact the simulated data analysis by Mihalas et al 
(these proceedings), which used the spatial responses ob
tai ned here, showed that full identi f i cati on of the modes 
and determination of their frequencies to within the expect
ed accuracy were possible. Furthermore the observations of 
Duvall & Harvey (these proceedings) have yielded individual 
frequencies for nearly zonal modes of degree up to 14. 

To achieve such a high degree of modal isolation it is 
important to include as large an area of the solar disk as 
possible. By decreasing the observed area the widths of the 
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responses are correspondingly increased: thus if only pixels 
wi thi nO. 8 R are used. the responses at Pc ± 3 are about 40 
per cent of the response at Pc, and this would cause fairly 
serious interference in the power spectra. The size of the 
observing area may have to be restricted because of 
supergranular noise (Ulrich. these proceedings). Thus it is 
important that a careful analysis of such effects, based on 
simulations or, ideally, observations be carried out. 

The responses were calculated as optimized combinations 
of Chebychev-weighted pixel averages. These combinations 
were found by using the Backus & Gilbert technique of 
optimal averaging (see also Gough & Latour 1984). The 
Chebychev we ight i ng has been proposed by T. M. Brown to 
compensate for certain features of a specific observing 
scheme. and should probably not be generally applied. A more 
natural choice would be to analyze the observations with 
spherical harmonics: in fact the optimal combinations of the 
Chebychev weights were qualitatively similar to spherical 
harmonics. However it is not obvious that spherical harmonic 
we i ght i ng over a restr i cted port i on of the so lar surf ace 
provides responses with the best possible modal isolation: 
the Backus & Gilbert technique may be employed to seek 
opt i ma 1 combi nat ions of such responses. I n any case the 
results obtained here indicate the potential of this 
technique for constructing optimum analysis schemes for 
solar oscillation observations. A natural use of the 
technique would be to determine directly the weight to be 
applied to individual pixels in observations with limited 
spatial resolution. In principle we could have done so here, 
but due to the large number of pixels involved the 
computational effort would have been excessive. 

We have also considered the combination of observations 
made from two different directions. The resulting responses 
showed a considerable improvement in the mode isolation in 
m. and as a result there was also some improvement in the 
isolation in P, especially for m ~ b. Essentially no 
improvement in P was found for m ~ 0, where the sensitivity 
was still considerable at P = Pc ±2. Indeed it is entirely 
reasonable that an extension of the base-line of the 
observations in the ~-direction should have little effect on 
the separation of zonal harmonics. Thus in fact bi
directional viewing only partially meets the goal of 
improving the modal isolation, 

No attempts have been made to restrict the size of the 
coefficients in the optimized combinations by using the 
trade-of f technique (e. g. Gough, these proceedi ngs). As a 
result there was some amplification of the errors in the 
original Chebychev-weighted data; on the other hand the 
combined weights applied to the individual pixels were 
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reasonably small, and so no amplification of the errors 
associated with the pixel data should occur. Trade-off can 
easily be implemented in the optimization (cf. Gough & 
Latour 1984). and we intend to consider this in future. 
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proposing the use of the Backus & Gilbert technique to 
optimize the observations, and to T. M. Brown for many 
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Appendix A. Rotation of the spatial response functions 

As discussed in Section 2 the modes of oscillation should be 
descr ibed in terms of spheri cal harmoni cs ina coord i nate 
system whose polar axis iS,aligned with the rotation axis: 
we label this system J. . On the other hand it is 
computationally very convenient to evaluate the spatial 
responses in a system ~ with' polar axis in the plane of 
the sky. The transformation between the two systems can be 
carried out using rotation matrices for spherical harmonics 
(Edmonds 1960: see also Hill 1978). 

The coordinate transformation taking coordinates in 
I' ~ into coordinates in ~ can be described in terms of a 

set (a. S. r) of Euler angles (cf. Edmonds 1960, Chapter 1, 
for the definition). Then equation (2.1) for the velocity 
field associated with a single mode is valid in the system 
v4' . and instead of equation (2.7) we obtain 

vobs (t;ll) = I V t/J rLs , I I (ll) cos (w t-£ ) 
n,~,m n,~,m m ~,m n,~,m ,n,~,m 

where 

S" (,,) = \C);(~,) ( Q ) '" () 

~ , m to' ~ ,dV, m m ex , I-' , Y S ~ , m' II 

,.J 

and the S,.M (~) are still evaluated using equations 
Here §5~.1~ (a. S, r) is a real rotation matrix which 
derived from the complex rotation matrix :i) ~,'~ (a, 
used by Edmonds (1960). 

(A.l) 

(A.2) 

(2.8). 
may be 
S, r) 

We consider the special case where the transformation 
corrects only for the inclination of the rotation axis. 
corresponding to a rotation around the intersection between 
the solar equatorial plane and the plane of the sky. Here a 
= r = 0, and S = -8.,., where 8.,. is the inclination of the 
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Figure 13. Transformation matrix f) ~,'~ (a, 8, r) for spatial 
responses, for', = 10, a = r = 0 and 8 = -7.25° 
(corresponding to the maximum inclination of the rotation 
axis towards the observer), The format is the same as that 
used for the spatial responses (see the caption to Fig. 2), 

rotation axis relative to the plane of the sky, defined to 
be positive when the North Pole is closest to t~e observer, 
Fig. 13 illustrates the transformation matrix D~t~ (0, -O~, 
0) for' = 10 when Or = 7.25°, its maximum value. As might 
have been expected the matrix is diagonally dominated: 
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however there are significant matrix elements at Ill' - III = 
±2. Thus even this fairly small inclination causes a 
substantial mixing in the observations of the modes. 

While this gives rise to additional complication in the 
observed spectrum. the confusion is only in Ill; thus the 
problems caused by frequency degeneracy in g are not 
seriously worsened. Furthermore one may correct for the 
mixing in the calculation of optimized combinations of the 
responses by us i ng the rotated responses S/ ... (1.1) in the 
optimization procedure. 

Appendix B. The computation of pixel responses 

To compute the pixel responses according to equations (3.2) 
and (3.3) we have to evaluate integrals over the pixe12 .. 
This is done by quadrature. using Simpson's scheme in 8 and 
¢. The mesh in 8 is the same for all pixels in a row. and 
the mesh interval is restr i cted to be 1 ess than an upper 
limit n8 .. n • When the extent n8 j in 8 of the pixel is below 
n8 .... the integral is replaced by the value of the integrand 
at the midpoint in 8 of the pixel. multiplied by n8 j • 

Otherwise the mesh is uniform in 8. with points on the edges 
of the pixels and an odd number of points on each pixel. The 
mesh in ¢. which is in general different for each mesh point 
in 8. is defined similarly, the mesh interval being 
restr i cted to be 1 ess than t:.¢ ..... 

In the present calculation the pixels were set 
symmetrically with respect to the centre of the disk: hence 
the responses were only calculated for pixels in one 
quadrant and extended to the other quadrants using the 
symmetries of the spherical harmonics. We used n8 .. ax = n¢ .. ax 

= 0.02. Comparisons with responses for selected g and Ill. 

calculated with /:"8 .... = lJ.¢ux = 0.015. indicate that for g = 
60 the max imum errors in the pi xe 1 responses. in un i ts of 
the rms of the responses over all the pixels, are less 
than 10 per cent. and the rms error is less than about 2 per 
cent. Thus the errors in the transformed responses are 
probably also at most a few per cent. The errors decrease 
rapidly with decreasing g. 

The calculation of the Legendre functions requires a 
little care. We have used the recursion relation 

(~-m+l) P~+l (x) = (2~+1)XP~(x) - (~+m) P~_l(x) (B.l ) 
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together with 

(B. 2) 

( e . g . A bra mow i t z & S t e gun 1 9 6 5 ). T h u s for e a c hm m,. P: i s 
first evaluated from equation (B.2). and p~ 1S then 
calculated from equation (B.l) for increasing P. starting 
from P = m. This recursion appears to be stable: comparison 
of results obtained on computers with different word lengths 
indicates no serious loss of precision for fJ ~ 100. To avoid 
overf low it is adv i sabl e to work in terms of the scal ed 
Legendre functions Ct ... P! (cL Section 2). It might also be 
pointed out that the organization of the response 
calculation fits in naturally with the recursion at fixed m: 
For a given value of m the integrals in equation (3.2) over 
¢, at each of the mesh points in B. are independent of fJ: 
they are therefore evaluated only once, and only the 
integrals in B must be calculated at each value of fJ during 
the recursion. 

It is quite likely that a recursive evaluation of the 
pixel responses, and hence of the transformed responses. can 
be found. similar to the one discussed in Appendix A of 
Christensen-Dalsgaard & Gough (1982). This deserves to be 
looked into: certai nl y the eval uat i on by quadrature would 
become prohibitively expensive in terms of computing 
resources if a sub stant iall y larger number of pi xe 1 s were 
considered. or responses for higher values of fJ and m had to 
be computed. 
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'l'B.E EFFEClS OF IMAGE MOTION ON THE .R.-v DIAGR.AM 
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ABSTRACl: A simple two-dimensional (x,t) model of the solar oscillatory 
velocity field is subjected to a form of differential image motion. 
This image motion is meant to approximately model the effect of the 
Earth's atmosphere on observations of high degree solar oscillations. 
The distorted velocity field is analyzed to provide the apparent fre
quencies of the modes. Comparison of the results with the frequencies 
obtained from the undistorted case shows that the image motion can 
produce a discrepancy of as much as 12 ~z. 

I. Introduction 

The goal of helioseismology is to measure the frequencies of the 
normal modes of the Sun as precisely as possible, and then to infer the 
structure of the solar interior from these observations. It is thus 
important to assess sources of noise in the observations of solar oscil
lations. In this paper, I report the results of a preliminary study of 
the effect of image motion produced by seeing in the Earth's atmosphere 
on the .R.-v diagram of high degree solar oscillations. 

Differential image motion redistributes power in the .R.-v diagram by 
causing abrupt discontinuities in the original solar velocity images. 
These sharp features introduce frequencies other than the actual solar 
ones in the Fourier representation of the data. Image motion is thus a 
source of noise in the .R.-v diagram, which may change the shape of the 
ridges, and could change the apparent centroid of the ridge as ~efined 
by Hill et a1. (1984a, 1984b). This affects the results of the hori
zontal velocity inversion. 

In this paper, I used a simple two-dimensional (x,t) model of the 
solar velocity field and subjected it to a form of image motion approxi
mating the effects of the Earth's atmosphere. These artificially 

* Operated by the Association of Universities for Research in Astronomy, 
Inc. under contract AST 78-17292 with the National Science Foundation 
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distorted velocity fields were Fourier transformed to form ~-v diagrams 
and then subjected to the same centroiding method described in Hill et 
al. (1984b). The deviation caused by the image motion was then mea
sured. 

II. Method 

The synthetic data was generated to simulate the observations we 
have made previously in our studies of subsurface horizontal velocities 
(Hill, Toomre and November 1982, 1983; Hill, Gough and Toomre 1984a, 
1984b). The actual data was originally obtained with a total of two 
spatial dimensions (x,y) and one temporal dimension (t), and then aver
aged over one spatial dimension to form an (x,t) array. The synthetic 
data was generated to simulate only the final state of the data; thus it 
was generated in two dimensions (x,t). However, in order to model the 
transfer of velocities from pixel to pixel, the synthetic data was first 
calculated on a spatial grid of 1/4", a factor of 8 smaller than the 2" 
resolution of the actual data. The grid was loaded with a total of 22 
modes with n = 1, 2 and ~ = 500 to 550 with a spacing 
bJ. of 5. Frequencies were generated from the formula relating 
n, ~ and w found in Stein (1982). The modes were given constant and 
equal amplitudes and uniformly distributed random phases. 

The image motion was simulated by starting from a mean two-dimen
sional (k, v ) Kolmogorov power spectrum, that is, 

p(k) = k- S/ 3 , 
ko 

and a Gaussian spectrum 

p(k) = e 
(~k-~k)2 o 

for 0 < k < kO' 

The parameter ko, or cutoff wavenumber, was varied to provide a "coher
ence length" that is meant to provide the approximate size of a section 
of the image that moves as a unit. In all cases, the corresponding 
cutoff frequency Vo was set to 0.1 Hz, far above the temporal Nyquist 
frequency, thus providing a rapidly fluctuating temporal signature. The 
power spectral amplitude was given a random Gaussian distribution about 
the mean spectrum defined above. The phases were given a uniform random 
distribution between 0 and 2~. The resulting two-dimensional power 
spectrum was then inversely Fourier transformed to produce an array of 
seeing displacements d(x,t). The displacement array was scaled to give 
an RMS value defined to be the amplitude of the average seeing. 

Some typical displacement patterns are shown in Figure 1. These 
plots are one-dimensional slices of the two-dimensional displacement 
array. Panels A and B are slices as a function of x at a given t; panel 
C is a slice as a function of t at a given x. Panel A is for the case 
when the coherence length is set to 10" and the amplitude is set to 2", 
and shows the approximately 10" wavelength in the spatial pattern of 
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displacements. Panel B shows a case where the coherence length is 5" 
and the amplitude is 10". It shows a spatial wavelngth of about 5". 
Panel C illustrates the aperiodic temporal,behavior of the displacement 
resulting from the high cutoff frequency. 
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Figure 1: One-dimensional slices of typical seeing displacement 
arrays. Panel A: Displacement as a function of x at a given t for 
case 2. The amplitude is 2", the coherence length is 10". The 10" 
wavelength is readily apparent. Panel B: Displacement as a func
tion of x at a given t for case 9. The amplitude is 10", the coher
ence length is 5". Again the coherence length is evident. Panel 
C: Displacement as a function of t at a given x for case 4. The 
amplitude is 10", the coherence length is 10". The aperiodic tem
poral character of the displacement is due to the high cutoff fre
quency. 
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The displacements were then applied to the data by using them to 
provide a map specifying where the velocity in a given pixel would 
appear in the "observed" data. The velocity in a pixel (x,t) was moved 
to a pixel (x' ,t), where x''''x+d(x,t), and then added to the existing 
pixel contents. Eight adjacent pixels were then averaged together to 
simulate observations covering 512 x 512 points with 60 s time resolu
tion and 2" spatial resolution. This final velocity field is then 
transformed and the resulting artificial ridge pieces subjected to our 
centroiding analysis. A total of nine cases were investigated in this 
study using various combinations of coherence length (L) and displace
ments (D). These nine cases are summarized in Table 1. 

Table 1 
Image Motion Parameters 

Case Amplitude (arcsec) Coherence Length (arcsec) 

1 1 10 
2 2 10 
3 5 10 
4 10 10 
5 1 100 
6 5 100 
7 10 100 
8 5 5 
9 10 5 

III. Resu1ts 

Of the nine cases considered, only cases 4, 7, and 9 produced any 
change to the ridge shapes. These 3 cases are the ones in which D=10", 
close to the range of wavelengths of the modes of 11.42" to 12.57". 
Figure 2 shows the relevant portion of the artificial .R.-v diagrams for 
cases 4 and 9, as well as the diagram of the undistorted data and the 
diagram of case 2, a relatively mildly distorted trial. The scaling of 
the individual plots has been adjusted to give about the same apparent 
ridge height in all four panels; the number in the upper right corner of 
each panel is a measure of the actual height. In case 7, which had a 
large coherence length of 100", the ridges were completely obliter
ated. At a displacement amplitude of 10", and coherence lengths of 5"-
10", the shape of the ridges is substantially changed, although all of 
the main peaks seen in the undistorted case are also visible in every 
case of distortion. The background noise level is substantially raised, 
and the amplitudes of the ridges have dropped by a factor of about 16. 
For the "good seeing" case (D=2"), the amplitude also drops, but by only 
25%. 
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Figure 2: The 1-\1 diagram for some of the distorted data. Panel A: 
The undistorted diagram. The amplitude in arbitrary units is in the 
upper right corner. Panel B: The diagram for case 2, a mild distor
tion with an amplitude of 2" and a coherence length of 10". Very 
little change is evident and the amplitude has dropped by 25%. 
Panel C: The diagram for case 4, a more severe case with an ampli
tude of 10" and a coherence length of 10". The shape of the ridges 
is greatly altered, the relative background noise level is substan
tially higher and the ridge heights have dropped by a factor of 
16. Panel D: The diagram for case 7, also a severe case with 10" 
amplitude and 5" coherence length. The results are similar to panel 
C. 

This increased background noise level and decreased ridge amplitude 
produce an error in the determination of the centroid and hence in the 
measured frequencies of the modes. The artificial ridge segments were 
analyzed by the same centroiding and fitting procedure used previously 
(Hill, Toomre and November 1982, 1983) and discussed more fully in Hill, 
Gough and Toomre (1984b). For this artificial case, the ridges were cut 
in the vertical (constant 1 ) direction. A 3 knot fit was run through 
the resulting centroids. The resulting ridge posit~ons were then com-
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pared to the ridge positions obtained from the undistorted case. Figure 
3 illustrates the magnitude of the difference between the undistorted 
and the distorted cases as a function of position along the "pl" ridge. 
Both the difference and the postion are measured in pixels. The bold 
curve is the difference in the fit, the dashed curve is the difference 
in the raw centroids. Panel A is for the 1>=2", 1=10" case, and it can 
be seen than the difference is only a few millipixels. For this data, 1 
pixel = 30.7 pHz, so the error here is about 0.15 pHz. Panel B shows the 
results for the D=10", 1=10" case, and panel C is for the D=10", L=5" 
case. For both of these cases, the difference from the undistorted case 
is from 0.1 to 0.4 pixels, or about 3 to 12 pHz. The difference in the 
fitted centroids is typically smaller than the difference in the raw 
centroids. The same plots are shown in Figure 4 for the "p2" ridge, 
with similar results. The corresponding error in velocity for the modes 
shown here is from 25 to 100 m/s. These errors are substantial, and 
even though the inversion procedure greatly reduces the errors, they 
remain a significant source of noise. 
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Figure 3: The difference in the centroids of the "pl" ridges seen in 
Figure 2 as a function of position along the ridge. All differences 
are relative to the centroids of the ridges in Figure 2A, the undis
torted case. The solid lines are the difference in the fitted 
centroids, the dashed lines are the differences in the raw cen
troids. All units are in pixels, with I pixel in 6v corresponding to 
30.7 ~z. Panel A: Difference between case 2 and the undistorted 
diagram (Figures 2A and 2B). Panel B': Difference between case 4 and 
the undistorted diagram (Figures 2A and 2C). Panel C: Difference 
between case 9 and the undistorted diagram (Figures 2A and 2D). 
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Figure 4: As Figure 3, but for the "p2" ridge. 

IV. Discussion 
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It is not surprising that image motion severely affects the ~-v 
diagram only when the displacement amplitude is on the order of the 
wavelength of the modes. It is well known from many physical situations 
that waves are generally not affected by background disturbances with 
characteristic spatial scales that are either much smaller or much 
larger than the length of the waves, but are disrupted when the back
ground pattern has a spatial scale on the order of a wavelength. The 
same qualitative effect apparently holds in this study. The 10" seeing 
that causes the most disruption would typically be considered quite poor 
at a ground-based observatory; however, better seeing conditions would 
probably affect modes with higher values of ~ and thus shorter wave
lengths in a manner similar to that seen in this study. One might 
expect the ~-v diagram to be adversely affected only in the regions 
corresponding to the amplitude of image motion prevalent at the time of 
observation. 

The model presented here is crude and has a number of limi ta
tions. First, the model has only one spatial dimension, whereas actual 
data generally has two spatial dimension~. The addition of the second 
spatial dimension may affect the mode cancellation properties of any 
filtering performed on the data, and may introduce different frequencies 
from other modes as well. Secondly, no background steady velocity 
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fields such as supergranulation have been added. Such a velocity field 
may be a substantial noise source when image motion is considered 
(Ulrich 1984). Thirdly, the "observations" were assumed to be instan
taneous, rather than integrated over a finite length of time. A longer 
"exposure" time may help to average out some of the effects of image 
motion. Fourthly, the model considers velocities only , and does not 
take the nonlinearities of spectral line shape or detector response into 
account. Fifthly, only a small number of modes and consequently short 
pieces of ridges were considered. The addition of more modes covering a 
larger range in ..t would presumably show that different segments along 
the ridges are affected as the amplitude of the image motion approaches 
the wavelengths of the modes. Finally, the seeing was assumed constant 
rather than variable throughout the observational span. 

In addition, the original synthetic data was calculated with a mode 
spacing that is much wider than in reality. With a spacing of ll..t = 5, 
there was only about 1 mode in each resolution bin in the resulting ..t-v 
diagram. The actual spacing in ..t and v of the modes is such that there 
are actually approximately 30 modes per bin. The beating between such a 
large number of modes is another factor that may redistrbute power in 
the ridges and may thus be a source of error in inversions. This effect 
has not been considered here. 

In conclusion, it appears that image motion caused by the Earth's 
atmosphere may be an important source of error in the inversion of solar 
oscillation data obtained from ground-based observations. Howe.ver, 
further more detailed modelling must be done to ascertain whether the 
error so introduced is severe enough to warrant a satellite borne helio
seismology instrument. In addition, image motion must be taken into 
account when developing procedures to combine the data from different 
stations in a ground-based network. 
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Abstract: 'We discuss the effect ot the supergranulatlon velocIty tleld combined 
with seeing smearing of the solar Image on the measurement of solar 
oscillations. Depending on the nature ot the observatIonal velocIty 
determination scheme, the image motions can shift the background velocity 
pattern and produce a source ot nOIse that reduces the quality of the 
observations. We give a rough estimate for the magnitude of this effect and 
present observatIonal results WhICh are consistent with this estimate. 

1. Introduction 

The presence of turbulence in the earth's atmosphere causes the image of the sun 
to be distorted and shifted in a fashion which depends randomly on time. Part of 
the distortion moves the image as a whole and is removable by guiding during the 
observation or by registration after the observation. Another part of the 
distortion which occurs during an eKposure causes the image to be smeared. 
Unfortunately, a large part of the seeing effect causes the image to be 
distorted internally making it impossible to register or gUIde on all parts of 
the image simultaneously. Since the background velocity associated with both 
the supergranulations and the oscillatIons themselves has large transverse 
gradients, the shifting of the image from one piKel to another can produce an 
error in the measured veloclty. One applicatIon ot the oscIllatIon measurements 
will be to determine the frequencies of the larger scale modes. In this case 
the shifting of the velocity trom one plKel to another may cancel out and leave 
the result better than a simple estlmate would mdicate. In practice the degree 
of such cancelation is dltilcult to predIct because of such effects as piKel to 
piKel variations in sensitivity, minor non-linearities in the velocity 
determination scheme, and sub-piKel structure like gaps between piKels. These 
imperfections will prevent perfect cancelation even for the largest scale modes. 
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for the modes with structure near the scale of the ba.ckground variations, there 
is no cancela.tion even for a perfect observing system_ 

Recent measurements by Forbes (1982) of seeing induced motions ot the 
binary star --if Andromeda showed that if the motion of one component were 
followed then the motion ot the second component only 9 _ 6"" away would have 
been reduced by just a factor ot 2 _ Consequently, we cannot rely on image 
registration to compensate for seeIng dIstortion _ -fhe problem In the case of 
solar oscillation measurements comes from the need to cancel the large 
velocities of the solar supergranulation very preCIsely _ l:)ome ObserVIng systems 
such as the full disk resonance cell technique used by Crec, Fossat and 
Pomerantz (1980) and Cla.verie, et al (19'19, 191:11>, and the optically averaged 
system used by Duva.ll and Harvey <1'91:1::1) avoid the need to have accurate 
cancellation of the light shIt ted from one pIxel to another because the detectmg 
pixel is much larger than the supergranulation scale _ However, such systems 
have limIted abIlity to resolve the exact spatial structure ot the modes of 
oscillation and consequently cannot tuily determine the dynamical state of the 
inte[lor of the solar convectIve envelope _ In contrast, when the pixel sIze is 
smaller than the supergranules, Image motion wUl cause the average velocity of 
the surface observed by the pIxel to change by an amount WhICh is equal to the 
product of the image displacement and the velocity gradient within the 
supergranule _ Since a fully resolved obserVIng system wIH probably use pixels 
a few arc-seconds on a SIde and the supergranulatxon has a scale of roughly 
40'i1 , we can assume that the pixel is smailer than the supergranule _ Thus we 
treat the change in the pixel velocity as just the result of the shift in the 
posltion of the pixel relative to the supergranule _ Some fraction of this 
velocity change will not be cancelled and will show up as a velocity error_ 

In order to test these ideas, we have analyzed observatIons obtained at 
Mt _ \,Tilson with the Magneto-Optical Filter on July 27, 1983 _ These observations 
are described in detail elsewhere in this volume _ In this paper, we have broken 
the full day's observing sequence into morning and a.fternoon halves on the 
assumption that the quality of the seeing degrades dUrlng the day _ The two 
halves were reduced separately and compared to each other and to the combined 
spectrum _ This comparison is described in section III below_ 

2. Velocity Noise Due To Supergranulation 

The velocity gradient associated with the supergranulation is given 
approximately by 

dv 2 Vo sin e 
= dx 

L/2 cos e 
( 1 ) 

where v 0 is the peak horizontal velocity of the supergranulation, x is the 

position on the apparent solar image measured in arc-seconds, and L is the 
center to center distance between cells also in arc-seconds _ for numerical work 
we use the results of Simon and Leighton (1964) and take L = 32 ~ and 
v 0 :;: 420 mls - A more precise analysis which represents the supergranulation as 

a two dimensional planform would yield an RMS velocity within about a fa.ctor of 
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112 2 of the value given by equation (1), The angle 1:3 is the center to limb 
distance, Seeing causes random motions of the image position, Various theories 
are available to describe these motions with the simplest being the KOlmogorov 
described by the theory of turbulence, The work by Forbes shows a frequency 
dependence of the image motions w.hich is consistent with the Kolmogorov. theory, 
Other models of seeing such as that described by .l:!runnerU 982) have Slightly 
different frequency dependence, The ettect ot uSIng a dltterent exponent WIU 
be m'inor for our application, Adopting the simple Kolmogorov model we take the 
power spectrum of the dIsplacement ot the apparent posItion ot a tixed part of 
the sun to be 

p = 
5 

_a __ 

'V
5/3 

( 2 ) 

where P is the power spectral density (measured in arc-seconds
2 

I Hz) and 
s 

a is an amplitude which is proportional to the commonly quoted seeing size sO' 
In order to evaluate So we must integrate P s over some range In trequency, 

The seeing size normally is taken to mean the size of the blurred image of a 
pOint source, All frequencIes above some gUldmg frequency contribute to this 
blur. Thus we integrate P s from 'V 0 I the guiding frequency I to infinity. The 

resulting expression relating a to So is then 

( 3 ) 

Although expressions such as that given by Brandt(1969) provide estimates 
of a based on factors like the wind velocity and telescope size I we prefer to 
leave the normalization in the form of equation (3) so that the image blur 
appears explicitly in our subsequent equations. The total velocity noise 

generated by seeing av 2 is the integral from the sampling frequency 'V to 
5 

infinity of P times the square of the velocity gradient. After carrying out 
s 

this integral we find 

tan e 

For values of 'V 5 below 'V 0 I the effect of the seeing variations can be 

( 4 ) 

partially compensated by the guiding system, The coherence of the image tends 
to increase as 'V decreases so that the guiding at low frequencies is more 
effective in compensating for the seeing motion, Thus for low frequencies we 

assume that ('VON )213 is replaced by a compensation tactor C(v ) which 
5 s 

describes the effectiveness of the gUldmg system and the fraction of the image 
motion which is internal dIstortion, The results of forbes would suggest that 
C ('V ) should be of order 0,5 when the guider works well whereas the work by 

. s 
Fossat I Crec and Harvey (1981> indicates that the internal distortion for the 
low frequency variations is on the order of 0,01 times the image motion, 
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Numerically equation (4) becomes: 

2 
av = (50 m/s) 

2 
C (1) ) 

s 

2 
tan 8 ( 5 ) 

Both the solar velocity signal and the seeing induced noise are averaged 
over spa.ce and time when they are reduced to power on a .JI - v plane. Before 
the reduction, the amplltude of the seeIng Induced nOIse given by equation (5) 

should be compared to v ,the integrated amplitude ot the tlve mInute 
os 

oscillations, which is 500 m/s. Because the supergranulatlon structure is 
spatially irregular and the hIgh temporal trequency part ot the seeIng 
distortion is enough to introduce large velocIty changes, the frame to frame 
pOSitional correiatlon Implled by the low temporal frequency part of the seeing 
motion should not cause a frame to frame correlation in the velocity variations. 
Consequently, the power spectrum of the seeIng mduced velocity error should be 
independent of temporal frequency and spatial wave-number. Without additional 
information about the distribution of the seeing induced noise, we assume that 
it is distributed uniformly in frequency and wavenumber. The amplitude of the 
oscillatory power relative to the seeing induced noise then depends on the 
distribution of the solar power over the .P. - v plane. In particular if the 
solar power is concentrated into a fra.ction F of all the points on the .J! - V 

plane then the relative noise due to the seeing will be reduced by this factor. 
One part of F comes from the fact that the tIve minute oscI1l.at1ons are 
concentrated into a band about 1500 ~Hz wide. This introduces a factor of 
1500lV into F. Another factor comes from the tact that the power IS 

s 
concentrated toward low values of .J!. In our spectra, the power IS confIned to 
the lower quarter of the ..P. range. The further concentratIon ot power to the 
eigenfrequency ridges within the high power regions of the ok - V plane depends 
on several deta.ils such as the lifetime ot the modes, the resolution in J!, and 

the derivative of ,) with respect to ok. In our spectra whIch are for a single 
day's observation and which are confined to the central 40% of the solar disk, 
the concentration to the ridges adds about another tactor ot one third to F. 
Combining these factors we tInd that the ratio of the seeing noise to the five 
minute signal is 

Av 
2 

(-v ) = 
os 

0.01 C(V ) 
s 

tan e ( 6 ) 

For our observations the value of C is probably about 0.1 and the value of F is 
about 0.01 so that the seeing induced noise level is given roughly by: 

tan 8 ( 7) 

Although the level of noise due to this source is small relative to the stronger 
peaks within the five mInute band, tor weaker OSCIllations at other frequencies, 
the seeing noise is a significant factor as we will show below. 
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Due to the dependence of noise on the center to 11mb angle I the noise 
power must be averaged over the solar disk in a weighting integral of the type 
described by Christensen-Dalsgaard and Gough (1982). However I in contrast to 
the case considered by Christensen-Dalsgaard and Gough, the limb darkening 
function is not included in the integral for the spatlaUy resolved average 
because the determination of the velocity is done on a point by point basis. 

The averaging integration introduces a factor of (- 1n <1 - b
2

) I b2 - 1) 

where b is the radius of the observed disk measured in units of R
0

. This 

factor is only 0.4'7 if the observed portion of the solar dislc extends 75% of 
the distance from the center to 11mb. 11 I however I the Observed portion IS '7'0"10 

or 95% of the distance to the limb then the factor increases to 1.0 and 1.5 
respectlvely. In our observations I b IS 0.35 and the averaging tactor IS O. OB~. 

3. Observations 

As described elsewhere in this volume ,our data set consists ot a '7'. 1 hour 
sequence of velOCity measurements made wIth the magneto-optical filter described 
by Cacc.iani and Rhodes. The doppler-gram trames were obtained every 32 1.5 dur10g 
this period and eac.h frame consists ot a lZB l( 128 grid of pixels. The image 
scale was. approximately 3. Y 'n- Ipurel. 1:Jecause of the expenmental state of the 
setup on that day I the precise positions of aU optical components were not 
recorded and we have been unable to reconstruct them subsequently. \,,;onsequently I 
the image scale is accurate to only 10%. The full day's data set consisted of 
1024 frames. We divided the set into two subsets ot :H;t frames and r.educed both 
subsets and the full set in the same way. We were careful to maintain a 
consistent normalization for all three power spectra so that the ettects ot the 
anticipated seeing degradatlOn in the afternoon could be stUdied by comparing 
the strength of the OSCillations as well as the strength of the background 
noise. Because of the relatIvely llmlted length of our spatla! baseline ,our 
resolution in .R produces a pixel which IS WIder In tile ..L! dimenSion than In the 
.~) dimension when the data are displayed In a way which adequately lliustrates 
the elgenmode structure. Figure 1 shows the three power spectra adjacent to 
each other. The combined spectrum IS alSO given 10 a larger tormat and compared 
to theory in the paper by Rhodes et. al. elsewhere in this volume. The density 
of dots 10 Figure 1 is proportional to the nns velOCity amplitude rather than 
the power. 

One feature is Immediately obvious from tlgure 1 - the eigenfunctIon ridges 
extend to higher .P. values for the morning half relative to the afternoon halt. 
The degradation in the apparent power begins at about .R ='150. Since this value 
of .R corresponds to a wavelength of about lO"il I it is a bit surprizing that the 
ridges should be degraded at so small a value of .R. Although we do not have a 
quantitative way of measuring the seeing I we believe that it is typically 3"il . 
Distortions of the wave pattern at a scale of about one third the wavelength may 
be sufficient to broaden the ridges untll they effectIvely disappear. Uur data 
indicate that the observabillty of the ridges can be eaSIly degraded by seeing 
at moderate values of J.. E'lgure 1 also sllows that the power outSide the tlve 
minute band IS 10creased In the afternoon relatIve to the mornIng. This effect 
is not as ObVIOUS as the [ldge degradation and requues a more quantitative 
analysis to bring it out in a clear fashion. In order to smooth out the random 
variations in the power assocla.ted with the cllaotlc nature ot the OSCillatory 
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Figure 1. A comparIson of the power spectral density in the 
mornIng to the power spectrum In the afternoon and the 
power spectrum lor the lull day. The density of 
points IS proportIonal to the amplItude ot the motion 
and is adJusted to be the same In all three panels. 

motion, we averaged the power over moderately large rectangular sectIons of 
figure 1. Each rectangular area extended over 485 11Hz m frequency and had 

500 

end points in .P. as indicated in figures 2 and 3. The ratio of the power in the 
morning half to the power in the afternoon half was then calculated for each 
rectangle and plotted in figures 2 and J as a tunction ot V. The arrows at the 
bottom of the figures indicate the positions of the peak power in the fiv~ 
minute band. The lower power m the mornIng tor the very hIgh and low 
frequencies where we expect the SIgnal of solar origm to have a lower amplitude 
is strongly suggestIve ot the presence ot a white nOIse source ot the type we 
believe could be caused by seeing effects. In unIts WhIch are dependent on 
the reduction process, the peak solar oscIllatIon amplltude IS 1'1. The 
amplitude of the oscillations where there may be an extraneous noise source is 
about 0.3 in the same units. for 5 = J, equatIon ('t) gIves I!J.v = 0.06 in the 
same units. This result is a bit sma~ler than suggested by figures 2 and 3 but 
considering the many uncertamties m the analYSIS, seeing is a plausible cause 
for the noise. 
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Figure 2. The ratio of the power in the morning to the power in 
the afternoon. Both morning and afternoon power was 
averaged separately over rectangular areas spanning 
the indicated range In .R and a range ot 6UU 11Hz. 

4. Conc.lusions 

The effect of seeing on observatIons ot the solar osclllatlons was shown to 
be a plausible cause for the degradation of the power spectrum at high .l! and 
for the introduction of a background I broadband noise. For the observation of 
the stronger oscl11a tions I the background noise will not have a maJor impact. 
However I the loss of the low aroplit ude oscillations into this background 
especially at long periods could senously limlt the seismIc analysis of the 
sola.r interior. The longer period oscillations are known to have sha.rper 
frequencies which potentially can provIde the most accurate constramts on the 
interior structure and dynamIcs. The low amplitude of these modes makes them 
especially vulnerable to the seemg generated nOIse. 
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Figure 3. The same ratio as in Figure 2 but for the indicated 
higher range of R. 
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THE EFFECTS OF A NEARLY 100% DUTY CYCLE ON OBSERVATIONS OF SOLAR 
OSCILLATIONS 
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Astrophysics 

ABSTRACT: Power spectra of window functions with duty cycles between 
80% and 99% and with randomly spaced gaps are computed and their effect 
on observations of solar oscillations are discussed. It is found that 
for all the cases considered, observations of solar oscillations would 
not be severely impacted as long as the gap structure is random rather 
than periodic. 

I. Introduction 

Currently, the major obstacle to a full helioseismological inver
sion is the difficulty of resolving and identifying modes in the dense 
spectrum of solar oscillations. The fact that almost all ground-based 
observations obtained at a single site are subject to the day/night 
cycle greatly complicates the task. This cycle produces strong side
lobes centered on each solar frequency, which can overlap and mask other 
solar frequencies (e.g. Brown 1979). This has proven to be a problem 
in identifying the splitting of frequencies due to differential rotation 
(Claverie et al. 1981) and in the identification of long period oscil
lations (Delache and Scherrer 1983, Bos and Hill 1983). Observations 
obtained at the South Pole during the Austral summer are free from this 
cycle but have a maximum duration of only about five days (Grec, Fossat 
and Pomerantz 1983; Stebbins and Wilson 1983; Harvey, Pomerantz and 
Duvall 1982). These observations provide power spectra with a frequency 
resolution of about 2 1JH2', substantially higher than the few tenths of 
a IJHz desirable for helioseismology. A network of ground-based stations, 
or space-based observations from a satellite with a continual view of 
the Sun, is required to obtain both high frequency resolution and a duty 
cycle as close to 100% as possible. However, even in these cases a 100% 
duty cycle will be extremely difficult to achieve. Here, the duty cycle 
is defined as the fraction of time that the Sun is visible. The purpose 
of this paper is to investigate the effects of a nearly 100% duty cycle 
with randomly spaced gaps on the observations of solar oscillations. 

* Operated by the Association of Universities for Research in Astronomy, 
Inc., under contract AST 78-17292 with the National Science Foundation 
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Such duty cycles may be what we can expect to obtain from network or 
satellite observations. 

II. Method 

Actual observations result in a time series of velocities that is 
interrupted during various intervals. This can be represented in the 
real domain by the product of the actual solar signal and a window 
function that is 1 when the data is being obtained, and 0 otherwise. In 
the frequency domain, the observed power spectrum is the convolution of 
the actual solar spectrum and the spectrum of the window function, 
neglecting any other instrumental, atmospheric or solar sources of 
noise. Thus, every real peak in the solar spectrum will be surrounded 
by an image of the window spectrum. The method used in this study was 
to simply generate a number of windows with duty cycles of 80% to 99% 
and then to compute the power spectra of the windows. The gaps in 
the window function were generated by a number of methods. To simulate 
the window at a single ground-based site, an ephemeris equation was used 
to compute the approximate rising and setting times of the Sun at 
Sacramento Peak Observatory. In addition, a crude model of the weather 
throughout the year was produced from the author's memory of the season
al weather patterns. These patterns were basically alternating periods 
of clear and cloudy weather lasting from 1 to 7 days during the months 
of November to April, and of clear mornings and cloudy afternoons from 
May to October. To generate window functions with randomly spaced gaps, 
the duty cycle D and average length of the gaps, Lg were first speci
fied. This fixes the length of time between gaps, Lb , 
by 

DL 
L -~ b - l-D 

Each individual gap had a uniformly distributed random length of between 
o ~5 ~ and 1.5 Lg and was separated by a uniformly distributed random 
lengtn between 0.5 ~ and 1.5~. The window was generated with a 1 min 
time sampling over a total length of 1 year (525,600 samples); thus the 
power spectrum had a frequency resolution of 31.7 nanoHz. 

III. Results 

Figure 1 shows the window function resulting from the day/night 
cycle and the weather at a single ground-based site (SPO). In this and 
all subsequent figures, the ordinate is the amplitude relative to the 
central ( v = 0) peak and represents the power of the surrounding window 
sidelobes relative to any central solar frequency. Figure 1A is the 
day/night cycle alone, showing the strong periodic structure at 11.57 
~z (l/day) and its harmonics. It is these sidelobes, particularly the 
first one which has an amplitude of over 60% of the central peak, that 
cause the severe confusion complicating mode identification. It should 
be noted that any periodic gap structure will introduce strong side lobes 
at the gap frequency and its harmonics. Figure IB shows the day/night 
cycle with weather included. The weather adds additional noise at the 
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Figure 1: Power spectra of the window function that would result from 
observations at Sacramento Peak Observatory. A: Day/night cycle 
throughout year. B: Day/night cycle with approximate weather patterns 
throughout year superimposed. C: Weather patterns alone. Amplitude is 
relative to central peak in this and all other figures. 

5% level and further reduces the duty cycle. Figure lC is the transform 
of the weather alone. It also shows the day/night cycle due to the 
modelling procedure. 

Figure 2 shows' the window power spectrum for s.ix different duty 
cycles of 80, 85, 90, 95, 97 and 99%, all with average gap lengths of 1 
hr. Such a gap length might be typical of the observations obtained by 
a seismology instrument on board a satellite carrrying a number of other 
instruments with incompatible pointing requirements. The spectra have a 
dense "grass" structure that peaks at a frequency determined by the 
average total length of time between gap beginnings <=Lg/ (l-D». The 
amplitude of the peak of noise is quite low, being about: 1.5% for the 
80% duty cycle and dropping to about 0.2% for the 99% duty cycle. Thus, 
it appears that all of these duty cycles would be suitable for helio-
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seismology. It should be noted th~t ~he 95% duty cycle with 1 hr gaps 
has its maximum at about 10 IJHz, which might affect searchs for rota
tional splittings of the modes. 
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Figure 2: Power spectra of window functions resulting from randomly 
spaced gaps with an average length Lg = 60 min and with varying duty 
cycles D. A: D=0.80. B: D=0.85. c: D=0.90. D: D=0.9S. E: 
D=0.97. F: 0=0.99. 
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Figures 3 and 4 show the effect of the average gap length on the 
window spectrum. Figure 3 illustrates an 80% duty cycle with gap 
lengths of 6 min (Figure 3A), 60 min (Figure 3B), 600 min (Figure 3C), 
and 3000 min (Figure 3D). In a space-borne observation context, the 
short gap length of 6 min might represent data transmission losses, the 
600 min gaps might represent minor failures of the TDRS network, and the 
3000 min gaps might represent major TDRS failure. Figure 4 illustrates 
the same gap lengths with a 95% duty cycle. The amplitude of the noise 
increases as the gap length increases, reaching a maximum of about 10% 
for the 3000 min case (80% duty cycle). The maximum of the power again 
varies; for the 95%, 6 min case the maximum occurs at about 138 ~z, 
which could cause problems when one considers the spacing of the low 
degree 5 min modes. However, in all cases, it should be noted that the 
relative power levels of the window functions are quite low, being 
typically less than 10% of the central power. Thus, probably any of 
these windows would be suitable for solar oscillation studies • 
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IV. Conclusions 

It is apparent from these power spectra that almost any of the duty 
cycles and gap lengths considered here would pose little problem to 
helioseismological inversions, as long as the gaps are randomly distri
buted in time. The main goal is to avoid periodic gaps of any sort, as 
these introduce prominent sidelobes surrounding each solar frequency. 
It is possible to tailor the window by inserting additional gaps in the 
data, thereby moving the maximum of the window power spectrum away from 
regions of interest. However, this of course further degrades the duty 
cycle, and, if one already has a random distribution of gaps, probably 
would not be warranted. When one considers the performance of either a 
satellite-borne instrument, or a ground-based network to obtain solar 
oscillation data, one must compute the power spectrum of the window 
function to assess the level of confusion generated by any possible 
sidelobes. 
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ABSTRACT Artificial strings of solar oscillation data with gaps and noise, 
corresponding to the output of different spatial filter functions, are analyzed. 
Peaks in the power spectrum are identified for values of the degree t from 0 to 
16, and rotational splitting is estimated. The filters prove effective in facilitat
ing identification of essentially all the real peaks in the power spectrum. Esti
mates of peak frequencies and amplitudes and rotational splitting frequencies 
are in reasonably good agreement with the input values. "Spurious" peaks in 
autocorrelation spectra are found to correspond to the frequency spacing 
between power peaks with the same order n, differing by one or two in the 
degree t. 

1. Introduction 

Solar five-rriinute oscillations divide themselves roughly into three groups, 
requiring different methods of observation and/or data analysis. according to 
the value of the angular degree L. As L increases for a fixed value of the order n, 
modes differing by one in l become increasingly densely packed in frequency v; 
modes differing only in n lie on distinct and clearly separated ridges in the 
(l -- II) plane (see e.g. Deubner 1975; Rhodes et al 1977). The large amount of 
power in the p mode ridges at l-values greater than about 200 is the result of 
the high density of modes. each mode having a velocity amplitude of a few cm 
8-1; in this regime there is no hope of seeing individual modes with distinct l
values. The high-l modes are .detected by making spatially resolved time series 
observations. usually of Doppler shifts. A Fourier transform in both space and 
time then produces (from good data) the familiar ridge structure, if the time 
series is long enough and the -analysis is -done carefully. 

,At. the other extreme; l=0-3; the five minute -modes have n»l and the fre
quencies are given by 

v",- 1:::1 tJ.II {n+l/2+t)+small term in l (l +1) (1) 

where All is of the order of 140 J..I.Hz and e is a fixed offset (see Vandakurov 
1961). Thus lhe modes are distinct in both nand t. The frequency difference 
between modes with successive values of n and the same 1 is b.1I. while that 
between successive l-values is half as large. b.v/2. Observations of at least a few 
hours duration (needed to obtain an adequate signal-to-noise ratio) in 
int.elrated light from a large part or all of the solar disk yield only these very 
10w-l modes (Grec.et al 1960. 1963): these observations average upward and 
downward velocities (or positive and negative intensity fluctuations) over the 
entire sun. thus strongly reducing the signals from modes with angular degree 
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greater than about 3 or 4 and in that sense acting as a spatial filter. Whole-disk 
measurementsbave the advantage that for the very low l modes spatial averag
ing increases the signal-to-noise ratio. 

Tuing the temporal Fourier transform of a whole-disk velocity signal yields 
a very regular pattern in frequency. Peaks appear evenly spaced at intervals of 
AII/2. like a picket. fence. Alt.ernate peaks have the same l-value, so the spec
trum represents one set of pickets for modes with L=O and 2 at intervals t:.v, 
interleaved (at separation AII/2) with a second set for l=l and 3. The second 
term in equation (1) produces a very small separation between l=O and l=2 
peaks, and between l= 1 and l=3. 

Because t.he pattern is so regular. each segment. of the power spectrum of 
lengt.h t::.v in frequency looks nearly identical to the next segment of length t:.v, 
in terms of peak positions (the amplit.udes may vary). If two successive seg
ments are superimposed, all t.he peaks overlay each ot.her almost perfectly; if 
summed, the peaks st.and out more clearly against the noise, which is randomly 
dist.ribut.ed. Grec et al (1980) found that by cutting the whole power spectrum 
int.o lengt.hs All and summing t.o produce a "superposition spectrum" of total 
lengt.h All. the peaks for l =0-3 became much more distinct. 

Yodes with 4<L <200 are not sufficiently densely packed in frequency to pro
duce much power in the p mode ridges. and they have too rapid variation in 
velocity across the solar disk to be seen in integrated sunlight. They have only 
recently been seen with any clarity in spatially resolved observatio.ns as they 
require extre~ely long dur!ition time series (Duvall an.d Harvey 1983) .. 

In this paper we report on an analysis. using artificial data. designed to 
answer some important questions about modes with l-values from 0 to 18 (many 
of the results can be readily extrapolated to somewhat higher l-values). There 
has been considerable interest recently in the. question of whether spatial 
filters can be constructed that will isolate sets of modes· for l <i!:3 in such a way 
that the intermediate-l modes can be unambiguously identified from frequency 
power spectra. The procedure to be discussed presupposes spatially resolved 
observations. in two spatial dimensions. The Fourier Tachometer (see Brown, 
these proceedings) is ideally suited for making the required measurements . 

.... . In principl.e •.. s~paration .of modes .with different spatial wavenumbers is 
accomplished by taking a spatial Fourier transform; for each particular choice 
of the wavenumber If. the transform G(ko,t) should have no contamination from 
any other value of k. In fact, the functions that describe spherical modes are 
orthogonal only when integrated over the entire sphere. while observations are 
made over less than half. when limb effects are taken into account. As a result. 
the spatial transform function in spherical geometry Fi,,(", ¢), optimized for 
degree to but integrated only over the visible part of the Sun and operating on 
the observed Doppler velocity v (". (J,t). yields a function 

(2) 

which at best contains strong components of these five l values and very weak 
components of many others. Here dO indicates all. element of solid angle; else
where 0 will always denote angular rotation frequency. 
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The spatial function F .. is often called a "spatial filter", as it filters out 
modeSll with all_but a few 1 values. Integrating the data over a succession of ruters. each centered on a different 4. produces a series of time strings. each 
of which can be Fourier analyzed in time to produce a frequency power spec
trum containing peaks with significant amplitudes for only five l values. The 
difficulty that arises in analyzing such spectra is that. starting with modes of 
degree 1=3 or 4, the frequency separation between a mode with a particular 
(l , on) and that with (l , n+1) approximately equals the frequency separation 
between (l , n) and (l +3 . n). so tbat the peaks for (l • n +1) and (l +3 . n) are 
nearly coincident in the power versus frequency spectrum. 

To examine the question of isolating and identifying modes by using spatial 
filters, we have engaged in a exercise dubbed "Hide' and Seek" by D. O. Gough, 
in which one of us constructs a set of filtered time series and presents them to 
another of us. providing only the information that an observer would have 
about his data: duration, sampling interval, duty cycle, and the relative amount 
by which each filter should reduce the amplitude of each mode. The second 
player deduces from the data as much information as possible in a reasonable 
amount of time and presents the information to ·the omniscient first player who 
compares it with the input data. The data analyzer does not. of course. discuss 
the ,an.a1ysis with the data creator until ready to relinquish the analysis. Simi
lar hide and seek experiments have been done by two of us (TMB + JC-D) to 
study the effectiveness of T. Brown's maximum entropy method gap-filling rou
tine. 

In § II. we will first describe how the data sets were created and how the 
power spectra were produced. Then in § TIl we will recount chronologically the 
few major snags encountered in trying to understand the power spectra; these 
snags proved to be quite informative. The methods used to obtain the frequen
cies. frequency splittings and amplitudes are then described. 

Section IV is a summary of the main results obtained from the analysis and a 
comparison of these results with the input data. plus a a brief discussion. A 
number of ideas for future experiments are presented in § V. 

II. Time Series Construction 

The time series of (filtered) artificial data were constructed by JC-D. The 
velocity of each mode was assumed to be given by 

(3) 

wherl!!!. P'ntm isa time-independent amplitude. lip. = 3.18~Hz, and 110 = O.35~Hz. 
The squared amplitud.es t>'mm 11: were exponentially (and randomly) distributed 
(see Christensen-Dalsgaard and Gough, 1982). with rms(t>'mm) = 15 cm .... S-l. The 
B~·are time-independent random phases. 

The velocities f'IJmm{t)~ used for the time series are defined in wavenumber 
space, while velocities in real data are functions of position (and not 
wavenumber), e.g. v(%'O or v("'.¢,t). To create a velocity time series, whose l 
dependence is centered on LOt Le. an artificial time string equivalent to Gl in 

o 
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equation (2). t.he f'll"""J velocit.ies are weighted by filter functions S'm(lo) in 
wavenumber space and summed. An artificial velocity time string is then given 
by 

V(10.t) = ~ Sa""(IO)lI",,,,(t )+N(t) .... ~ (4) 

where N(t) is random Gaussian noise with rms amplitude 20 cm S-1. The 
"wavenumber filter functions" ~S'm(loH operating on fllnlm(tH are designed to 
produce the same response as the spatial filter functions ~Fi (17-. ¢)J operating 

II 

on real velocities 11 (". ¢.t). 

The rotationally split frequencies are given by 

(5) 

where v"J.o is taken from model 1 of Christensen-Dalsgaard (1982) and the rota
tional splitting corrections are 

Ilv~9 = P2m j K;.,{r)O{r)dr (6a) 
11' 0 

(I) vm 0 1 [2 ] 
Ilv,y = 4000 ---;- 81(l +1)-6 Os R/ g. + 3J2 (6b) 

(Goode. these proceedings). Here Krn is the rotational splitting kernel for mode 
(n.l), O(r) is the rotation rate as a function of radius r. limO is the unperturbed 
mode frequency, Os the surface rotation rate, R the solar radius, 9" the surface 
gravity, 12 the second moment of inertia and 11", is a constant of order unity. 
The. rotation .curve. O{r) used here.was .the same curve that is discussed in 
Christensen-Dalsgaard and Gough in these proceedings. Frequencies IIn ,t,O in 
the range 2.~ v", ~3.8 mHz and O~ l~ 18 were included. 

The "observer", BWll, had none of the foregoing information. The "observing 
data" liven her waa:sampling-interval = .2 min.; "observing sequence" for data: 
11 strings of 18.8 hour "runs" followed by 5.2 hour gaps, for a duty cycle of 
about 0.8 and total observing time of about 207 hours; filter values for each l. 
for each time series (for typical examples of an optimized filter, see JC-D. 1984. 
Figure 9, these proceedings). The sampling interval and total observing time 
were limited by the total number of data points we could process on the com
puter we were using (HAO's PDP 11/70). 

To obtain power spectra, the time series were passed first through T. Brown's 
gap-filling ~o\lt~e, which uses a maximum entropy method. The resulting con
tinuous time series were then Fourier analyzed in time. The output consisted of 
18 temporal power spectra covering the frequency range 2.1-4.4 mHz, with fre
quency resolution about 1J.&Hz. (which is the theoretical resolution of the -210 
hr time string. Although we plan to implement frequency oversampling in 
future experiments. computer memory size limitations made that impossible for 
the analysis reported here.) 
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m. Procedure for Analyzing Dala 

Sap 1: The obvious way to begin analyzing power spectra known to have just a 
few l-values present is to use the tactics developed for disk-averaged (l=0-3) 
data. These include (a) visual examination of the frequency power spectrum; 
(b) taking the autocorrelation of a power spectrum as a function of frequency 
~hift. This procedure tends to produce large values of the autocorrelation 
function at frequency shifts equal to the spacing interval of a series of power 
peaks evenly spaced in frequency; (c) superposition of segments of the power 
spectrum as described in the introduction (see also Grec et.al. 1980, Fig.2). If 
the segment length is chosen "correctly" it will equal IIn +l.' - "'n," which. for a 
given l and for l «n, is almost. independent of 11 (Vandakurov 1967). 
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We assigned to each filter the number of the degree lo on which it was cen-

tered: thus filters 1-18 were centered respectively on lo = 1-18. The first few 
filters, which isolate L values of zero to about 5, have autocorrelation functions 
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that exhibit a dominant peak at roughly 140mHz (more precisely. 136-138~Hz). 
By filt.er 5, however. which isolates L = 3-7. other peaks in the autocorrelation 
function are stronger than the 140~z peak. an effect which becomes increas
ingly pronounced with an increase in the L value for which the filter was optim
ized. Figure 1. showing the autocorrelation functions for filters 1. 5 and 11. 
clearly exhibits t.his effect. 

A similar difficulty arose with the superposition spectra (defined in the 
introduct.ion). For each filter. the superposition length AV{lo} was taken to be 
the center of the peak nearest 140J,tHz in the autocorrelation spectrum. The 
power spectrum was then cut into pieces of length. 6v(£0). which were summed. 
The resulting power spectrum, for l = 0-3. shows four peaks. one for each 
l-value (with a very small amplitude for the l = 3 peak). However. for the filter 
cent.ered on e.g. La = 5. t.he superposed spect.rum is virtually impossible to inter
pret without. further knowledge. Examples for filt.ers centered on Lo = 1. 5 and 
11. shown in Figure 2. illustrate the problem. 
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Sttrp 8: Because in fact the segments of the superposition spectrum vary 
slightly fromone.to the next, it can be more informative to lay them one below 
another like rungs on a ladder, in wbat is called an "ecbelle diagram." For fold
ing frequency ~1I{lo) each successive layer begins at a frequency ~II(lo) greater 
than the beginning of the one above it. as shown on the left-hand side of Figure 
3c. which has a folding frequency of almost exactly 140 JLHz. For each segment. 
the power was normalized by its maximum value within that segment, in order 
to make the peaks more visible. We note that this normalization exhibits clearly 
the frequency ranges in which no clear peaks emerge above the noise. 
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We checked to see whet.her such echelle diagrams (see e.g. Grec et.al. 1983, 
Fla.. ~ f.or.necheUe diagram which plot.s frequency only) would be easier to 
interpret than superpositions. Figure 3. which compares echelle diagrams for 
ruters 1. 5 and 11, demonstrates t.hat. this approach also fails to produce clearly 
identifiable peaks for some rut.ers; detailed scrut.iny establishes that for the 
filters and frequencies where confusion reigns in the superpositions. little 
improvement is achieved with the echelle plots. 

The echeUe plots do show clearly. however. for sets of isolated peaks, that 
the frequency difference Av".,,+! (1) is a weak function of n; if it were constan t 
with 'no all peaks on one echeUe plot would line up exactly vertically or (if 
AII"",+! was wrong for the chosen 1 value) would fall on a straight diagonal line. 
Instead, they fallon a nonlinear curve. The sequence of echelle plots shows the 
decrease in AVI,,+s(n) with increasing l. 

Perhaps the most useful information in the echeUe plots concerns the ques
t.ion of rotational splitting. If eaoh mode (l,n) produces two peaks (with 1 =±m) 
that survive the filter and that are separated in frequency by AII,,-l = 2lAllm.m +l. 
then a superposit.ion of all peaks for a given lo. and various n values. should be 
made in such a way that the unperturbed frequencies iIlR(tO):n = nt .... J all 
coincide. Such superposition requires some care. as AII".n+1(lo) is not neces
sarily a simple function of n. We note also that. AlliI,n+IO) is quite a strong func
tion of t, hence its mean value changes significantly with l. 

Slap 3: Ultimately. it was necessary to use the information that AII"."+l (fixed l) 
and AIII.I+l (fixed n) change cont.inuously and gradually with 1 and n. This must 
be so because the eigenfrequencies are determined by the structure of the 
solar model. and are most affected by regions of the model where the 
corresponding eigenfunction is large. But in the 5 minute band. eigenfunctions 
change little from (n.l) to (11. +1.0 or from (n.l) to (n,l +1). 

Frequencies for 1 = O. 1, 2, 3 modes can be determined unambiguously from 
echelle diagrams of filter 1. 2, 3 power spectra. The frequency spacings 
Alln,A+;{l = 3) arid AliI -u _s(n) can be used to determine approximate locations 
for Illft" ..... 1 peaks. A search of the immediate frequency neighborhood for 
peaks, combined with the constraint that variations in AII"."+l;'D and All,,; t. L +1 be 
reasonably smooth. proved sufficient to locate full sets of likely looking peaks 
for ~ := 4.~_ The ~~q~~~cy seParati()ns .A_II", n+l; ,:114.: ~d All,,; ,=.3. '=4' combiried with 
tbe trends that appeared in the mean separations All,., n+l:' and Alln ; 1.1+1' both 
for !ixe.d t, then provided an estimate of the positions for tll,.".l =5. n = '" J. 

For each filter. peaks for Lo and for I. ± 1 and 10 ± 2 would be visible. The 
range, in . which peaks were difficult to .. · separate was that for which 
All,., ft+l;' !!Alln: I. &+8 and occurred mainly for I values in the range 1 = 4 - 10. 
';('hus. to - 2.and La + 1. would have peaks tbat. nearly coincided in frequency. as 
would to - 1 and La + 2. The peaks for ~o modes. however. had almost no con
tamination. because the amplitudes of 10 :t: 3 peaks were diminished by the filter 
to less than 5" of their unfiltered value, while those of l = La modes were 
greater than 50" of their unflltered value. Each filter was used primarily for 
modes of its particular lo, stepping through the filters one filter and thus one Lo 
at a time. 
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The peak frequencies were checked for consistency by plotting ~lInn+1 and 
AIIU+l against t. as shown in Figures 4a and 4b. A further check was pro~ided by 
maJ.dng a standard (i-v) diagnostic diagram, shown in Figure 5. 
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Figure 4a. Folding frequency //n+U-//n.t versus t, in J-LHz. These are mean values, 
averaged over n for each l. 
Figure 4b. Frequency spacings, in J-LHz, versus'l. For each l, the range of values 
as n varies is shown of 6.V'.t+1 =//'+1-//'; for each l, the minimum and maximum 
values of 6.//l •l +l are indicated by 'x'. For comparison, 1/2. 1/3 and 1/4 of the fold
ing frequency, averaged over n,are shown. As l increases, the folding frequency 
goes from roughly twice to three times to four times the frequency spacing in l. 
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Figure 5. Diagnostic 
diagram of //n,t versus l. 
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frequencies with the 
same order n.· 



Hgure 4tb also displays clearly why a problem arises with near-coincidence 
betw~enpeaks of different L-values. The separation between peaks with succes
sive Z';'values and the same radial wavenumber 71. decreases with increasing t. 
while the frequency separation between peaks with the same 1 and successive 
n-values increases. For L=0-2. AVn,n+l(fixedL) is slightly larger than 
AVu+I(fixedn); the difference is great enough that the (n.l+2) peak does not lie 
on top 01 the (n+1,L) peak. For 1=4-7. however. AVn.n +l ,:::s tllll.l+s(fixedn) and 
peaks differing by 3 in L and by one in 71. have nearly the same frequency. A 
similar problem arises starting at about l=13 between peaks with (n,l +4) and 
those with (n + l,l): the filtered time strings are not strongly affected by this 
coincidence, however. because for a filter centered on lo. only the lo±2 peaks 
are involved. 

In F"lgure 4b we also see the reason for "spurious" peaks in the autocorrela
tion spectra. In the low-l cases there were just two regular intervals between 
peaks, the folding frequency AVn.n+1(L) and half the folding frequency. At 
higher l-values Avu+! and AVnolHl are no longer nearly commensurate. Thus 
there are also series of peaks regularly spaced at intervals AVU+l(n). AVr.1+2(n) 
and Avu+s(n). which may all differ significantly from the folding frequency 
Av"",+! (L). 

Step 4: In step 3 the frequencies ~vn.d (for L = 0 - 19 and as many 71. values as 
were reasonably unambiguous) were found to the nearest frequency point in 
the power spectrum.. The next step was to develop better approximations to the 
frequencies by either (a) fitting the central 3 points of the peak with a parabola 
~~ . .d.~t~r~llillg . the position 9f itsmaximu~_ or; _(b) doing. a centroid on. the 
central 3 points or the central 5 points of the peak. In case (a). the power in 
the peak was estimated by integrating the area between the two frequencies 
where the parabola crossed the v-axis; in case (b). it was given by the sum of 
the power at the central 3 (5) points. The amplitude of a mode is obtained 
(approximately) by taking the square root of the power and then dividing by the 
filter function. 

Amplitudes estimated by parabola fitting and from 3 and 5 point centroids 
are shown for a typical case in Figure 6; for all the 71. values found for a particu
lar l (here l =3). the estimates are shown for the peak amplitudes in the power 
spectra of different filters. The three methods tend to produce estimates that 
rtstain roughly the same ratio Jropl peak to peak. 

Finally, rotational splitting was calculated for each mode (t, n) as 

IAv"'.tn+l(i; 71.)1 i= (20-1 1 (v,.n.m:ll+& -1I"n.m=-I I. (7) 

The9~ .. were calcutate4 sepl!lrately. for parabola fitting and for 3~point and 5-
point centroids. For l = 1. 2 the measurements were difficult and highly inac
curate. but the accuracy improved rapidly as l increased. To further improve 
accuracy. the average over 71. of AVm.mH(l, n) was taken for each t. This is 
shown on F"lgure 7. along with the "correct" curve obtained from the frequen
cies v""" defined by equations (5)-(7). which were used as input to the velocity 
times strings [see equation (3)]. 
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IV. Result.s and Discussion 

Figure 7. Rotational splitting, 
(IIn.l,m=H-l.In,l,m=-t)/2l, averaged 
over all n values for each land 
plotted against l. The solid curve 
was calculated from the input 
rotation curve O(r). .Points 
labelled 'A.B,C.D.F,H'· co'frespond 
to values obtained from parabola 
fitting, straight (A) and weighted 
(B) averages, 3-point centroid (C 
and D) and 5-point centroid (F 
and H) fits to peaks in the data. 

It. turned. out that both of the rotationally split components of nearly all the 
input modes were detectable. down to input amplitudes of about 1-2 cm S-I. 

Exceptions !rere all at the high and low frequency ends of the 5-minute band. 
This demonstrat.es that the intermediate-l modes can be isolated and identified 
by the use of optimized filters. without having to resort to viewing the sun from 
t.wo widely separat.ed (opt.imally 900 ) angles. 

The frequencies and amplitudes derived from the data by BWM were com
pared by JC-D with the input values. RMS deviations in the frequencies were of 
the order of 0.5 J.£Hz. and were little better when only large amplitude modes 
were included. The frequency differences showed some systematic dependence 
on frequency which can be seen in Figure Sa. This systematic dependence may 
result from a type of interference betweem the gaps and the frequencies; a 
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simllar "hide and seek" experiment with gapless data will demonstrate whether 
the lap. are the culprit. Dependence on amplitude is shown in Figure ab, and 
shOws DO particular systematic trends. 
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Figure 8a. Difference 
between input fre
quency and frequency 
estimated from the 
artificial data sets, as a 
function of degree l. 
The symbols '+' and '-' 
indicate the sign of the 
difference; size of the 
symbol indicates the 
magnitude. At frequen
cies of about 2.85-3.1 
and 3.5-3.8 mHz the 
differences are almost 
uniformly positive; 
below 2.85 and from 
3.1-3.5 mHz they are 
like bands of nega
tive differences. 

F"lIure ab. Same as Fig
ure Ba, except that t.he 
frequency differences 
~~ plotted against 
amplitude, and the sign 
of the '+' marks has no 
significance. Here no 
systematic effects like 
those in Figure 8a are 
seen. 

Amplitude ratios are shown in Figure 9 as a function of mode amplitude. 
Although the accuracy of amplitude estimates is poor compared to that of fre
quency estimates we note that almost all inferred amplitudes are within a fac
tor of two of being "correct". This is several orders of magnitude better than 
our theoretical uncertainties in mode energies and thus indicates that ampli
tudes derived from Doppler velocity signals may be -usefuL. 
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estimated amplitude to 
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Figure 7 shows the mean rotational splitting for the input data compared 
with the mean values obtained from parabola fitting and 3 and q_ point cen
troids. The expected increase in accuracy with increasing l is clearly seen. 

Inaccuracies in the frequencies (and thus also in the rotation curve) appear 
to result mainly from three effects. One is the limit of about 1 .uHz on the fre
quency resolution in the power spectrum. Precision can probably be improved 
byo.versampling in frequenc;:y by a factor of 4 or 5; such experiments will be 
tried as soon as the data reduction codes are runnmg on a larger computer. 

The second is the presence of noise, which probably has its effect mainly on 
small-amplitude modes. One can picture the effect readily by considering a 
peak located halfway between two pixels, with negligible amplitude on ,the other 
neighboring pixels. Adding noise at an amplitude 1/4 that of the "real" signal 
on one pixel will change the apparent frequency by about .05 .uHz, while noise 
with t.he same amplitude as tlie peak shifts the frequency by .17 ,uHz. 

The third is. thee intrinsic limitation imposed by the finite length of the data 
strina and by the gaps in the data. In real data finite mode lifetimes provide 
another source of uncertainty in frequency. 

V. Future Experiments 

Tbe.re are nume.rous other experiments of this general sort that can help 
elucidate the relationship between what the Sun puts into pulsation modes and 
What t.errest.rial observers deduce out of their data: 

(a) An analysis identical to that reported here can be done with 60% and 100% 
duty cycles to estimate the frequency uncertainty caused by data gaps and 
by gap filling. Similarly we should check how much improvement is obtained 
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(b) 

(c) 

(d) 

(e> 

in the frequencies by taking data strings 2-3 times as long. 
ld.IIInUc:;1Ill analysis should also be done on identical time series with an over
sampled power spect.rum. 
Finite mode lifetimes can by synthesized by randomly varying the amplitude 
IUld phase of the velocity signal at time intervals corresponding to some 
assumed lifetime. The effect on apparent frequencies and amplitudes can be 
deduced from the power spectra. 
Experiments with more realistic noise models should be carried out. Attempts 
should be made to model terrestrial ("seeing") noise and the solar noise aris-
ing from granules and supergranules. These experiments should also be com
bined with (a). 
Legendre polynomial filters should be tried in place of the optimized Che
byshev filters; Legendre polynomials are the natural filter function for normal 
modes of a sphere. These could also be used to isolate a range of m values 
other than m. = ±t. 

(f) Finally, the circle of deductive-inductive analysis should be closed by using 
the deduced frequencies and rotational splittings as input for model inversion 
and rotational inversion calculations (e.g .• Christensen-Dalsgaard and Gough 
1984. these proceedings). This would necessitate creating artificial data 
strings for higher-l p modes. for g modes and probably for long-period p 
modes. and performing on these data the sort of analysis reported here to 
obtain frequencies and rotational splitting. One could then estimate how 
badly the structure of the Sun itself is masked by effects of noise, both solar 
and terrestrial. and by finite data strings, finite mode lifetimes and data gaps. 
This. of course, is the bottom line for all of our experiments, observations and 
analysis. 
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SPECTRAL INFORMATION FROM GAPPED DATA: 
A COMPARISON OF TECHNIQUES 

J. R. Kuhn 
Physics Department 

Princeton Unive!sity 

ABSTRACT 

Three methods for estimating the power spectrum of gapped time 
series are briefly discuss:ed. Numerical experiments, using several 
synthetic data sets, are used to compare these techniques. 

1. INTRODUCTION 

The FFT is widely used to estimate power spectra of continuous 
signals evenly sampled on discrete domains. This paper briefly 
discusses the problem of finding power spectra on unevenly sampled 
domains -- in particular a regularly spaced domain with gaps. For 
example, the analysis' of the ACRIM solar bolometric intensity data, 
obtained with a 3/5 on and 2/5 off duty cycle of approximately 100 
minutes', would benefit from the techniques discussed below. We report 
on the comparative effectiveness of three different analysis techniques 
applied to synthetic data generated on gapped domains. Since the 
details of the analysis techniques have been presented in the literature 
only a general overview. of the methods will be discussed here. 

2. THE SPECTRAL DECOMPOSITION PROBLEM 

Define t j' j = 0, ... ,N-l as a time domain with the t j integers 
and to = 0, and d j is the corres.ponding data sequence agaln with j = 0, 
... ,N-l. If we have reason to believe that the signal is well 
repres'ented by a harmonic expansion of the form 

M-l . 
dCt) = L a. elWjt (1) 

j=O J 
then our task is to determine the aj from the data sequence+d j • Note 
that the N-tuple of data points (do, ... ,dN_l ) is a vector d in an 
N-dimensional complex vector space. If we write 
Sk = (1, eiwktl, ... eiWktN-l) then Equ. (1) can be expressed in the form 

M-l 
d = L ~ Sk (2) 

k=O 
Taking the usual scalar product of both sides of Equ. (2) with a given 
complex conjugate harmonic vector sj gives 
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M-l M-l 
Dj == d.S~ = E ~ Sk'S; == E ~Ckj ( 3) 

J k=O k=O 
The matrix equation to be solved for the spect:;.'al coeffi ci ents a· is 
then 

,) 

D. = C'k~ , 
where repea~ed i~dices are summed and Dj and Cjk are determined 
entirely by ti' dj and wi' This is the same equation one must solve to 
get the best multlparameter Least-Squares estimate for the aj. 

On an even domain tj ;:: j and with wk = 2~k/N then Ckj = NOkj' so 
that we get 

( 4) 

N-l 
~ = 1:. E 

N j=O exp(-i2~kj/N)dj 

the familiar expression for a discrete Fourier Transform. 
On an uneven domain in general tj i j and we don't know how to 

choose the wk s'o that Ckj is diagonal. If we let wk ;:: 2~k/N then 
Ckj is not diagonal. The uneven domain adversely affects the spectrum 
calculated by naively treating the gaps as zeros in two ways: First, 
noise in each coefficient ak is larger than it would be if the data 
points were distributed without gaps, and second, the off diagonal 
elements in Cjk alias the signal peaks to other frequencies. 

. There are two approaches to solving this problem: 1) the data can 
b.e interpolated in the gaps and then the transform calculated on the 
regular domain, or 2) efficient numerical techniques may be applied to 
directly invert Equ. (4). 

3. SOLUTIONS TO THE PROBLEM 

An interpolation scheme has been widely used in the geophysics 
community that assumes the data at any time tj can be expressed as a 
linear combination of previous data values plus a noise contribution 
(Fahlman and Ulrych, 1982 and references). The procedure I have used 
below is an adaptation of the Fahlman and Ulrych algorithm. Essentially 
a best least squares fit of the form 

L 
d. = E ykd

j
_k + e. (5) 

J k=l J 

is determined by minimizing the summed squared error, e.g. Ze}, between 
data predicted by coefficients Yk (applied forward and backward) and 
actual data values. After determining the filter coefficients, Yk' 
from data between gaps the data values in the gaps' are determined from 
a similar least squares ~solution (the data points in the gaps are now 
considered unknowns instead of the coefficients, Yk)' Once data values 
in the gaps have b.een obtained the procedure can be iterated using 
these values to recalculate the filter coefficients, and then a new set 
of predicted data in the gaps. 

The second approach to the problem involves 'inverting the matrix 
equation (4). Since typically this will involve inverting a complex 
matrix that has hundreds of elements in each row, this is not easily 

294 



The simplest solution is to ignore the off diagonal 
(which are smaller in magnitude than the diagonal 
essentially yields the periodogram solution, or the 
would get by replacing the gaps with zeros and perform-

done directly. 
elements of Cjk 
Cjj=N). 'l'lll.S 
s rune result one 
ing an FFT. 

Another approach to soiving Equ. (4) is discussed by Kuhn (1982). 
For regularly sampled data with gaps CJk is a circulant matrix (Davis, 
1979) and can be readily inverted, or l.f it's singular a "generalized" 
inverse is easily obtained. In the case where Cjk is not singular the 
solution discussed above has a simple description. To construct the 
solution from the spectral coefficients we first find the largest M < N 
such. that for each integer, i, between 0 and M-l there is at least one 
time domain point, tj' equal to i modulo M. Having found the largest 
M satisfying this condition each of the data points dj corresponding to 
time points that are separated by some multiple of M are averaged 
together to get a modified data string of M values with corresponding 
time points from 0 to M-l. An FFT is then applied to this "swapped" 
and averaged time series to get spectral coefficients' at frequencies 
Wj= 2'ITj/M. An equivalent way of viewing the data point swapping 
follows by noting that if the data is well represented by an equation 
of the form 

M-l 
r exp(i2'ITjk/M)~ 

k=O 
then letting j + j + nM doesn't change this equality --with this 
representation of the signal the data is periodic with period M. 

4. NUMERI CAL EXAMPLES 

(6 ) 

Syntheti c data was generated by adding normally distributed 'random 
numbers to pure sinusoids sampled on various domains. Three different 
approaches were used to estimate the power spectra: 1) immediate FFT 
with zeros in the gaps, 2) fitting a predictive filter (called an AR 
model} and interpolating into the gap, 3) inverting Equ. (4) by swapping 
and averaging data points, and then applying an FFT on M < N data 
points. In each domain tN ~ 1000 and there are typically 8 cycles of 
approximately 50% duty cycle. Thus for the "swapped" solutions 
M ~ N/2 and the spectral resolution is half what the AR scheme produces 
(which fills in the gaps so the resolution is determined by the total 
duration of obs'ervations). 

Figure 1 shows how the interpolation method works on a pure 
sinusoid with no noise. The domain consists of 77 sample points and 
47 gap points for 8 cycles. The frequency of the sinus:oid is l/'IT. The 
first iteration of the AR model uses a filter length equal to 1/4 the 
gap length. On the second pass the filter length is doubled. From 
Fig. 1 note that the 2nd pass doesn't substantially improve on the 
interpolated data from the 1st pass. It is also not much affected by 
subsequent iterations or variations in filter length between 1/4 and 
1/2 of the gap length. 
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Figure 1: High Frequency AR Interpolation. 

Figure 2 shows similar results for a sinusoid with pe.riod longer 
than the gap length. Since the filter is limited in length by the gaps 
it's not unexpected that it has a difficult time interpolating very low 
frequencies into the gap. 
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Figure 2: Low: Frequency AR Interpolation. 

Figure 3 shows the ef'f'ect of additive noise on the AR scheme. The 
noise has a = 2 and the sinusoid f'requency is 3.2 x 10-3 . Notice the 
noise in the gaps is not reproduced by the AR method and that the 2nd 
iteration shows a noticeable effect on the interpolated data. 
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The next set of figures show how the power estimates are affected 
by the three schemes:. 

Figure 4 plots power estimates corresponding to the data from Fig. 
1. The aliasing due to the gaps is apparent in the "Gap Power" segment 
of this Figure. Sidelobes are eliminated by both the AR and swap 
procedures. Note the amplitude estimate from the swap procedure is 
more accurate. AR POWER \0 GAP POWER 
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Figure 4: Power Estimates Using Fig. 2 Data. 

Similar power estimates from the dat"a in Fig. 2 are shown in 
Figure 5. Notice that the swapped spectrum is slightly worse than the 
AR spectrum, which is not itself an improvement over a straight FFT 
wi th zeros. 
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Figure 5: Power from Fig. 2 Data. 

The next f'igure shows the ef'f'ect of' a moreoomplicated spectrum 
in this case 4 unit amplitude sinusoids with random phases', and no 
addi tive noise. Figure 6 shows that the AR method does considerably 
worse than the swap scheme, w.hich clearly resolves the four peaks 
from their aliases produced by the gapped domain. 
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The next two figures show how an increasing noise level affects the 
methods. In Figure 7 the noise is calculated with cr = 1. (The domain 
and signal are as' in Fig. 1.). Both methods do much better than a 
transform with zeros. The data in Figure 8 were calculated wi thcr = 2. 
Here the signal peak is: lost in hoth the AR and gapped FFT, but is 
determined by the swapped spectrum . 
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From these few' numerical experiments it seems apparent that both 
the "swap" scheme and the AR method are useful for estimating power 
spectra on gapped domains of roughly 50% duty cycle and s'ignal 
frequencies that are not too low. Furthermore it appears that the 
swap method works better than the AR approach for very noisy data or 
complicated spectra, but yields spectral resolution that may he more 
than a factor of 2 worse than an interpolation scheme. The full 
solution with a larger number,of frequency points, discussed in the 
reference ahove, would improve the resolution. 
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METHODS FOR CLOUD COVER ESTIMATION 

David L. Glackin, James R. Huning, Jeffrey H. Smith, Thomas L. Logan 

Jet Propulsion Laboratory 
California Institute of Technology 

ABSTRACT 

Several methods for cloud cover estimation are described relevant 
to assessing the performance of a ground-based network of solar obser
vatories. These methods rely on ground and satellite data sources and 
provide meteorological or climatological informatio~ Related studies 
completed and now in progress at the Jet Propulsion Laboratory are 
discussed. 

INTRODUCTION 

One means of acquiring long-term observations of solar oscilla
tions is the establishment of a ground-based network of solar observa
tories. Criteria for station si te selection (listed in increasing 
order of difficulty) are: gross cloudiness, accurate transparency 
information, and seeing. As a first-order attempt at site selection, 
one or more candidate networks can be chosen on the basis of published 
climatological data. The average duty cycle for a network in terms of 
visibility/invisibility of the sun (a binary function) could then be 
computed. The discussion in this paper focuses on alternative methods 
for computing this duty cycle. The cycle, or alternatively a time 
history of solar visibility from the network, can then be input to a 
model, such as that developed by Hill at NCAR, to determine the 
effect of duty cycle on derived solar seismology parameters. Because 
personnel at JPL are involved in several studies of cloudiness from 
space, the authors have worked with the Ground Based Network Task 
Group (chaired by G. Newkirk, NCAR)to examine various means by which 
the duty cycle might be computed. Cloudiness, and to some extent 
transparency, can potentially be estimated from satellite data. Costs, 
however, are not inconsequential. To be meaningful, data from a five
year time span are desirable. 
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GROUND-BASED INFORMATION 

For network sites chosen to correspond to existing solar observa
tories, observing logs and flare pa trols contain informa tion on the 
visibility of the sun. Unfortunately, the observing logs from any 
solar observatory will be difficult to interpret in this respect, and 
a meaningful comparison of the logs from two or more observatories 
will be all but impossible. The quality of these records will vary 
according to the observer on duty, mechanical down time of the tele
scope and other effects. Recreating a timeline from flare patrol 
films could be attempted, as indeed it has for a 2 or 3 year period at 
Sacramento Peak Observatory (Gilliam, 1983). The possibility of 
creating a complete 5-year timeline from an entire network of observa
tories using this method is unlikely, due to the factors mentioned 
above. The major disadvantage is the restriction of the study only to 
existing solar observatories that have run flare patrols consistently 
for the same 5-year period. Such a constraint is unacceptable within 
the defined goals of this study. 

Cloudiness data from standard meteorolOgical stations at 3-hourly 
intervals are archived at Asheville, N.C., and by the World Meteoro
logical Organization. Because of microclimatic variations the 
meteorology at the stations often bears little resemblance to the 
nearby mountaintop observatories. A good example is the Tucson air
port Site, which bears little resemblance to conditions on Kitt Peak. 
For some sites such as Big Bear, there is a nearby meteorology sta
tion. For other si tes, an interpola tion of surrounding meteorology 
stations may be appropriate. For still other Sites, the use of satel
lite data may be called for. It should also be noted that 
availability of these data can be a function of the country of origin. 

A feasible, relatively low-cost option is to generate synthetic 
timelines of cloudiness using climatological data, input to a Monte 
Carlo analysis model. Such models have a number of limitations, and 
in particular, the underlying assumptions must be examined with care. 
A climatological review of each site, including an analysiS of persis
tence and other available data, could be used to provide th~ model 
input. The model could generate hourly values of solar visibility 
over a one-year period to yield a synthetic timeline of network per
formance. The timeline could illustrate periods when the network does 
or does not have line-of-sight to the sun due to clouds or darkness. 
This timeline would be used as input to the NCAR model. Such studies 
have been carried out at JPL in the past. This would be much less 
expensive than using satellite data, and in fact appears to be the 
least costly optio~ On the other hand, verification of the results 
must be done with care. 
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SATELLITE DATA 

Numerous studies have indicated that satellite platforms can be 
used to construct cloud cover data bases, although the majority of 
these st udies involved only a small area and a short period of time. 
These studies include work by Hiser and Senn, 1980; Vonder Harr and 
Ellis, 1978; Hiser, 1978; Gautier, 1982; and Huning, et aI, 1982. 
All of these studies involve the mapping of cloud cover or the evalua
tion of satellite platforms for the mapping of meso-scale insolation, 
with the primary parameter of interest being cloud cover (extent and 
persistence) • 

Because geosynchronous satellites and orbiting satellites provide 
continuous coverage over the earth's surface they are especially 
attractive for use in the development of a cloud'cover data base. The 
primary complication in using satellite data for such a data base is 
the large volume of data that must be collected, analyzed and dis
played. For example, for a nominal three year cloud cover data base 
of only the continental United States, with an average of 24 half
hourly acquiSitions, some one billion bits must be registered, inter
preted and converted to tabular files each day. This converts to 
approximately 1 x 10 12 bits for a three year period. Clearly, the 
enormous amount of data that must be collected and evaluated would 
overwhelm most software-hardware configurations, expecially if a 
system was designed for global coverage. To reduce the amount of data 
collected, analyzed and displayed the concept of a variable grid size 
can be used. In those areas of the world where cloud cover is 
homogeneous over large areas a large grid size can be used and the 
amount of data analyzed substantially reduced. In those areas where 
micro-climatic conditions dictate, a smaller grid size is required. 
In addi tion, in those areas of specific interest a small grid size 
can be incorporated. 

There is no existing database of global meteorological cloud 
cover data, but the potential exists to construct it from various 
sources. Geosynchronous satellites which provide coverage of most of 
the globe are the U.S. GOES (Geosta tionary Operational Environmental 
Satellite), the ESA Meteosat and the Japanese GMS. The non-U.S. 
satellites have limited temporal coverage, and access to the data is 
problematical. Images from GOES East (Atlantic) and West (Pacific-see 
Figure 1) are obtained in the visible and near infrared with spatial 
resolution down to 0.9 by 0.9 km. These images are' archived with 
half-hourly time resolution by the University of Wisconsin, under 
contract to NOAA. The images are archived on video tape, and routed 
through an analog-to-digital converter when written back onto magnetiC 
tape for distribUtion. This often resul ts in missing lines, missing 
blocks, garbled lines, and sometimes completely garbled images. 
Despite these problems, this satellite data base has proven to be most 
useful at JPL. 
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The NOAA 6, 7 and 8 polar orbiters are another potential source 
of cloud cover data. They acquire data twice daily with the AVHRR 
(Advanced Very High Resolution Radiometer) instrument. Obtaining 
navigation data to perform earth location of these images is diffi
cult, and achieving registration with respect to earth coordinates to 
the pixel level, as would be required for sites such as Mt. Haleakala, 
is extremely difficult. Earth location to 10-15 km is probably 
feasible. The GOES images are easier to use and would result in 
greate~ accuracy although they do not cover the globe (GOES 
effectively misses latitudes 265 degrees). 

Cloudiness data are also available from the NOAA HIRS (High 
Resolution Infrared Sounder) instrument, discussed in the next sec
tion, and potentially from the DMSP (Defense Meteorological Satellite 
Program) Block 5 and the Tiros spacecraft. 

Finally, Sadler and Kilonsky (1981) have produced relatively 
low-resolution maps of 7-year monthly averages of cloudiness, with 
latitudinal coverage from 40S to 50N based on the GOES data. This data 
base could prove more useful than the standard published climatologi
cal maps. 

JPL STUDIES 

At JPL, a pilot study of cloud cover for solar insolation assess
ment has recently been completed (Huning, et aI, 1982). The study 
demonstrates the feasibility of deriving cloud cover statistics from 
satellite data. Four days of high-resolution GOES imagery over a 
limited geographical area were used. Elements of the study included 
decoding the GOES images supplied by the University of Wisconsin, 
geometrically registering the images, developing a normalization model 
to compensate for sun angle and creating a variable size georeference 
grid and a cloud/shadow model. Percent opacity was estimated on the 
basis of pixel intenSity, and is accurate to about 20%. The potential 
exists to refine the accuracy to about 10%. However, this does not 
approach the transmissivity accuracy ultimately desired for solar 
seismology studies. 

An ongoing study at JPL (M. Chahine) and Goddard (J. Susskind) 
involves the production of a 5-year world cloudiness atlas with a 
resolution of 2.5 by 3.0 degrees, based on the NOAA HIRS data. It 
will be presented as monthly averages. The task is to run for 3-4 
years, and the data are to be archived in the JPL PODS (Pilot Ocean 
Data System). Motion pictures of cloudiness for selected regions are 
to be produced. Preliminary products from this 'study are shown in 
Figure 2, from the JPL Image Processing Laboratory (K. Hussey). The 
full atlas will not be available for some time, and the resolution 
will be relatively low for the purposes of the solar oscillations 
work. 
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other related studies have been performed and are ongoing at JPL, 
including a pattern recognition method for cloud cover structure based 
on 2-D FFTs (Glackin, 1983). The authors may be contacted for further 
information. 

CONCLUSION 

There is evidence that mapping cloud cover from satellite plat
forms is within the range of requirements for siting ground-based solar 
observatories. As such requirements are refined, parallel develop
ments could be (and are being) carried out in the cloud cover estima
tion area. 
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Figure 1. Two Mile Resolution GOES Visual Imagery off 
California Coast 
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PART 4 

EXCITATION, DAMPING AND ROTATIONAL SPLITTING OF THE OSCILLATIONS 





NUMERICAL SIMULATIONS OF CONVECTIVELY EXCITED GRAVITY WAVES 

Gary A. Glatzmaier 
Theoretical Division 
Los Alamos National Laboratory 
Los Alamos, New Mexico 

Magneto·-convection and gravity waves are numerically simulated with 
a nonlinear, three-dimensional, time-dependent model of a stratified, 
rotating, spherical fluid shell heated from below. A Solar-like 
reference state is specified while global velocity, magnetic field, and 
thermodynamic perturbations are computed from the anelastic 
magnetohydrodynamic equations. Convective overshooting from the upper 
(superadiabatic) part of the shell excites gravity waves in the lower 
(subadiabatic) part. Due to differential rotation and Coriolis forces, 
convective cell patterns propagate eastward with a latitudinally 
dependent phase velocity. The structure of the excited wave motions in 
the stable region is more time-dependent than that of the convective 
motions above. The magnetic field tends to be concentrated over giant
cell downdrafts in the convective zone but is affected very little by 
the wave motion in the stable region. 

1. INTRODUCTION 

I would like to illustrate with numerical simulations how complex 
the global velocity and magnetic fields must be in the Sun, and how 
their structure and evolution in the stable region differ from that in 
the unstable, convective region. The dynamic dynamo model and the 
numerical method are described in Glatzmaier (1983). The anelastic MHD 
equations reduce to a 17th-order system of equations with each of the 
six dependent variables expanded in 1024 spherical harmonics and 17 
Chebyshev polynomials. A semi-implicit time-integration scheme is 
employed. The anelastic approximation filters out acoustic waves but 
not gravity or convective modes. 

A typical snapshot of the simulated motions is shown in Figure 1 
where the mass flux (velocity times density) is plotted in the 
equatorial plane. The top and bottom boundaries correspond to 93% and 
56% of the Solar radius, respectively. There are seven pressure scale
heights across the shell. The (V-VAb) profile in Figure 2 defines the 
superadiabatic and subadiabatic regions. (The stable region in a 
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standard Solar mixinglength model is much more subadiabatic than it is 
in this model. See further comments below.) Notice in Figure 1 how 
convective motions overshoot a short way into the stable (subadiabatic) 
region. This overshooting excites small amplitude gravity waves in the 
differentially rotating fluid. 
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Figure 1. Mass flux vectors plotted in the equatorial plane viewed 
toward the north. 
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Generally, buoyancy forces do positive work in the superadiabatic 
region by driving convection; while, in the subadiabatic region, they do 
negative work by damping gravity waves. This is illustrated in Figure 2 
where the horizontally averaged work done by buoyancy is plotted vs. 
radius. The negative buoyancy work in the stable region is small 
becaus'e the perturbations are small relative to those in the convection 
zone. Notice how buoyancy does positive work a short way into the 
subadiabatic region. This is due to the overshooting of sinking fluid 
that remains heavier than the surroundings for a short distance into the 
subadiabatic region. The negative work done by buoyancy near the top of 
the convection zone is required to help decelerate rlslng fluid and 
accelerate sinking fluid (Glatzmaier and Gilman 1981b). 

We will examine the structure and evolution of the velocity and 
magnetic fields - first in the unstable (superadiabatic) region and then 
in the stable (subadiabatic) region. 

o 

(BUOY WORK) 
~ 

subadiabatic super adiabatic 

Figure 2. Horizontally averaged (V-V~)and buoyancy work density per 
time plotted vs. radius. 
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2. THE UNSTABLE REGION 

In Figure 3, the radial component of the velocity is plotted 
(relative to the rotating frame of reference) in a spherical surface 
just below the top boundary at four different times. The snapshots were 
taken a week apart. As suggested by linear anelastic calculations 
(Glatzmaier and Gilman 1981b), north-south rolls are preferred because, 
for these, Coriolis forces are more easily balanced by pressure gradient 
forces. However, nonlinear, multimode calculations are required to 
study the complicated structure and evolution of the convective cells. 

One can see, by examining these snapshots, how the cell pattern in 
the equatorial region propagates eastward relative to the patterns in 
the polar region. As a result, an updraft region is periodically 
sheared apart at mid-latitude and subsequently joined to the next 
updraft region. The eastward cell velocity in the equatorial region is 
about 10% of the average Solar rotation rate. 

There are two reasons for this type of evolution. The obvious one 
is the nonlinear effect of the latitudinal differential rotation. That 
is, the north-south rolls become deformed because the equatorial region 
rotates faster due to the transport of angular momentum (Gilman 1977, 
Glatzmaier and Gilman 1982). The other reason is a linear effect due to 
Coriolis forces (Glatzmaier and Gilman 1981a). As rising fluid in a 
north-south roll expands, Coriolis forces cause it to rotate in the 
opposite sense of the global rotation generating negative local 
vorticity. Positive local vorticity is generated when sinking fluid 
contracts. Consequently, since positive vorticity exists in north-south 
rolls that are east of updrafts and negative vorticity in rolls east of 
downdrafts, the phase of the north-south rolls propagates eastward. 
Since this effect is greatest where gravity is perpendicular to the 
rotation axis, the resulting eastward phase velocity is maximum in the 
equatorial region. 

Now we examine, in Figure 4, the corresponding structure and 
evolution of the radial component of the magnetic field in the same 
spherical surface at the same four times. In this surface the magnetic 
energy density is approximately one thousand times smaller than the 
kinetic energy density. As a result, both magnetic field polarities 
tend to be concentrated over the downdrafts of the giant cells due to 
the convergence of horizontal flow (Glatzmaier 1983). This can be seen 
by carefully comparing Figures 3 and 4. Since the peak radial 
components of the magnetic field exist at mid-latitude, they do not 
experience the large eastward phase velocity of the convective cells in 
the equatorial region. However, by close examination, one can see how 
the magnetic field structure changes slightly as the convective rolls 
are sheared at mid-latitude. 
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3. THE STABLE REGION 

The structure and evolution of the velocity and magnetic fields in 
the stable region are quite different than what has just been described 
for the unstable region. The radial component of the velocity is 
plotted in Figure 5 for the same four times but in a spherical surface 
just above the bottom boundary. Since here buoyancy is a restoring 
force, the velocity consists of oscillatory wave motions. However, 
these are not simple linear gravity modes but highly structured, time
dependent, nonlinear waves which are continually being excited by 
convective overshooting and affected by Coriolis and Lorentz forces on a 
differentially rotating fluid background in spherical geometry. 

The corresponding radial component of the magnetic field, plotted 
in Figure 6, shows little change with time and very little correlation 
with the velocity field. This is probably because the oscillatory fluid 
motions deep in the stable region do not have horizontal convergence 
properties as do the convective motions in the unstable region. Also, 
the magnetic energy density at this depth is only ten times smaller than 
the kinetic energy density. 

4. SUMMARY 

These numerical simulations were presented to illustrate how 
complicated the structure and evolution of the velocity and magnetic 
fields must be in the Sun. They illustrate the latitudinally dependent 
eastward propagation and resulting shearing of the north-south rolls. 
Certainly this makes the observation of Solar giant cells difficult, 
especially when the data is averaged over several weeks in order to 
reduce the small-scale Solar noise (Howard and LaBonte 1980, Gilman and 
Glatzmaier 1980). On the other hand, the simulated large-scale magnetic 
fields, concentrated over giant-cell downdrafts near the surface at 
mid-latitude, change very little with time and resemble large-scale 
Solar magnetic field observations (Howard 1977). 

The simulations also illustrate how complicated gravity wave 
motions are in the stable region and how they differ from convective 
motions in the unstable region. However, the simulations were not meant 
to predict periods of the excited gravity modes. The ~eriods, which are 
of the order of a few weeks, probably are not realistic for two reasons. 
The model's impermeable bottom boundary forces an artificial node and 
enhances the higher order spherical harmonic modes (smaller scales). In 
addition, (V-V~) in the stable region is much smaller than it is in a 
standard Solar model; consequently, the gravity wave periods are much 
larger than they would be if the stable region were more subadiabatic. 
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Figure 3. Radial components of velocity plotted in a spherical surface 
just below the top boundary at one week intervals. Solid (broken) 
contours represent upward (downward) velocity. 
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Figure 4. As in Figure 3, but for the radial component of the magnetic 
field. 
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Figure 5. As in Figure 3, but for a spherical surface just above the 
bottom boundary. 
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Figure 6. As in Figure 5, but for the radial component of the magnetic 
field. 
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A new version of the code is being developed that will model an 
entire sphere, employ time-dependent sub-grid scale eddy diffusivities, 
and incorporate a tv -Vu) profile based on a standard Solar model. This 
new code should be able to predict more realistic gravity wave 
amplitudes and periods. However, the present results illustrate how 
difficult it would be to observe these highly structured, time-dependent 
gravity modes, especially if the interpretation is based on linear 
models that do not account for convective motions, Coriolis forces, 
Lorentz forces, or differential rotation. 
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ON THE INFLUENCE OF TURBULENT MOTIONS ON NON-RADIAL OSCILLATIONS 

B. R. Durney 
Sacramento Peak Observatory* 

The effect of turbulent motions on oscillations is studied, consi
dering only the coupling between turbulent and oscillatory velocities. 
In this case, the turbulence affects the oscillations through the 
Reynolds stresses in the momentum equation for the pulsations. A simple 
model of turbulence is adopted to evaluate these Reynolds stresses and 
the perturbed eigenfrequencies are expressed as a function of certain 
averages of the turbulent velocities. 

INTRODUCTION 

The study of time-dependent convection (Unno 1967; Gabriel et al. 
1975; Gough 1977; Deupree 1977; Xiong 1977; Keeley 1977; Goldreich and 
Keeley 1977; Baker and Gough 1979; Saio 1980; Gonczi and Osaki 1980) is 
an important subject for the understanding of pulsating stars with 
convection zones. 

Several of the above papers study the generalization of the mixing 
length theory of convection to pulsating stars and the influence of 
pulsation on the velocity and temperature fluctuations must be consi
dered. 

The aim of this paper is far more modest; we retain the influence 
of the oscillations on the turbulent velocities only, and neglect it on 
the turbulent values of the pressure, density and temperature. There
fore, the effect of the turbulent motions on the oscillations manifests 
itself solely through the mean Reynolds stresses in the momentum equa
tion for the pulsations. The definition of mean quantity is based on 
time averages: it is assumed that the oscillations remain coherent for a 
time much longer than the life-tim{ of the turbulent eddies. To calcu
late the mean Reynold stresses we adopt a very simple model of 

* Operated by the Association of Universities for Research in Astronomy, 
Inc. under contract AST 78-17292 with the National Science Foundation 
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turbulence; namely. we assume that the turbulent velocities remain 
unchanged for a turnover time and then suddenly change to an uncorre
lated velocity field. The perturbed equation for the oscillations is 
solved by a variational principle and the perturbed eigenfrequencies. 
Wi. are expressed as a function of wOo the turbulent eddies l lifetime 
and certain averages of the turbulent velocities. 

THEORY 

a) The ~bmentum Equation 

The equation for conservation of momentum can be written (we ne
glect rotation): 

-1 Du/Dt = V</I - P Vp • ..... 

where u. </I. p. and p are. respectively. the fluid velocity. the gravi
tational potential. the density and the pressure. The convective rate 
of change operator. D/Dt. is defined by 

D/Dt = a/at + u • V. ..... 

For u. P. p. and </I we can write ..... 

u = u e i wt + u I • _..... -
- iwt P = P e + P + pl. 

o 0 
- iwt I 

p=pe +Po+po' 

</I = </I • 
o 

In Eqs. (3). the quantities with a bar are oscillating quantities; 

(2 ) 

(3a) 

(3b) 

(3c) 

(3d) 

p • Po and </1 0 are the pressure. density and gravitational potential in 
tRe aBsence of turbulence and oscillations; MI. P~. P~ are the turbulent 
velocity. pressure and density. It is clear from Eq. (3d) that we 
neglect the effect of the oscillation and turbulent motions on the 
gravitational potential. The subscript 10 1 in P~ and P~ indicates that 
we also neglect the effect of the oscillation on the turBulent values of 
the pressure and density. i.e .• we assume. for example. that 
pi (u * 0) = pi (u = 0) = p~. We stress. on the other hand. that we do 
not-neglect the-effect of the oscillation on MI. In fact the derivation 
of the equation relating ~I and ~I is one of the main objects of this 
paper (the subscript 10 1 designatas. here and elsewhere. quantities in 
the absence of oscillations). 

We expand l/p as follows (see Eq. (3c)):1 
1 1 -e iwt Po 
- = - (1 - P - -). 
P Po Po Po 

(4 ) 
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With the help of the unperturbed equation (Eq. (5b) below) and of Eqs. 
(3) and (4) it is straightforward to show that Eq. (1) can be written as 
follows: 

i uue i wt + aU I I at + e i wt u • vu I + e i wt u I • vu - - "'" 

-1 1 
+ ul • vu l - <u l • vu l> = - eiwt Po Vp - P-o Vplo 

-0 -0 E 

i wt - - 2 i wt - - 2 + e pp Vp + e p p Vpl 
o 0 0 0 

+ I - 2 '"' i wt I - 2 - I - 2 I - 2 < I I PoPo vpo + e P P Vp + P P vp - P Po vp > E o 0 0 0 0 0 0 
(5a) 

(5b) 

In Eqs. (5) the bracket denotes an ensemble average and in Eq. (5a) we 
have neglected terms quadratic in the oscillations. We assume now that 
the oscillations remain coherent for a time much longer ~qa~ the life
time of the turbulent eddies. We multiply Eq. (5a) by e w IT and 
integrate in time from zero to T. In the limit T + wwe obtain 

with 

-iwt iwu + e - I I . 1 - .e..... <u • vu > = - - vp + vp, 
- - P 2 0 o Po 

= eiwt iim + rTu ' • vu' e- iwt dt. 
T+w il - -

<u l • vu l
> 

(6 ) 

(7) 

The justification of Eq. (6) is straightforward. since it is clear that 

an integral of the form + IT L'dt where L' is linear in the turbulent 

quantities, vanishes for large Tis. 

holds true for i JT 
o 

IVpl 
P . t 
o 0 e-1W dt. 
P~ 

It is also clear that the same 

The quanti ty <u I • vu I>, on the - -
other hand, differs from zero; this is due to the influence of the 

oscillation on the turbulent motions (see Eq. (9) below). 

Equation (6) plays the role of the mean equati~n and we proceed now 
to evaluate <u l • vu l>. We multiply Eq. (6) bye 1W and subtract it 
from Eq. (5a)~ It is readily found that the fluctuating momentum equa
tion is given by 

+ U I • vu I - <u I • vu I >E - <u I • vu I> 
- -0 -0 '" -
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- 1 I i wt - - 2 I I - 2 
Po Vpo + e PPo vPo + PoPo vPo 

i wt I - 2 - I - 2 I - 2 I I 

+ e PoP o Vp + PoP o Vpo - Po <Povp o>E' (8) 
Let ul be the turbulent velocities in the absence of oscillations. The 

"'0 
equation for ul is obtained by setting u,p, and p equal to zero in Eq. 

"'0 
(8). We subtract the equation for ul from Eq. (8), and replace 

-0 
ul by ul in the terms containing the perturbation ~. We obtain 
'" -0 .-

aU I ",0 i w - I i wt I I I I I I e U· vu - e u • vu - u • vu + u • vu + < u ~ - ~ - '" "'0 "'0 - .... 0 "·0 

+ eiwt -P -2 "pi + eiwt 
I -2 O-p P v 0 Po Po v. 

Neglecting quadratic terms in the turbulent quantities, Eq. (9a) 
to . 

aUI aUI 
- ",0 i wt - i wt i wt - - 2 e u Wi e ul • 171. + e Vplo M = M - · .... 0 - -0 v~ PPo 

+ eiwt I -2-PoPo vp. 

• Vu I> 

(9a) 

reduces 

(9b) 

It is clear that the term ul • Wi - U • vu l - <u l • Wi> in Eq. 
'" ,..".,. ""'0 row 0 ........ '" 

(9a) need not be small for fully developed turbulence. This approxima
tion finds justification more readily in the case of random waves (see 
Mlffat 1978, p. 156). It should be stressed, however, that this "first 
order smoothing" or "quasi-linear" approximation has been used success
fully by Krause (1968) in the derivation of the a-term in dynamo theory 
and lies at the basis of our understanding of the solar cycle. Equation 
(9b) relates the turbulent velocities in the presence and absence of 
oscillations and it is, therefore, the central equation of this paper, 
since it allows us to evaluate <u l • vu l> from Eq. (7). To evaluate 
this term we consider the following very simple model of turbulence: we 
assume that the turbulent velocities remain relatively unchanged for a 
turnover time, ~, and then suddenly change to an uncorrelated velocity 
field. To illustrate the details of the derivation of <u l • vu l> it 
suffices to retain only the first two terms in the right~hand side of 
Eq. (9b). Therefore, 

u l (t) = .... U I (t) 
"'0 

(10) 

The value of the integration constant does not playa role in our 
calculations, and we have assumed in Eq. (10) that it vanishes. It is 

clear that <u l • Wi> contains the term <u' • vu l> and two terms linear 
- - -0 -0 

in u (we neglect quadratic terms in u). Now. by definition, 
'" .... 
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<u l • vu l > = eiwt limit T1 (Te- iwt ul • vu l dt. This quantity van-
.... 0 "'0 t,..o "'0 

ishes, since the frJqoency w is of no particular significance for the 
unperturbed turbulence. The two terms linear in u are 

- < (t eiwt' (u • vu l (t l ))dt ' • V~I (t» 
t -""'0 ""'0 

t . tl 
- «u l (t) • v) ( e1W u· vu l (t l )dt ' >. 

-0 t --0 

We proceed 
definition 

now to derive the first term designated hereafter by A. By 
T . ,.. 

where 
A = - '-i m ~ f e -1 wt f ( t) • W I (t) d t ( 11 a ) 
..... T -+-1lO 0 ,.. ""'0 

f(t) = fteiwt' u . vu l (t l )dt'. 
'" 0 ,.. ..... 0 

(llb) 

Our model of turbulence allows us to write 
N-1 ( 1) . tl 

f(t) = L f n+ '& e1W U ·vu l (t l )dt ' 
,.. n=O n'& - -0 

t iwt'-+ feu • vu I (t I ) dt I 
N'& "'0 

(e iW'&_l) N-1 . = L e 1 wn,& U • vu I (n) 
iw n=O "'0 

iwt iwN'& 
+ e :e u . vu l (N). (12) 

1w '" -0 
where ul (n) is the value of the turbulent velocity field in the interval 

"'0 
(n'&. (n+1)'&) and N = t/'& with the usual convention used in numerical 
coding. We can write for ~ (the limit M -+- IlO is understood) 

M-1 (m+1h· . 
A = - ~ L f e-1wt f(t) • vu l (t)dt. (13) 
..... '& m=O m'& """"0 

In the interval (m,&,(m+1h), f(t) is given by Eq. (12) with N=m. Sub
stituting Eq. (12) into Eq. (t3) we find 

M-1 m-1 () 
L L eiwt n-m (!!.. Wi (n» • VU' (m) ] 

m=0 n=O "'0 ""0 

- '-im [~{1 +...1- (e- iw'&_l)} 1M ~1 (U. wl(m)} • vul(m)]. 
M+a> 1 W 1 w'& m=0"" "'0 ""'0 

(14 ) 

The first term is a sum over uncorrelated velocity fields ul(n), ul(m) 
"'0 ""'0 
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with n * m and, therefore, it vanishes. By the ergodic theorem the sum 
in the second term is equal to <{u • VU I (m}} • vu l (m}>E where the brack-

- -0 -0 
et denotes an ensemble average. 

Proceeding in an analogous way with the other terms of <u l 
• VU I > - -

and neglecting the correlations <~~ • VP~>E' and <~~ P~>E we finally 
obtain iwt 1 . 

<u l 
• VU I > = -~ [1 + -. - (e-1W't -1)] <8> • (15a) lw lw't -E 

<B> = <u l 
• veu_ • vu l 

+ ul 
• vu) + (u • vu l 

+ u l 
• vu) • vu l >E. (15b) 

- E -0 -0 -0 - - -0 -0 - -0 

It is of interest to consider the limit w't + 0 in Eq. (15). For 
values of t such that wt is small, we obtain 

(16 ) 

This is essentially Elsasser's (1966) expression for <u l 
• vu l > valid - "-

for steady flows. The above formalism is, therefore, generalized in the 
present paper for the case of oscill ati ng mean flows. Droppi ng the 
subscript 10

1 in Eq. (15b). we can write for the i-th component 

of <~>E: 
1 (- 1 1 -) (- 1 1 -) 1 <8'>E = <uk ok u·o·u. + U·O·u. + u.o.uk + u,o.u k 0ku'>E = 1 JJl JJl JJ JJ 1 

1 ( -)( I) - (I I) 1 (I -) <2u k 0k u. o·u. + u· o· Uk 0k u. + uk ok u· O·u. >E' J Jl J J 1 J Jl (17) 

In Eq. (17) repeated indices are summed and O. is the derivative with 
respect to the j-coordinate. We are particul~rly interested in studying 
the effect of the convective motions in the outer solar convection zone 
on non-radial oscillations. Due to symmetry properties, the correlation 
coefficients for these motions satisfy certain relations as; for exam-
ple, <u l .u l '>E = 0 unless i = j; o.<u!2> = 0 unless j = r. With the 

1 J J 1 

help of these relations it is found that 

Therefore, 

(l8a) 

(18b) 

(18c) 

<~>E = (orv) vU r + vv~ + ~ (orv)(or~) + ~ ir uro~ v, (l9a) 
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A 

where ir is the unit vector in the radial direction and 

v = <U I2> = 1 <U I2> i E 3.... E' (19b) 

The mean momentum equation (6) can, therefore, be written 
aU 1 (-iw't 1)/' -.:::.. _ + e. - 1 w't [( a v) 
at lw r 

1 r - - vP + - vp 
Po p2 0 

VU r + VV2~ + ~ (orv) (orU) + i i r Ur 0; v] = 

(20a) 

o 
where U = u eiwt; P = pe iwt ; r = pe iwt 

"'" ,... (20b) 

b) The Perturbed Eigenfrequency 

Let q be any physical quantity (u, p, ••. ). Then q = q + Q + ql 
.... 0 

where q is the equilibrium value in the absence of oscillations and 
o - i wt) turbulence, Q(= q e is the oscillatory component and ql is due to 

the turbulence (see Eqs. (3)). Clearly, 

Q = e i wt 1 i m i (T e - i wt q d t • ( 21 ) 
T -+-00 6 

We denote by ~ the displacement due to the oscillations--defined, there-
fore, by an equation similar to Eq. (21)--and define 

OQ = Q(r + ~,t) - Q (r,t). (22) 
"'" ~ 0 "-

Clearly, o~/ot = o~ and, e.g., oVUr = VoUr ' We apply the o-operator to 
Eq. (20a) and set w = w (the unperturbed frequency) in the perturbation 

o 
terms of Eq. (20a). We obtain 
_pow2~ - po(1 + (e-iw'to - 1)/iwo't)[(orv)V~r + VV2~ + ~ (orv)(or~) 

1 A 

+ -2 i ~ o2v] = p o(-VP/p + rvp /p2). rrr 0 0 00 
(23) 

Lynden-Sell and Ostri ker (1967) and Schutz (1979) have developed vari a
tional principles to determine the eigenfrequencies of an equation like 
(23). We define 

a = 
~ 

(24a) 
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(24b) 

* 
p ~ = f ~ p. ~ d 3!, (2 4c ) 

where P is given by Eq. (~5) of Lynden Bell and Ostrikerls paper. 
Multiplying Eq. (23) by ~ and integrating over the volume, we find 

-w2 a - b + P = O. 
~ ~ ~ 

(25 ) 

Let 

w=w +w;~=~ +~, o 1 0 1 
(26) 

where the subscript 10 1 denotes now the eigenfrequency and eigenfunction 
in the absence of the perturbation due to the turbulence. Now for the 
unperturbed state a variational arinciple holds; i.e., the 
quantity -w~ a~ + p~ is of secon order in the perturbation. Therefore, 
-2w w a~ - b~ vanlshes to first order. That is. 

o 1 ~o ~o 
. w = - b /2w a (27) 

1 ~o 0 ~o 
A word of caution is needed in relation to Eq. (27): It is based on Eq. 
(19a) for <~>E and, consequently. in th: limit of steady flows the 
Reynold stresses contain a term, - ; ~ ir Ur o;v which does not contain 
a derivative of the mean flow. The physical significance of this term 
is doubtful and, again for steady flows, it can be shown that a more 
satisfactory theory of "turbulent viscosity" does not include this term. 
Agreement between the results for oscillatory flows (for TW + O) and steady 
flows (cf. paper quoted above) is obtained if the Reynolds stresses are 
given by d.(pouijuli) with 

J t . tl 
ul (t) = ul (t) - r e1W ul • vu dtl. (28) 
- -0 tJ "'0, "-

It can then be readily shown that w = - bl ~ /2w a~ with 
. 1 ~ 0 ~ 

b ~ I = (1 + (e - 1 Wo't" _ 1) / i w 't) I, 0 0 
~ * 0 o I = f ~ • [0 (p v){V!; + 0 ~ } + P v{vdiv ~ + V2~ }]d3r; (29) ;:eo r 0 or r;:eo 0 0 0 .... 

that is, 
w /w = F(w , 

1 0 0 
't, a~ )1, 

o 

F(w , 't, a~ ) = - (l/2w2 a~ ) [1 
o ~o 0 ~o 

- sin w 't/w 't + ;(1 - cos w 't)/w 't]. 
o 0 0 0 

(30) 
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DISCUSSION 

It is clear that Eq. (30) allows for the damping or excitation of 
the oscillations by the turbulent motions as well as for a frequency 
shift. We notice that the imaginary term in Eq. (30)--namely, 
i(l~cosw ~)/w ~.is an oscillatory function of w~. The maximum value 
000 

occurs at a period of oscillation P. such that P '" 8~/3. That is. P 
and ~ are comparable (see Goldreich and Keeley 1977). 

To obtain a very rough order-of-magnitude estimate for w • we 
1 

neglect the last two terms in I and retain only the radial component of 

~o[= [1)or' TJoh 'O/'Oe. TJoh(sin e)-1 'O/'O<\>J Y~ (e.<\»]. We obtain 

w /w = F(w. ~, al;) J 'Or(p vl 'Or(TJ~r) d3r. (31) 
1 0 0 0 0 "-

In Table 1, Pov (=1/3Po<~'2» is tabulated for surface values of 
the solar convection zone. 

Table 1. Values of the kinetic energy of the turbulent convective 
motions as a function of depth in the solar convection zone 

d(km) 50 100 200 300 400 500 600 
P v/10 3(cgs) 1.2 7.4 6.4 6.3 6.6 7.1 7.6 

0 
103 104 105 d 700 800 900 

pov/10 3 8.2 8.7 9.3 10.1 1. 3102 6.810 2 

It is clear from Eq. (31) that we need to calculate the following ex
pression: 

A = J'Or(pov)'Or(TJ~r)d3r/(2Jpo1b; d3r)· (32) 
With the exception of the surface layers of the convection zone. Table 1 
shows that 'Or(pov) "- 10- 4(cgs). Figure (9) of Ulrich and Rhodes (1983) 
suggests that the following relations have some validity: 
P (S)1)2 (S) ,... 10 <p n? > where S and the bracket denote a surface and 
o or 0 ur r.: 

the average value, respectively. Keeping in mind that n~r decreases 
rapidly with depth. we find A '" 10-4[~r(S)po(S)/po(S)]/2d<po~r> where 
d is the depth of the convection zone. With po(S) = 3 10-6 g cm- 3 

(density at a depth of 1000 km). A '" 10- 8 s-2 and w1/wO ,... 2.5 10- 5 for 
oscillations with a period of 5 minutes. It should finally be noticed 
that since '0 (p v) > 0 (a thin surface layer excepted) Equation (31) 

r 0 

333 



shows that the turbulent motions will act as a driving term for the 
oscillations if 0r(~~r) > 0 in the region contributing predominantly to 
the integral in Eq. (31). 

The author is grateful to Drs. F. L. Deubner and J. Leibacher for 
valuable discussions. The author's work was supported in part by NASA 
grant W-15.076. 

REFERENCES 

Baker. N. H. and Gough. D. o. 1979. Ap. J .• 234. 232. 
Deup'ree. R. G. 1977. Ap. J. 211. 509. 
Elsasser. K. 1966. Zs. Ap •• 63. 65. 
Gabriel. IVi •• Scuflaire. R .• Noels. A .• --anaBoury. A. 1975. Astr. Ap .• 

40. 33. 
Goldreich. P .• and Keeley. D. A. 1977, Ap. J •• 212. 243. 
Gonczi. G •• and Osaki. Y. 1980. Astr. Ap .• 84. 304. 
Gough. D. o. 1977. Ap. J .• 214. 196. 
Keeley. D. A. 1977. Ap. J .• 211. 926. 
Krause. F. 1968. Habilitationschrift. Universitat Jena. 
Lynden-Bell. D .• and Ostriker. J. P. 1967. fvl.N.R.A.S .• 136. 293. 
IYbffat. H. K. 1978. Magnetic Field Generation in Electrically Conducting 

Fluids (Cambridge: Cambridge University Press). 
Saio. H. 1980. Ap. J .• 240. 685. 
Schutz. B. F. 1979. Ap. J •• 232. 874. 
Ulrich. R. K. and Rhodes. E. J •• Jr. 1983. Ap. J., 265, 551. 
Unno, W. 1967, P.A.S.J., 19, 140. 
Xiong, D. 1977, Acta Astr. Sinica, 18. 86 (translated in Chinese Astr. 

2, 118 (1978)). 

334 



THE STABILITY OF THE LOW DEGREE FIVE MINUTE SOLAR OSCILLATIONS 

Russell B. Kidman and Arthur N. Cox 
Theoretical Division, Los Alamos National Laboratory 
University of, California 
Los Alamos, NM 87544 

In this paper we discuss the decay rate for many of the low degree 
p modes observed as 5 minute oscillations of the sun. This report is an 
expanded version of the presentation at Snowmass. These theoretical 
results use the completely nonadiabatic linear, theory of Saio and Cox 
(1980). Our solar model is based on the evolution results of 
Christensen-Dalsgaard (1982). Equation of state and opacity data come 
from the Los Alamos Opacity Library of Huebner, Merts, Magee, and Argo 
(1977). We compute decay rates for modes ranging from radial (2.=0) to 
the nonradial ones with 2.=5 for overtones 10 through 28. 

Parameters needed for our solar model are given in Table 1. 
Figure 1 shows the hydrogen mass fraction composition structure. Also 
given on the figure is the structure given by Christensen-Dalsgaard 
(1982) for an evolved solar model. Our special equation of state and 
opacity table with X=O.74 for the hydrogen mass fraction in the outer 
0.40 of the mass needs slightly more hydrogen in the central regions 
than obtained by Christensen-Dalsgaard in order to give a complete and 
consistent model. The difference in helium production between these two 
models is about 10%, meaning that the total energy radiated by the sun 
during its lifetime thus far agrees satisfactorily with accurately 
calculated evolution sequences. 

TABLE 1 

SOLAR MODEL: 

Luminosity 3.90xl0 33 erg sec-I 

Mass 1.989xl0 33 g 

Radius 6.955xl0 1o an 

Surface temperature 5.8xl0 3 K 

Central temperature 1.51xl07 K 

Central density 122.3 g an-s 

Surface X, Y, Z 0.740, 0.240, 0.020 

Central X, y, Z 0.450, 0.530, 0.020 

Depth of convection zone 0.32R0 (0.043M0 ) 

Temp. at bot. of convec. zone 2.50xl0 6 K 

Central ball O.05R0 (O.OlM0 ) 

Surface-zone rrass 3.0xl0 22 g 
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- KIDIlAN-COX 
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q 

Figure 1. The hydrogen mass fraction of the composition, X, is plotted 
versus interior mass fraction of the solar model. 

2 Figure 2 is a plot oJ the logarithms of temperature (K), opacity 
(em /g), and density (g/cm ) for our model versus the logarithm of the 
exterior mass. The very high opacity over the outer 4% of the mass 
produces a very deep convection zone. The rapid rise of temperature 
just cooler than 7,000 K requires a small density inversion to give the 
proper run of pressure to maintain hydrostatic balance. The ratio of 
mixing length to pressure scale height for all the convection zone is 
1.5. 

SOLAR MODEL 
8 

6 

4 

10gT 

log K 

log P 
-2 

-4 

-6 

-8 
0 2 12 

Figure 2. The temperature, opacity, and density structure of the sun is 
plotted versus the logarithm of the exterior mass fraction. 
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3 

Solution for the eigenvalues and eigenevectors for the nonradial 
modes is made for all six of the Dziembowski (1971) variables which have 
both real and imaginary parts. Figure 3 gives the central variations of 
Yl' the Lagrangian variation of the mass shells in the radial direction. 
Toe imaginary part, which indicates the variation structure at the mean 
radius phase of the pulsation as contrasted with the real part applying 
to the time of the maximum expansion for these linear sinusoidal 
motions, is very small. This means that the oscillations for this P23' 
Q=2 mode are very adiabatic. There is little phase change for these 
lobes which gives essentially standing rather than running waves. 
Figures 4 and 5 give this same radial variation structure in the outer 

SOLAR MODEL (L=2 N=23) 
1.0 

0.8 

0.6 

0.4 ...... .., 
I 0.2 52 ..... 
... 

0.0 ........ .. .. 
-0.2 

-0.8 

-1.0 L;.-----;;;L..-----,:~---"J.,..--~D_"--_7 0.0 0.8 1.0 

Figure 3. The central variations of the real and imaginary parts 
radial component of the P21,Q=2 oscillations are plotted versus 
fraction. At x=0.2, 30% 01: the solar mass is interior. Only 6% 
mass is interior to x=O. 1. At x=O. 4 the interior mass is 75% 
model mass. 

10 
SOLAR MODEL (L=2 N=23) 

8 

6 

4 ...... .., 
I 2 52 ..... rllCll .. 

0 ........ .. Imag • 
'" -2 

-4 

-6 

-8 

-10 
0.90 0.98 1.00 

of the 
radius 
of the 
of the 

Figure 4. The radial component real and imaginary parts of the P23' Q=2 
oscillations are plotted for the outer 10% of the radius. 
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0.990 0.992 0.998 1.001 

Figure 5. The radial component real and imaginary parts of the P23' Q=2 
oscillations are plotted for the outer 1% of the radius. 

10% and 1% of the radius. Only at the surface is there any phase change 
of the real and imaginary parts of this variation, and there also is a 
significant nonadiabatic effect. At the ve'ry surface, the usual normal
ization gives unity for the real part and zero for the imaginary part. 
Damping of this mode is related to this feature of the eigensolution, 
and it is discussed below using the derived complex eigenvalue. 

Periods for many modes are given in Tables 2to 7 , respectively, 
for Q=O to 5. Modes PI0 to P28 frequencies are listed together with the 
frequencies observed 15y Harvey and Duvall (1983). The listed periods 
and frequencies are from the adiabatic solutions, and the few ~Hz cor
rections to get the nonadiabatic periods are also given for each mode. 
Decay rates are calculated by taking the ratio of the imaginary and real 
parts of the eigenvalue and multiplying this ratio by 4n. It is also 
possible to integrate the P-V loops that all these Lagrangian zones 
traverse each cycle to get the work done by or done on these zones each 
cycle. The sum over all the mass zones agrees well with the decay rate 
derived directly from the eigenvalue component ratio. For each mode the 
decay times are given in terms of the number of cycles and in terms of 
the real time. 

Our calculations were done with only 329 mass shells a'nd the 
central ball. These 330 zones are not quite enough to define well the 
eigensolutions, and we get frequencies 1.3 to 2.5% too large compared 
with the observed frequencies. See .Figure 6 where a comparison of our 
frequencies with those of Shibahashi et al. (essentially the observed 
ones) is made. This trend indicates a zoning error, because it 
decreases with increasing resolution of the pulsation mode and its eigen
solutions. Our optimum zoning has very fine mass shells down to a depth 
of 3.5 million kelvin. In this outer region the temperature increases 
only about 3% per zone. In the deeper layers, the 100 more zones have a 
mass ratio from zone to zone of 1.003. We estimate maybe 100 more care
fully placed zones could give adequately accurate periods. Our actual 
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frequencies should not be accepted for high accuracy, but the decay 
rates listed in the tables should be well determined. 

TABLE 2 

periods# frequencies and decay rat-as 

lIIeasured 
decay by e 

adiabat.1c non-a 
period frequenc~ incre frequenc~ number of t.ime 

1 n (sec) (uhz (uhz) (uhz cycles (days) 

£I 19 629.895 1619.6 -15.59 9.9 18339.7 131.73 
£I 11 573.397 1744.0 -11.97 9.9 8378.6 55.61 
0 12 532.832 1876.8 -9.62 9.0 429"4.2 26.48 
£I 13 497.510 2010.0 -8.13 0.0 2481.6 14.29 
£I 1"4 466.249 214"4.8 -6.83 9.9 1483.9 8.01 
£I 15 438.540 2280.3 -5.92 0.0 933.4 4.7" 
£I 16 "14.175 241 ..... -5.01 9.0 607.9 2.91 
£I 17 392.092 2550 ... -".3" 0.0 429.3 1.95 
£I 18 372.124 2687.3 -3.99 0.0 330.4 1. .. 2 
0 19 354.983 2824.2 -3.75 9.0 269.5 1.10 
£I 20 337.481 2963.1 -3.56 0.0 227.6 .89 
o 21 322.317 3102.5 -3.41 9.9 191.9 .72 
£I 22 398.399 3242.6 -3.30 9.0 167.0 .60 
o 23 295.583 3383.1 -3.19 0.9 144.7 .50 
£I 24 283.583 3526.3 -3.16 9.0 132.9 .43 
o 25 272."92 3669.8 -3.24 0.0 120.6 .38 
o 26 262.244 3813.2 -3.39 0.0 109.4 .33 
o 27 252.677 3957.6 -3.48 0.0 105.4 .31 
o 28 243.731 "102.9 -3.70 0.0 97.7 .28 
~ 

TABLE 3 

period", frequencies and decay rat.es 

adiabatic non-a lIIea"ured 
decay by e 

period frequenc~ inere frequene~ number of time 
\ n (see) (uhz (uhz) (uhz cycles (day,,) 

1 19 607.745 1645.4 -.58 9.0 13601.4 95.67 
1 11 560.942 1782.7 -.59 0.0 6376.5 41."40 
1 12 521.033 1919.3 -.5<4 0.0 338"4.0 20.41 
1 13 486.203 2056.8 -.54 0.0 199".7 11.22 1 14 "455.839 2193.8 -.58 2161.0 1217.2 6.42 1 15 "428.930 2331.4 -.66 2293.0 765.3 3.80 1 16 405.383 2"66.8 -.80 2"27.0 526.7 2.47 1 17 384.277 2692.3 -.93 9.9 385.9 1.72 1 18 365.917 2739.6 -1. 99 0.0 309.8 1.27 t 19 347.465 2878.0 -1.26 2828.0 251.2 1.01 1 20 331.336 3018.1 -1."48 2962.0 211.3 .81 1. 2t 316.638 3158.2 -1. 73 3998.9 180.4 .66 
1 22 303.987 3299.4 -2.02 3233.9 157.3 .55 

" 23 290.779 3439.0 -2.29 3368.0 142.0 .48 
1 24 279.26-4 3580.8 -2.55 3506.0 128.5 .42 
1. 25 268.522 3724.1 -2.86 3641.0 116.4 .36 1 26 258.625 3866.6 -3.14 3779.0 108.0 .32 
1 27 249.252 4912.0 -3.41 3917.0 102.7 .30 1 28 240.563 4156.9 -3.75 4058.0 95.8 .27 
~ 



TABLE 4 

periods; frequencies and decall rat.es 

adiabatic non-a lIIeasured 
decall bll e 

period frequenc~ incre frequenc~ nUlllber of t.ime 
\ n (,sec) (uhz (uhz) (uhz cllctes (daIlS) 

2 10 588.80" 1698.-4 ."1 0.0 9961.5 67.89 
2 11 54 ... 902 1835.2 .3" 0.0 .. 913.6 30.99 
2 12 507.211 1971.6 .30 0.0 2740.5 16.09 
2 13 -473.968 2109.8 .26 2083.0 1620.9 8.89 
2 1 .. .... 4.909 22"7.1 .22 2222.0 1009.5 5.20 
2 15 "19.299 238".9 .12 2352.0 6"2.2 3.12 
2 16 396.417 2522.6 -.00 2"87.0 "52.1 2.07 2 17 375.999 2659.6 -.14 2620.0 3-45.4 1.50 2 18 357.558 2796.7 -.32 2157.0 217.6 1.15 2 19 340.615 2935.9 -.51 2890.0 234.3 .92 2 20 325.108 3075.9 -.14 302".0 196.9 .14 2 21 310.911 3216.-4 -1.00 3161.0 110.4 .61 2 22 297.790 3358.1 -1. 31 3295.0 141.1 .51 2 23 285.664 3500.6 -1.51 0.0 135.2 .45 2 24 274.496 3643.0 -1.81 3567.0 123.6 .39 2 25 264.189 3185.2 -1.54 3103.0 111.8 .34 2 26 254.538 3928.7 -2.52 3840.0 101.1 .32 2 27 2<45.479 4073.1 -2.92 3980.0 99 ... .28 2 28 237.019 4219.1 -3.32 0.0 92.8 .25 
* 

TABLE 5 

periods; frequencies and decall rat.es 

adiabat.ic mea,sured 
decall bll e non-a 

period frequenc~ incre frequenc~ number of t.ime \ n (sec) ~ (uhz (uhz) (uhz cycles (dall,s) 
3 10 571.166 1149.0 -.12 0.0 1467.2 49.42 3 11 529.913 1881.1 -.07 0.0 3847.3 23.60 3 12 493.873 2024.8 -.01 0.0 2235.1 12.78 3 13 462.3-40 2162.9 -.08 0.0 13-40.2 1.17 3 14 434.513 2301.4 -.12 0.0 840.4 4.23 3 15 410.225 2-431.1 -.18 2408.0 559.8 2.66 3 16 388.319 2575.2 -.29 2542.0 400.9 1.80 3 11 368."60 271-4.0 -.42 2671.0 310.6 1.32 3 18 350.527 2852.8 -.56 2812.0 257.3 1.04 3 19 334.074 2993.3 -.14 29"8.0 217.1 .84 3 20 319.106 3133.8 -.95 3082.0 184.4 .68 3 21 305.351 3274.9 -1.19 3219.0 161.0 .57 3 22 292.805 3-415.2 -1.47 3354.0 142.5 .48 3 23 281.019 3558.5 -1.15 3491.0 129.1 .42 3 24 270.083 3702.6 -2.05 3628.0 117.1 .31 3 25 260.026 3845.8 -2.39 3763.0 108.2 .33 3 26 250.565 3991.0 -2.47 3904.0 103.9 .30 3 27 241.792 4135.8 -3.00 0.0 96.1 .27 3 28 233.600 4280.8 -3.38 0.0 90.9 .25 
* 
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TABLE 6 

periods, frequencies and decay rat.es 

adiabatic measured 
decay by e 

non-a 
period frequenc~ incre frequenc~ nUlllber of Ume 

t n ( "ec ) (uhz (uhz) (uhz cycles (day" ) 

.. 10 557.147 1794.9 -.32 0.0 5860.3 37.79 
4 11 517.054 1934.0 -.25 1918.0 3126.2 18.71 .. 12 482.165 2074.0 -.22 2052.0 1838.4 10.26 
4 13 .0451.906 2212.8 -.24 0.0 1125.7 5.89 
4 H 425.186 2351.9 -.29 0.0 706.5 3.48 
4 15 401.713 2489.3 -.37 2323.0 490.8 2.28 
4 16 380.754 2626.4 -.49 2459.0 364.8 1.61 
4 17 361.671 2764.9 -.62 0.0 286.6 1.20 
4 18 344.215 2905.2 -.77 2728.0 240.6 .96 
4 19 328.227 3046.7 -.95 2866.0 201.9 .77 
4 20 313.662 3188.1 -1.18 3000.0 173.6 .63 
4 21 300.227 3330.8 -1.44 3138.0 150.5 .52 
4 22 287.973 3472.5 -1.68 3272.0 137.9 .46 
4 23 276.614 3615.1 -1.96 3409.0 125.2 .40 
4 24 266.021 3759.1 -2.31 3545.0 112.9 .35 
4 25 256.241 3902.6 -2.58 3683.0 106.7 .32 
4 26 246.976 4049.0 -2.91 3821. 0 99.9 .29 
4 27 238.372 4195.1 -3.29 3962.0 93.4 .26 
4 28 230.338 4341.4 -3.65 0.0 88.4 .24 

* 

TABLE 7 

periods, frequencies and decay rat.es 

adiabat.ic measured 
decay by e 

non-a 
period rrequenc~ incre rrequenc~ number of t,lme 

t n ("ec ) (uhz (uhz) (uhz cycles (day,,) 

5 10 543.763 1839.0 -.37 0.0 4739.6 29.83 
5 11 505.486 1978.3 -.31 1963.0 2621.0 15.33 
5 12 <471. 871 2119.2 -.28 2100.0 1541. 7 8.42 
5 13 442.601 2259.4 -.30 2235.0 957.2 4.90 
5 14 416.968 2398.3 -.36 2371.0 612.0 2.95 
5 15 394.088 2537.5 -.45 2505.0 432.6 1.97 
5 16 373.676 2676.1 -.58 2641.0 332.0 1.44 
5 17 355.271 2814.8 -.74 2777.0 268.6 1.10 
5 18 338.341 2955.6 -.89 2914.0 226.2 .89 
5 19 322.877 3097.2 -1.10 3050.0 190.1 .71 
5 20 308.710 3239.3 -1.32 3187.0 165.1 .59 
5 21 295.690 3381.9 -1.61 3324.0 143.3 .49 
5 22 283.586 3526.3 -1.85 3460.0 131.4 .43 
5 23 272.457 3670.3 -2.14 3597.0 120.3 .38 
5 24 262.192 3814.0 -2.49 3733.0 109.3 .33 
5 25 252.612 3958.6 -2.73 3871.0 105.2 .31 
5 26 243.644 4104.3 -3.11 0.0 97.4 .27 
5 27 235.256 4250.7 -3.48 0.0 91.0 .25 
5 28 227.276 4399.9 -5.83 0.0 86.0 .23 

* 
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Figure 6. The mode frequency error, as judged from the Shibahashi et al. 
values, is plotted versus the mode frequency. 

A comparison with observations seems to show reasonable agreement 
with our predictions. The width of the peaks in the power spectrum 
indicates a decay rate, which is perhaps a matter of days. The coher
ence of modes over timescales of a month or longer might mean that the 
mode is reexcited in its existing phase, or it might refer merely to our 
predicted longer lived modes. Decay rates are faster for higher frequen
cies because they refer to smaller-scale structures which can more 
easily gain and lose energy during an oscillation. 

Figure 7 shows the work over each pulsation cycle for the outer 30 
zones down to a depth of 12,000 K. Actually, the opacity library does 
not give data for such low temperatures, and the opacities and equation 
of state are obtained over this region by use of the Stellingwerf 
(1975ab) analytic fit. The photospheric damping, always assuming a 
radiation diffusion structure, down to depths of about 40 Rosseland mean 
opacity mean free paths is the main damping of the solar oscillations. 
Zone 317 is at T=10, zone 319 is at T=5 and zone 324 is at T=l. At 
least half of the damping occurs where our diffusion approximation is 
valid. The y and K effects of the hydrogen ionization region give some 
deeper pulsation driving, but it is not enough to self-excite the solar 
oscillations. The convection zone is neutral because we assume, as is 
usually done, that the convective flux is frozen at its equilibrium 
value. Deeper than 10,000 K the very small radiative flux is still 
modulated, but no more hydrogen or helium driving is significant. 
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Figure 7. Damping and driving regions of the surface layers are plotted 
for the outermost 30 zones. 

Our conclusions are that all solar 5-minute modes of low order are 
damped with widely varying rates which increase wit~lbrequency. These 
nonadiabatic eff~~ts are confined to the outer 5 x 10 of the mass and 
the outer 3 x 10 of the radius. 
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AN EXCITATION MECHANISM FOR SOLAR FIVE-MINUTE OSCILLATIONS 
OF INTERMEDIATE AND HIGH DEGREE 

H. M. Antia, S. M. Chitre and D. Narasimha 
Tata Institute of Fundamental Research 
Homi Bhabha Road, Bombay 400 005 
India 

ABSTRACT: The overstability of acoustic modes trapped in the solar 
convection zone is studied with mechanical and thermal effects of turbu
lence included, in an approximate manner, through the eddy transport 
coefficients. Many of these acoustic modes are found to be overstable 
with the most rapidly growing modes occupying a region centred around 
3.2 mHz and spread over a wide range of length-scales. The numerical 
results turn out to be in reasonable accord with the observed power
spectrum of the five-minute oscillations of intermediate and high degree. 
The oscillations are probably driven by a simultaneous operation of the 
K-mechanism and the turbulent conduction (convective Cowling) mechanism, 
the dominant contribution to the generation of self-excited acoustic 
waves arising from the convective Cowling mechanism. 

The velocity fields on the solar surface provide a very valuable 
. tool to probe the solar interior. In this connection the discovery of 
five-minute oscillations by Leighton, Noyes and Simon(l962) has been 
especially important. The science of solar seismology originated with 
the observations of Deubner(1975) who resolved the spatial and temporal 
structure of the sun's five-minute oscillations. The later work of 
Rhodes, Ulrich and Simon(l977) and Deubner, Ulrich and Rhodes(1979) 
provided a detailed power-spectrum of the five-minute oscillations of 
high degree (spherical harmonic degree t > 150). The observations using 
integrated sunlight by Claverie et al.(l979) and Grec et al.(l980) 
revealed the existence of five-minute oscillations of low degree{£ < 3). 
Recently Duvall and Harvey(l983) provided the power spectrum of the 
five-minute oscillations in the intermediate range( 1 < t < 150), 
and this bridged the gap between the observations of high degree and 
those of'low degree. 

The observations have undoubtedly confirmed the suggestion of 
Ulrich(1970) and Leibacher and Stein(1971) that these oscillations 
represent non-radial acoustic modes in the solar envelope. The important 
question of the excitation mechanism responsible for these modes has 
been examined by various authors. Ando and Osaki(1975) and Ulrich and 
Rhodes(l977) investigated the stability of non-radial oscillations in a 
realIstic solar envelope model with full effects of radiative heat 
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exchange. However, the interaction between turbulent convection and 
oscillations was neglected in these studies. This situation was remedied 
by Goldreich and Keeley(l977) and Berthomieu et al.(1979) who incorporated 
the influence of turbulent convection on the stability of acoustic modes 
to conclude that the turbulent viscosity stabilizes all of these modes. 

In the solar envelope,except for the top few hundred Kilometers, 
major fraction of the total flux is carried by convection; also the 
turbulent conductivity is much larger than the radiative conductivity 
for the most part of the convection zone. The turbulence is, therefore, 
expected to modulate the heat flux in an appreciable manner. This 
prompted Antia et al.(1982) to undertake a study of the overstability 
of acoustic modes in the solar envelope with mechanical and thermal 
effects of turbulence included,albeit in an approximate manner, through 
the eddy transport coefficients. Many of the acoustic modes trapped in 
the solar envelope turned out to be overstable with the most unstable 
modes occupying a region centred around a period of 300 s. Our 
stability calculations indicated that turbulent heat exchange must play 
an important role in destabilizing the acoustic modes. Ando and Osaki 
(1975) had concluded from their analysis that. the acoustic modes are 
largely overstabilized by the K-mechanism operating in the hydrogen 
ionization zone, while we recognized that a simultaneous operation of the 
K-mechanism and the, turbulent conduction mechanism is responsible for 
exciting the five-minute oscillations. The dominant contribution to the 
generation of self-excited acoustic waves seemed to arise from the 
so-called convective Cowling mechanism. It should be emphasised that 
both the radiative and convective Cowling mechanisms have their origin 
in the strong superadiabaticity prevailing in the sub-surface layers, 
but the efficiency of the convective Cowling mechanism is larger by a 
factor (cf. Unno, 1976) 

Fconv V 
Frad V - Vad • 

We have been mainly concerned with the stability and driving of 
the acoustic modes rather than matching the calculated frequencies with 
observations. Our' principal attempt was directed towards the choice of 
a model which yielded convective modes that are in reasonable accord 
with the observed features of granulation and supergranulation. Both 
the convective and acoustic modes are studied adopting the usual 
linearization procedure and we .have included the perturbation in the, 
convective flux in our analysis. 

Following Goldreich and Keeley(l977) we have adopted the turbulent 
viscosity of the form 

where at is the turbulent Prandtl number, a is an efficiency factor of 
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order unity appearing in the mixing-length formalism, W the mean 
convective velocity, L the mixing length and tc = L/W is the turn-over 
time for the convective element at t~at depth and w the frequency of the 
oscillatory mode in question. The factor in the square brackets ensures 
that the contribution from only those eddi~s with turn-over time shorter 
than (1/2n) times the period of the given mode is included. We have 
adjusted the value of at so as to obtain the best possible agreement 
between the length and time-scales of calculated convective modes with 
the corresponding observed features associated with granulation and 
supergranulation. This value of at turns out to lie in the range of 
0.2 - 0.3 for an envelope model which has a convection zone::: 200,000 km 
deep. It is encouraging to find that the same model yields frequencies 
of acoustic modes which agree reasonably with the observations of 
Deubner;Ulrich and Rhodes(1979) for high degree (~) acoustic modes and 
with Duvall and Harvey(1983) for intermediate values of~. There still 
remains a marked disagreement with higher harmonics at low i, but this 
is most probably due to our neglect of the solar interior regions. 

We have displayed the results of the stability calculations in 
Figure 1 which shows the contours of constant stability coefficient 
n = ( growth rate/frequency) of a given acoustic mode in the kh- w 
diagram. The outermost contour corresponds to the marginally stable 
case n = 0, within which all the modes are unstable, while the modes 
outside the region are stable. We make the plausible assumption that 
only those modes with significant growth rates will have substantial 
observed power. It is then interesting to notice that the region where 
n > 10-4 in the Figure approximately coincides with the region where 
significant amount of power has been observed. In particular, the 
high frequency cut-off implied by our stability analysis at around 
4 - 5 mHz, more or less independent of t is in rough agreement with 
the observations of Duvall and Harvey(l983). Also, at low i, the lower 
harmonics are either stable or have an extremely small growth rate. which 
is consistent with,the low observed power in these harmonics. 

Our stability analysis bears out the results obtained earlier by 
Ando and Osaki(1975) that the most unstable p-modes are spread over a 
region centred mainly around 3.2 mHz with a wide range of horizontal 
length scales. There is one noticeable difference in our results, namely, 
we get closed contours of the stability coefficient n with a distinct 
peak, while Ando and Osaki have open contours with n increasing with i 
up to ~.= 1500. This is clearly the influence of turbulent viscosity 
which because of its effectiveness at small length scales brings the 
growth rates down sharply at high t. 

It is not altogether clear why the amplitudes of these modes are 
observed to be small. But then it should be remembered that we are 
dealing with a large number of simultaneously excited modes and we do 
not know how the modes interact with each other and with the background 
turbulence in the convection zone. 
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Fig. 1: The contours of equal stability coefficient n are indicated by 
numbers; the stable modes are labelled by crosses and unstable ones by 
open circles. 
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THE RESONANT COUNT DIAGRAM AND SOLAR g MODE OSCILLATIONS 

D. B. Guenther 
Yale University Observatory 
and 
P. Demarque* 
Goddard Space Flight Center and Applied Research Corporation 

Dziembowski (1979) has pointed out that the 160-minute solar 
oscillation may be the result of resonant three-wave interactions. In 
a resonant three-wave interaction, two oscillation modes couple 
together, through the nonlinear terms in the pulsation equations, to 
drive a beat wave, whose frequency equals the frequency difference of 
the first two waves. If the beat wave has the same frequency as an 
oscillation mode of the sun (for example, 104 microHz, the frequency of 
the 160-minute oscillation), then resonance stimulates the amplitude of 
this mode. Although this can explain how the g mode oscillations 
enhance their own amplitudes, so that they can be observed on the 
surface of the sun, it does not appear to be able to explain why only 
the 160-minute mode is enhanced. We believe that because of the 
particular frequency separations of the solar g modes, resonant 
three-wave interactions stimulate only a selected few g modes. The 
resonant count diagram provides some evidence for this hypothesis. 

The resonant count diagram is obtained by plotting the total 
number of possible resonant three-wave interactions for a given beat 
frequency (w ), against the inverse of the beat frequency (the beat 
period), witRin a given frequency tolerance 6w. The abscissa is the 
beat period and the ordinate is the total number of interactions such 
that w1 - w2 = w ± 6w. If we assume all the resonant interactions 
contrioute equal~y to the enhancement of a given beat wave, then the 
peaks in the curve mark the periods of those modes (beat waves) which 
are most likely to be significantly enhanced. 

We have constructed such a diagram using the 1 = 1, 2, 3, 4 
g modes calculated by Christensen-Dalsgaard, Gough and Morgan (1979) 
for a standard model of the sun. The diagram has a stgnificant peak at 
160 minutes as well as other peaks at longer periods. When we plotted 
the g modes that Delache and Scherrer (1983) tentatively identified 
from the Crimea-Stanford data, we found that these modes corresponded 
with the other peaks in the diagram. This coincidence between the 
observed g modes and the peaks in the resonant count diagram leads us 
to believe that the observed g modes do owe their observability to 
resonant three-wave interactions. 

*Permanent Address: Yale University Observatory 
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If this is the case, the diagram should prove to be a useful 
diagnostic tool to test the interior mass distribution of solar models. 
The importance of this diagram can be understood when one considers 
that the usual method of comparing the theoretical frequency 
separations of the modes with the observed separations will fail 
because not all of the modes are enchanced by resonant three-wave 
interactions. Because the peaks in the diagram correspond to the modes 
which are most likely to be observed, and because the positions of the 
peaks depend on the g mode frequency spectrum, which is itself a 
function of the interior mass distribution of the sun, the diagram can 
be readily fitted into the observations by adjusting the mass 
distribution in the solar model. Hence. when a few g modes are 
positively identified, the diagram should provide a simple method to 
test our knowledge of the interior physics of the Sun. 

See Guenther (1983) and Guenther and Demarque (1983) for a 
detailed account of this research. The authors wish to thank Bernard 
Durney and Richard Larson for their useful comments. This research was 
supported in part by grant AST80-23743 from the National Science 
Foundation. 
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FINE STRUCTURE OF SOLAR ACOUSTIC OSCILLATIONS DUE TO ROTATION 

Philip R. Goode 
Arizona Research Laboratories and Department of Physics 
University of Arizona, Tucson, Arizona, USA 

W. DZiembowski 
N. Copernicus Astronomical Center 
Polish Academy of Sciences 
Warsaw, Poland 

Ledoux (1951) predicted that rotation causes a fine structure in 
the spectrum of stellar oscillations. Assuming rigid rotation, he 
attributed the resultant splitting to linear advection which lifts the 
degeneracy of each individual oscillation multiplet yielding a spectrum 
of uniformly spaced fine structure centered about each unperturbed 
frequency. A more complicated rotation law implies a more complicated 
spectrum. Thus, the observation of the fine structure of stellar 
oscillations can be used, in principle, to determine the rotation law 
inside the star. Our purpose here is to predict the nature of the 
fine structure of high order, low degree five minute period solar 
oscillations following from various postulated forms of spherical 
rotation. We include the first and second. order effects of rotation. 

The frequency splitting caused by linear advection, assuming 
spherical rotation, is given by (Hansen, Cox and Van Horn, 1977) 

nl/,m mf~Q(r){-(y~l/, (r)+l/,(l/,+l)Z~l/, (r»)+2Ynl/, (r)znl/, (r)+z~l/, (r)}pr
4
dr 

wI = f~0 (Y~l/, (r) + l/,(l/, + 1)z~f(r»)pr4dr . 

where Q(r) is the rotation rate and the normal coordinate is given by 

+ [+ .. . m ± m ] i w nl/, t 
~nl/,m = r ynl/,(r)Yl/,(e,~)+r zn£(r)VHy£(e,~) e 0 (2) 

(I) 

The quantity wn£ is the angular frequency of the oscillation in the 
absence of rot~tion. The remaining terms in Equations (1) and (2) hale 
their usual meanings. The expression for the frequency splitting, w~ m 
due to the second oreier effect of rotation is lengthy •. Therefore, we 
present the asymptotic part of the expression which is valid for acoustic 
modes (high order and/or high degree), 

2 
n£m m n£JR@{d2 2 1 Q r 

w2 ~ Kn£wo oor(er)Ynl/,+l/,(l/,+l)zn£e- 3-g- ~ 

[(Y!l/, +l/, (l/,+l») Z~l/,+(2~ I ~~~~)y nl/, (Znl/,-y nl/,w~)]}pr 4dr/ 
o 

[f~0(Y~l/,+l/,(l/,+1)z~l/,)pr4drJ (3) 
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where g is the local gravity and 

d5/,rill (r) 
l.l = 

and 

dJ/,nr 

Km _ 5/,(5/,+1)-3m2 

nJ/, - 4J/,(J/,+1)-3 

(4) 

(5) 

m 
Where K J/, represents the result of the angular integration. The quantity 
E: is giUen by 

\l2r <P2 
E: = - + - (6) 

3g gr 

where <P2 is the perturbation of the gravitational potential due to 
rotation. We ~1ish to thank Douglas Gough (1983) for providing us his 
equations which enabled us to find our error in the oral presentation. 
Thus, the results shown here are different from those presented at the 
conference. 

For the purpose of calculation, we assume that the internal solar 
rotation rate is twice the surface rate from the center to ~ and 
smoothly, monotonically decreases to the surface value in go~ng from 
Rl to R2 . We further assume that the rotation rate equals the surface 
rate from R2 to the surface (see Figure 1). -N 

:x: 
:l 
c: -

-C c: 
.Q .... 
c .... o 
a: 

t 
Center 

0.912 

-...........--10.456 

R2 t 
Radius --+ Surface 

Figure 1. The Internal Rotational Frequency as a Function of Radius. 
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The predicted splittings which follow from the implementation of 
the assumed rotation law are given for the P22 £ = 1 five minute period 
mode for various values of Rl and R2 (see Taole 1). 

Table 1. Predicted First and Second Order Rotational Splitting (in ]lHz) 
between the m = 0 and 1 components of the P2J £ = 1 mode. 

Ry R~ wI w2 
Ro Ro 21T 21T 

0.998 0.999 -0.89 1. 30 

0.990 0.999 -0.89 0.15 

0.720 0.999 -0.72 -0.03 

0.719 0.720 -0.64 -0.03 

rigid rotation -0.45 -0.03 

The second order effect of rotation is large only if there is a 
sharp gradient in Q very near the surface. The large effect is a re
sult of the sharp gradient in the region where the splitting kernel is 
largest. The splitting kernel is the integrand in Equation (1) if 
Q(r) = 1. For the other cases, including a sharp gradient at the base 
of the convection zone the second order effect of rotation is small 
compared to the first order effect of rotation. 

One of the authors (P. R. G.) would like to thank the organizers 
of the conference for financial support which enabled him to attend the 
conference. 
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PART 5 

THE SOLAR EQUATION OF STATE 





IONIZATION EQUILIBRIUM AND EQUATION OF STATE IN THE SOLAR INTERIOR 

Forrest J. Rogers 
University of California, Lawrence Livermore National 
Laboratory, Livermore, California 94550 

Abstract 

Many-body formulations of the equations of state are restated as a 
set of Saha-like equations. It is shown that the resulting equations 
are unique and convergent. These equations are s,imilar to the usual 
Saha equations to the order of the Debye-Huckel theory. Higher order 
corrections, however, require a more general formulation. It is 
demonstrated that the positive free energy resulting from the inter
action of unscreened particles in high orbits depletes the occupation 
of these states, without the introduction of shifted energy levels. 

T. Introduction 

This paper derives the law of mass action for reacting plasmas 
from recent many-body quantum statistical results. The primary inter
e3t here is to construct a calculational procedure for obtaining the 
equation of state of the solar interior to high accuracy. Early work 
on this subject was based on analogy with atomic and molecular gases 
which have a well defined ideal limit, such that two particle scatter
ing has a negligible effect on the pair distribution function. The 
earliest work on reacting plasmas is attributed to Saha. The Saha 
equation follows from the assumptions that the ground state is the 
dominant contribution to the internal partition function and that the 
translational partition function is adequatelY approximated by plane 
wave eigenstates. Since the internal atomic partition function, 

-SE. 
Q = Ig.e 1 

1 

diverges for atoms and ions, the Saha procedure of using only the 
ground state has frequently been questioned. This has led to the 
introduction of a number of phenomenological arguments for effectively 
truncating the sum on i as a function of plasma conditions. l 
Another problem with the pure Saha procedure is that it, in effect, 
shuts off the residual Coulomb interaction between atoms and ions. To 
account for this the Debye-HUckel free energy is usually added to the 
"ideal" free energy. Higher order non-ideal corrections have also 
been included. 2 Calculation of the equation of state proceeds by 
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minimizing a mUlti-species additive free energy expression, consistent 
with the model chosen, to obtain the ionization equilibrium. In the 
present work we loosely refer to all of these free energy approaches 
as Saha equations. These approaches have the desirable feature that 
they are calculationally simple. However, they have the undesirable 
features: (1) There is no systematic procedure for including 
increasingly non-ideal corrections, (2) There are no criteria for 
determining accuracy. 

It is now well established that the divergence of the internal 
atomic'partition function is a non-problem that does not arise in a 
complete many-body quantum statistical treatment. Its applications to 
astrophysical problems has been discussed by Ulrich. 3 Even so, the 
ad hoc method of calculation is still used in almost all astrophysical 
calculations and may in fact be adequate for many purposes. 4 
However, when assurance of accuracy is important the implications of 
many-body theory cannot be ignored. In the present work we intend to 
show ,that, in fact, this leads to a definite procedure which can be 
systematically improved. It also has associated coupling parameters 
that indicate its range of validity. 

The present method for obtaining the ionization equilibrium and 
the equation of state of plasmas is somewhat different than usual 
textbook derivations based on the,Saha equation. Consequently, Sec. 
II shows how the Saha equation can be derived from an activity expan
sion of the grand canonical partition function. Part A of Sec. III 
introduces the Beth-Uhlenbeck second virial (cluster) coefficientS 
~1d discusses how the analytic properties of the two-body trace 
r~3ults in the Planck-Larkin partition function. 6 Part B discU3ses 
~he resulting, uniquely defined, Saha-type equation that replaces the 
equation derived in Sec. II. Part C gives an alternative derivation 
of the Saha-typeequation which is obtained from the Helmholtz free 
energy obtained in Part B. Methods for inclusion of Coulomb correc
tions are also discussed. Section IV is an extension of the results 
to two-electron atoms (ions). 

II. Saha Equation Obtained From an Activity Expansion 

A number of recent fundamental treatments of ionization equilib
rium in plasmas have carried out a renormalizaion of the grand canoni
cal ensemble. 4 ,7-l0 In the present work it will be useful to,illus
trate some of the basic aspects of the procedure. To do this we 
consider the simplest ionization equilibrium, i.e., electrons (e) and 
nuclei (p) in equilibrium with one electron composite (H): 

(1) 

We begin by assuming that it is possible to carry out the activity 
expansion of the grand canonical partition function which sequentially 
switches on two-body, three-body interactions, etc. In a fundamental 
sense the system described by the Reaction (1) is a two-component sys-
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tern of charged elementary particles, some fraction of which are asso
ciated in pairs. Truncation of the activity series for this system 
after two-body interactions are turned on gives4 

P 1 n H 

kT = V Nn = Z e 
+ Z + z2b + 2 z 

p e ee e 

\'lhere Pi is a member of the set {P e , prJ 

z b + z2 b 
p ep p pp 

is the thermal deBroglie wavelength, lli is the chemical potential, 
and the bij are cluster coefficients. The activity in Eq. (2) can 
be eliminated in favor of the density through the relations 

d (P/kT) 
zi dZ, 

1. 

( 2) 

(3) 

(4) 

(5) 

Due to mutual repulsion and the large mass of the p-type particles 
the two-body cluster coefficients for these particles are classical so 
that, 

b, . 
1) 

00 

= 2TI f 
o 

2 d (-Bu" 1) 1.' )' r r e 1.) - , = = p 

where, in this case, Uij = upp = Z2 e 2/r and Z is the charge of a 
nucleus of type po A s1milar expression applies to bee' but due to 
the small mass, Wigner-Kirkwood quantum corrections will be required 
at temperatures that exist outside the solar interior. However, bep 
is fully quantum mechanical and must be calculated from the corres
ponding analogue of Eq. (6). This is known as the Beth-Uhlenbeck 
Virial (cluster) coefficient5 and is given by 

b = bB 
ep ep 

where b~p and b~p arise from bound states and continuum states, 
respectively. Explicit expressions for these parts of bep are 

= 1"2 )..3 
H 

(2£ + 1) e - BE n9-

00 dOn 2/2 R kT 
L(2£+l)dp-iVe - P H J 
.Q, ap 
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where, 

1/2 
;>'H:::: (}{2 /2~kT) 

RH is the reduced mass for hydrogen, the En~ are the bound state 
energies, p is the relative momentum and 6~ the phase shift of 
scattering states having angular momentum ~. 

(10) 

In the Saha approximation, since the translational states are 
plane waves, upp :::: uee ~ P~ :::: 0 so that bpp :::: bee :::: b~p :::: O. In 
addition the divergence of Q is avoided by truncating the bound state 
sum of b~p at the ground state, i.e., b~p + b~~. Equation (2) now 
reduces to 

P 
- =: Z 
kT e + z + 2z z b

gs 
pep ep 

using the density constraints given by Eq. (5) and the symmetry 
requirement that ze :::: ZZp gives the following results (assuming Z 
"" 1) 

z. ~ [-1 + li:s P.bgs J/4 bgs 
~ 1. ep ep 

P 
kT 

2[-1 

i :::: (e,p) 

(11) 

(12) 

(13) 

As T -)- 0.:> b~~ a r~/2 and as T + co b~~ + co, so that Eq. (13) 
,)cedicts that P/kT + 2Pe as T + 00 and P/kT + Pe as T + O. These two 
li.mits correspond to complete ionization and complete atomization, 
demonstrating that the activity expression correctly includes the 
Reaction (1). Since 

where P~ is the number density of free electrons, P~ is the number 
density of free protons, and PH is the number density of atoms, it 
follows that P: :::: ze r P~ :::: zp' and PH :::: 2Zezpb~~. Now Eq. (2) 
gives 

P 
kT 

g8 
Z +z +2z z b :::: Z +Z +zH e pep ep e p 

where in the second form of P/kT we have introduced an activity for 
atoms, zH :::: 2zezpb~~. The result zi :::: Pi only results in the 
ideal limit, at high densities zi < Pi- We now note that 
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+E .e lS/kT (IS) 

where Ni = VPi' Equation (15) is the usual Saha equation for 
hydrogen. This simple example demonstrates how ionization equilibrium 
arises in the activity series. 

III. A unique Form of the Saha Equation for Hydrogenic plasmas 

A. The planck-Larkin Partition Function 

The derivation of Eq. (15) assumes that bpp, bee and bgp + 0 as 
p .~ O. It is easy to see that this is not correct. Consider Eq. (6); 
it is cut-off at small r by the Landau length, 8e 2• Expansion of 
the exponential in Eq. (6) for the potential upp = e2/r for r ~ R, 
up? = 0 for r > R gives 

b pp 
R 8e2 

21f J 2 r (- - + 
Be r 

3 
(8e2

) 

6r
3 

• • .) dr (16) 

The first three terms of the expansion + 00 as R + 00. Similar consid
erations apply to bee' However, beP is more complex. In this case 
b~o and b~p are both divergent. bep has large distance divergen
C~~S similar to bpp and bee involving R2, R,.and log R but it has 
alditional divergencies involving R3/2 and R~/2. The divergencies in 
b~p also involve half integer powers of R. This is easily seen by 
expanding Eq. (1) (in a.u.). 

1 
2 

I 2 -n T 
Q = n e 

n 

2 

I n2 + ! r (~) + 1 r 1 + = T 2 -2 L. -2- .•. 
n n n 2T n n 

(D) 

The two leading terms in the expanded form of Eq. (17) diverge as n3 
and nl respectively as n + 00. For a Coulomb potential the radius, 
r n , of the nth shell. is r = n2 a , so that the fractional power 
divergencies in bBp + R3/~ and Rl?2 as n + 00. The fractional power 
divergencies in b!p and b~p, in fact, compensate leaving only the 
R2, R, and log R type divergencies that occur in bee and bpp. As 
a result the effective form of b~p becomes 

(18) 

where 
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(19) 

The theoretical basis of Eq. (19) has been thoroughly discussed in the 
literature6 ,8-9,11-12 and is referred to as the Planck-Larkin parti~ 
tion function. The WKB method of Ref. (11) and the .fully quantum 
mechanical method of Ref. (12) demonstrate explicitly how the compen
sation occurs • 

• B. The Saha Equation and the EOS for Low Density Hydrogen 

The usual hydrogenic Saha equation was derived in Sec. II. Sever
al unjustified assumptions were made in obtaining this result. We now 
present the version of this equation that results from many-body 
theory. Equation (19) has disposed of the divergencies in b~p 
using only the analytic properties of the two-body partition func
tion. However, the problem of long-range. divergencies arising from 
continuum states remains. The root of the difficulty with these terms 
can be traced to the activity expansion given by Eq. (2). For a 
Coulomb potential it is necessary to switc~ on the full N-body problem 
at the outset, but only gradually turn on Coulomb coupling by progres
sively switching on higher powers in the coupling parameter, Se2• 
When this is done the sum over similar types of divergencies present 
in three-body, four-body interactions, etc., yields finite results. 
O:"W now obtains a pseudoideal gas limit which can be systematically 
corrected by inclusion of higher order terms in Se2• In the limi t 

+ 0,7 

subject to the conditions 

n5/, 3/2 3 
zH = 2 zez A- <P~ p H 

<Pn5/, = (25/, + 1) 
-SE 5/, 

(e n -1 + 8EnJ/,) , 

and the En5/, are unscreened hydrogenic energy levels. 

(20) 

(21) 

(22) 

(23) 

Note that Eq. (20) has defined an activity for each bound state. 
It will be shown that this is necessary for the general problem. For 
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the present, however, we can define a single activity for atoms 
according to 

using Eq.(20-24) the Saha equation that replaces Eq. (5) is 

(24) 

(25) 

Equation (25) is sometimes referred to as the planck-Larkin equation. 
The equations of state are given by 

P = pkT P = I Pi 0 i 
(26) 

I * * nQ. 
F :: F. F. ranges over {F 0' F 0' FH,O} 0 i 

~,o ~,o e, p, (27) 

E 1. NkT 
NH 

I (2!/'+1) EnQ. (e 
-SEn!/, 

- 1) :::: +-
0 2 QpL n!/' 

(28) 

where 

j kT!/,n 2e ) * * F. 0 :::: - N ( , F. 0 = F o or F 
J, 3 ) , e, p,O p. A. 

) ) 

(29) 

= L Nn!/, , (30) 
n!/,H 

The secqnd form of Eq. (30), for the total atomic free energy, has 
assumed the internal states of the atom are occupied according to 

~!/, <PnQ. 
--::--

c. Non-Ideal Saha Equation Derived from the Law of Mass Action 

(31) 

It will be useful to recall the usual method of deriving the Saha 
equation from the law of mass action. At equilibium we have from Eq. (28) 
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of * dF * 3FnQ, 
e,o * -1?~0 * + I H,O dNn$(, dF "" 
* 

dN + -- dN == 0 
dN e dN* p M d nR. H 

e p NH 

In addition the internal states of the atom (ion) must satisfy the 
conditions 

<P. 
l-;2:-3J = R.n 
P~;\ 

H H 

where i and j correspond to states in the set {nR.}. It follows 
that the ratio of the occupation numbers is given by 

Pr om which i. t follows that 

N
i <P~ __ ...:.H::--_____ == --=-

(N~I/<P.) r <p.] 
~ ~ j~i J 

Substitution of Eqs. (33) and (35) into Eg. (32) gives 

~e + ~ == ~ P H 

where 

The Planck-Larkin equation, given by Eq. (25), is again obtained. 

( 32) 

(33) 

(34) 

(35) 

(36) 

(37) 

In common practice the Debve-Huckel correction is added to 8Fo. 
This is rigorously justified by many-body theory13 provided QPL is 
used in 8Fo and the ratio of the Landau length to the Debye length is 
small. In this approximation the free energy is given by 

8F = 8F - VS o R (38) 

where 

364 



SR 
1 

== 
l27TA~ 

[kT/41fe2 (P * AD = 
e 

and PH == I NH
i 
/V 

i 

+ z2p* 
p + (Z - 1)2 PH)] 

i = {rV!,} 

Equation (38) is a valid approximation when 

\ [2 2 (L ~.p.)e 
• 1. 1. 

A = .....;;:1.'----:-___ < O. 1 
PkTAD 

and C/. 
e 

A 
== A ee ::.. 0.2 

D 

lle 
= - < -1 kT -

A = ~/ {2R kT ee e 

( 39) 

1/2 
( 40) 

where ~i is the net charge on ion i. Quantum corrections to SRare 
available when high accuracy is required. Since (dSR!dNi) = (dSR!dNj), 
the second form of Eq. (33) still obtains, so that occupation numbers 
are given by Eq. (35) 

The Saha-like equation resulting from Eq. (38) is 

(41) 

Equation (41) shows that switching on the Debye-Huckel interaction 
decreases the total number of atoms while, as already shown, the 
ratios of the occupation numbers are unchanged. In some previous work 
the Saha equation has been derived for an ideal gas having screened 
energy levels. Equation (41) gives a precise definition for the 
analytic form the energy levels should have in this approach, i.e., 

(42) 
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When -SEnJl.. » I Eq.(42) shows that the effective energy: levels are 
given by 

, 

where the EnJI.. are unscreened energy levels. 

In the opposite limit BE~JI.. + 00. When higher order corrections are 
added to Eg. (41) it is still possible to map the entire ionization 
equilibrium into an ideal gas form, but involving screened energy 
levels. 

(43) 

The next non-ideal Coulomb correction beyond Debye-Htickel involves 
terms that are very similar to secondvirial (cluster) coefficients 
for the Debye-Htickel potential. In this approximation 

(44) 

where 

*2 . *2 * * c = p s + p s + 2P P s e ee p pp e p ep (45) 

, (45) 

The sas are similar to the baS defined in Eqs. (6-10) except they 
involve the Debye-Htickel potential and certain low order diagrams are 
subtracted because they were used in the construction of the screened 
potential. Also the BaS do not include the planck-Larkin parts 
of baS' since they have already been used in BFo. Consequently the 
sap are well behaved at low T. Methods for calculating the saS are 
given in Refs. (8,10,14). The BaB terms involve atoms in differ
ent ways, such that for example, 

(46) 

These contributions do not cancel out of Eq. (33) •. As a result, Eq. 
(35) is no longer valid and a single chemical potential for atoms 
cannot be defined. The mass action equations resulting from Eq. (32) 
now take the form 

~* + ~* = ~i 
e p H 

for all {i} = {nJI..} 

·366 

(47) 



The resulting Saha-like equations now involve Nh rather than NHo Due 
to the large core repulsion for ions in excited states it follows that 
the ratios 

Nj -SE. 
H < 

e J 

Ni -BE. 
H 

e 1. 

where state j is a higher lying level than state i. It was pointed 
out earlier that the Debye-Huckel interaction increases the state of 
ionization while leaving the ratios N~/N~ un~ha~ged. The S2 terms 
produce both a change in NH and the ratios Nn/Nh. The change in 
NH is in the opposite direction to the change due to the Debye
Huckel term. Similar considerat;ions apply to higher order terms, 
Sn. As a result, the effective energy levels that will map the 
complete problem into an ideal gas form are very different than Eqs. 
(42-43) when A > 1. It is probably also worth noting that the 
results being discussed here can be cast in a form such that the low
lying energy levels are screened, but contain only partially the 
interaction correction. In this case there will be a series of non
ideal corrections. A number of ad hoc approaches have been cast in 
this form. - --

It is apparent at this point that a number of different formula
tions will give the same thermodynamics, but the corresponding energy 
levels and number densities are somewhat arbitrary. The problem of 
determining the proper set of number densities required to calculate a 
particular physical quantity is not taken up in this work. 

IV. A unigue Saha Equation for Helium-like Ions 

The generalization of Eq. (19) to two electron atoms requires a 
two-electron version of the Planck-Larkin formula. A WKB derivation 
has been given in Ref. (14). The result obtained is 

(49) 

where 

(50) 

the E are the energies of two electron states relative to one-
n1Jl. l n 2J1. 2S 
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electron states, the g 1 1 are the corresponding degeneracies, 
. nl In2 28 

and S is the spin quantum numb~r. Due to the large separation of the 
Is and 1s2 energy levels it is reasonable to aSsume that doubly 
excited states make a negligible contribution to the equation of 
state. In what follows we assume single electron excitations. 

Following earlier arguments we obtain the free energy for helium 
atoms as 

F He,O 

where 

1 
QpL2 = 

(51) 

The two electron partition function, allowing only single electron 
excitations, is slightly different than the form suggested by Vorob'ev 
and Yungman.l5 They demonstrated that the specific heat is sensi
tive to the exact form of the partition function, so that, the differ
ences could be important in the calculation of Cv and other deriva
tive quantities. Multiply excited states may also contribute appre
ciably to derivatives of the equation of state. We now have two reac
tions occuring 

The mass action relation for one-electron ions has already been 
given. The corresponding result for two electrons composites is 

+ 3 2. <Pn 1 
NeNHe v!. He n11 1 1 1 

= 
,,31.3 + 1 

NHe e H QpL2 
e 

(53) 

(54) 

(55) 

Non-ideal corrections can be added similar to the one-electron case. 
The Debye length that goes in SR is now given by 

Results similar to Eqs. (30 and 31) are again obtained in the Debye
Huckel approximation. The Saha equation corresponding to Eq. (53) is 
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modified by a factor EXP(+Ze2/kT~D) while Eq. (55) is mOdified by the 
factor EXP(+(Z-1)e2/kT~D) • 

V. Conclusion 

When Coulomb coupling is weak, e.g. the solar interior, many-body 
statistical mechanical methods lead to simple procedures for the cal
culation of ionization equilibrium and the equation of state. These 
calculations are very similar to the usual Saha-type approaches, but 
are based on a precise theoretical description of the internal parti
tion function and can be systematically extended to include non-ideal 
Coulomb interactions. As a result, even though the differences may be 
small in some instances, there is little reason to introduce phenomen
ological arguments for weakly coupled plasmas. 
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Abstract: We have examined the sensitivity of solar eigenfrequencies to 
uncertainties in the equation of state. The principal uncertainties in the 
equation of state involve the treatment of pressure ionization, the Debye-Huckel 
coulomb corrections and the treatment of many-particle intera.ction effects. We 
find that for the lowest degree modes O! between 0 and 3) the terms and 
procedures used in our equation of state which deal with these uncertainties 
introduce changes in the frequencies which are less than 4 J.1 Hz. Recently, 
Shibahashi, Noels and Gabriel (1983) published solar eigenfrequencies using a 
theory with an equation of state improved with respect to the theory used 
earlier by Shibahashi and Osaki (1981>. Their comparison between the two sets 
of results suggested that uncertainties in the frequencies as large as 10 J.1 Hz 
could be caused by the equation of state. We feel that since the entire effect 
of the uncertain terms is only 4 J.1Hz and since the uncertainties are only a 
fraction of each term, the 10 J.1Hz changes found by Shibahashi et al must be a 
consequence of differences between the earlier and later calculations in areas 
other than the equation of state. 

1. Introduction 

Although the solar equation of state is lugly uncomplicated, there remain 
uncertainties in the areas of pressure ionization, free particle scattering 
states and the effects of multi-particle interactions. The magnitude of the 
potential problem is made apparent by a simple application of Saha's equation to 
the solar center which shows that without any additional physical effects beyond 
simple icmization roughly 25% of the hydrogen should be neutral even though the 
temperature is 15 million degrees. In fact additional physical principles come 
into the problem and reduce the abundance of incompletely ionized species well 
below the level indicated by the Saha equation. A discussion of the proper 
a.pproach to the equa.tion of state is given' elsewhere in this volume by Rogers 
(1984). We give here a very brief summary of the areas of uncertainty. 

First, the effed due to the electrostatic interaction between the charged 
particles alters the pressure and energy density in a manner which is frequently 
treated by the Debye-Huckel approximation. The term which is added to the 
thermodynamic quantities due to this approximation is sometimes called the 

371 



Coulomb correction. The presence of the plasma charge surrounding each nucleus 
produces a screening effect which alters the bound electron energy levels so 
that they approach the continuum level and eventually the electron becomes 
unbound. Second, a cluster expansion (see Mayer 1958 and Eyring, Henderson, 
Stover and Eyring 1982 for discussions of the cluster expansion method) of the 
activity (the thermodynamic quantity which is like the pressure but which is 
most readily calculated from the density) in terms of the density shows that the 
bound states and the states of free electrons near nuclei <called scattering 
states) produce counteracting effects on the activity. To lowest order the 
combined result can be represented by using an effective internal partition 
function in the ionization equilibrium equation which replaces the exponential 
factors of the form exp(E/kT) in the Saha equation with the Planck-Larkin factor 
Cexp<E/kT) - 1 - E/kTl. This factor has an asymptotic value of zero instead of 
unity when E/kT approaches zero. Third, the complications from many-body 
interactions are not eliminated by this form of the Saha equation; instead their 
effects are shifted from the formation of bound states to the alteration of 
higher order cluster terms in the description of the scattering states. Ebeling 
and Sandig (1973) have evaluated these terms for a gas of pure hydrogen and 
given their result in the form of a Pade approximation to the leading additional 
term in the cluster expansion - the 2nd Virial term. 

'We present here eigenfrequencies for solar models which were calculated to 
study the effects of the individual terms in the equation of state. These 
models were originally presented in the paper by Ulrich (1982). The treatment 
of the changes in the energy levels due to screening in that paper is not 
optimal according to the discussion by Rogers in this volume. Nonetheless, the 
effect of partial ionization was found to be entirely negligible as long as the 
Planck-Larkin form of the ionization equilibrium equation was used. The recent 
discussion by Rouse (1983) of the Planck-Larkin equation is based on the faulty 
assumption that the effective partition function is the sum of actual occupation 
numbers of the available energy levelS. Although for a non-interacting gas this 
would be a valid assumption, in the case of the solar equation of state it is 
not. The compensation of the effects of the bound states by the scattering 
states represented by the Planck-Larkin equation results from the reduction of 
the number of unbound states available to free electrons because the wave 
functions of the scattering states are distorted by the presence of the nuclear 
charge. Rogers (1977) has given a discussion of this compensation in terms of a 
\.IK8 description of the wave functions. In order to make comparisons with 
astrophysical data, the actual atomic occupation numbers must be calculated 
separately from a thermodynamically self-consistent formulation. Such a 
calculation has not yet been made. 

2. The Models 

The models which we use here were all computed within a few days of each other. 
During this period, the only quantities which were varied were the various 
equation of state terms. 'We have subsequently made other changes and 
improvements which have made the 'Standard Model' of the Ulrich (1982) paper 
obsolete. Nonetheless, this set of models is valuable because it provides an 
opportunity to study the equation of state effects in isolation. Because the 
Planck-Larkin form of the ionization equilibrium equation is well established, 
we have concentrated on the three models of the Ulrich (198Z) paper which use 
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that formulation to treat the ionization explicitly instead of artificially 
assuming full ionization. The three models are Model 19 which omits both the 
Coulomb correction and the scattering state collective effects, Model 21 which 
includes the Coulomb correction but omits the collective effects I and Model 22 
which includes both effects. VIe find that the frequencies change by less than 4 
•. ~Hz as a result of any of the equation of state terms. For comparison, we also 
computed frequencies for model 10 which incorrectly uses the Saha equation 
throughout the solar interior. This model includes such erroneous results as an 
abundance of neutral hydrogen at the solar center equal to 0.25 even though 
there would be inadequate volume for so many bound electrons without having 
adjacent wave functions overlap. 

3. Theoretica.l Frequencies 

VIe have computed frequencies of the solar oscillations using the methods 
described by Ulrich and Rhodes (1983). VIe adopt here a slightly different 
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Figure 1 Comparison between the theoretical and observed frequencies. The plot shows the frequency 
differences: observed minus theoretical. The observations are from Crec, Fossat and 
Pomerantz (1983) and the theory is for the standard model which incorporates the PlancJc
LarJcin ionization equation, the Coulomb corrections and the 2nd Virial term. The values 
of .R are indicated by the thicJcness of the lines with the thinnest having .R = 0 and the 
thickest having .R = 3. 

373 



format for the presentation of the results than we have used in the past. Rather 
than showing the individual frequencies on some form of folded plot I we show 
only differences between frequencies. Figure 1 shows the differences between 
the observations and the frequencies for the standard model. Each line in this 
figure shows the discrepancy as a function of the frequency for fixed values of 
J! . The erratic behavior at the higher frequencies in this figure and 
subsequent figures is caused by the presence in the theory of a resona.nt region 
in the chromosphere. \.Then the interior mode frequencies and the chromospheric 
mode frequencies are nearly equal then the chromospheric mode can perturb the 
interior mode frequency. The existence of this perturbation enhances the 
sensitivity of the frequencies to changes in the models. 

15.0r--------------r------------~r_------------4r------------_4 

10.0 

5.0 

( .... HZ) 
0.0 

-5.0 

2500 3000 3500 4000 4500 

J> ( .... HZ) 

Figure 2 The effect of adding the collective effects as represented by the 2nd Vidal term. 
Frequency differences for the model with the term minus the model without the tel1l1 are 
plotted. The values of J! are indicated as in Figure 1. 

Figures 2 and 3 show the changes in the oscillation frequencies due to the 
influence of the collective effects as treated in the form of the 2nd virial 
term and the influence of the Coulomb corrections. The frequency dependence of 
the effects are nearly independent of J! as long as J! is near O. The 
eigenfunctions for these oscillations have very similar dependence on radius in 
the outer layers of the sun. Since the largest changes in the equation of state 
due to the collective effects and the Coulomb corrections occur in the outer 
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Figure 3 The effect of adding the Coulomb correction. Frequency differences for the model with the 
correction minus the model without the correction are plotted. The values of .J! are 
indicated as in Figure 1. 

sections of the sun I the actual value of J! has little impact on the frequencies 
unless .J! is very much larger than 4. Both the magnitude and dependence on v 
of the changes due to the coulomb corrections and the collective effects are 
inadequate to play a major role in explaining the discrepancy between theory and 
observation. One other equation of state procedure is of interest even though 
it is not really an area of uncertainty and that is the effect of using the Saha 
equation throughout the solar model. The results of this calculation are not to 
be taIcen seriously since the high abundance of neutral hydrogen predicted for 
the solar core with this equation is unphysical due to the scattering states and 
the excessive volume occupied by the bound electrons. Nonetheless I this equation 
of state is significantly different from the one used in the. standard model and 
therefore gives some indication of an upper bound on the range of variation in 
the frequencies which might be caused by a major change in the equation of 
state. Figure 4 shows a comparison between two models which differ only in their 
treatment of the ionization equilibrium. Both models included the Coulomb 
corrections but the model using the PlancIc-LarIcin equation omitted the 2nd 
Virial Term. The frequency changes shown in Figure 4 are larger than those in 
Figures 2 and 3 but still not large enough to explain the discrepancy between 
the theory and observation and the model with the Planck-Larkin equation is in 
slightly better agreement with observation than the model with the Saha 
equation. Note the wavy nature of the frequency changes. This pattern is caused 
by the fact that the largest changes between the two models are localized near 
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the model center. As the eigenmode structures change with frequency I maxima and 
minima in the eigenfunctions move past this localized region and cause the 
frequency shifts to vary in response. 
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Figure 4 The effect of using the Saha equation for the ionization equilibrium instead of the 
Planck-Larkin equation. Frequency differences for the model with the Planck-Larlcin 
equation minus the model with the Saha equation are plotted. The values of .J! are 
indicated as in Figure 1. 

Recently I Shibahashi I Noels and Cabriel (1983) have studied the influence 
of the equation of state on the solar eigenfrequencies and state that the 
inclusion of the coulomb corrections improves the agreement between theory and 
observation. Our calculations which explicitly study the influence of this term 
are in disagreement with their conclusion. We feel that the changes between the 
Shibahashi and Osaki (1981) frequencies and the Shibahashi I Noels and Cabriel 
(1983) frequencies are most probably a consequence of other modifications in 
their numerical procedures such as possibly the interpolation in the Los Alamos 
Opacity Library. 
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