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Aerodynamic bifurcation is defined as the replacement of an unstable equilibrium flow by a new stable 
equilibrium flow at a critical value of a parameter. A mathematical model of the aerodynamic contribution 
to the aircraft's equations of motion is amended to accommodate aerodynamic bifurcations. Important 
bifurcations such as, for example, the onset of large-scale vortex-shedding are defined. The amended 
mathematical model is capable of incorporating various forms of aerodynamic responses, including those 
associated with dynamic stall of airfoils. 

1. INTRODUCTION 

In recent years we have become increasingly aware of the connections Which link our approach to non­
linear problems in flight dynamics to the body of theory underlying the rapidly growing field known as 
"nonlinear dynamical systems." In Ref. 1, we attempted to identify the connections explicitly within a 
framework designed to facilitate study of the aerodynamic contribution to the flight-dynamics system. The 
framework is composed of parallel observational and mathematical components. A study of observations of 
fluid flows Singled out four important elements for the observational component. First, flow patterns 
have definite structure (e.g., three-dimensional vortical structures). Second, structures undergo sys­
tematic changes with variations in parameters such as angle of attack or Reynolds number. Third, under 
some conditions the changes lead to chaos (e.g., turbulence). Fourth, the structures have definite spa­
tial and temporal scales. Parallel elements of the mathematical component feature the language of topol­
ogy and concepts drawn from dynamical-systems theory. The premises of the theoretical framework are: 
(1) Structures are describable in topological terms. (2) Changes in structure are describable by 
bifurcation theory. (3) Chaos is describable by the theory of strange attractors and fractals. (4) 
Scales are describable by group theory ideas. Recently (Ref. 2), we proposed that the framework may be 
useful as well for the understanding and the potential modeling of turbulent flows. 

Here, we shall focus on one element of the framework, namely, change, and its representation by means 
of bifurcation theory. Bifurcation theory has two principal realms of application in flight-dynamics 
studies. First, when the form of the aerodynamic contribution to the aircraft's equations of motion is 
known, and the equations of motion are of the appropriate form, bifurcation theory provides a useful means 
of analyzing the aircraft's motion, particularly in the vicinity of stability boundaries. This first 
realm was the subject of study in Ref. 3, and the study is pursued further in Ref. 4 at this conference. 
The second realm, which will be the subject of this paper, is concerned with the mathematical modeling of 
the aerodynamic contribution itself. 

Reference 5, a companion paper of Ref. 1, was a reconsideration of an approach to mathematical model­
ing of the aerodynamiC characteristics, in which nonlinear indicial responses are used as a basis for 
arriving at the form of the aerodynamic response to arbitrary motions. Without modification, validity of 
the approach rests on a fundamental assumption that the indicial response exists and is unique in every 
incremental step of the motion. The question, "When does the fundamental assumption fail?" led to the 
recognition that the assumption may be invalidated through the mechanism of flow instability. On exceed­
ing a critical value of a parameter (e.g., angle of attack), the flow field corresponding to the equilib­
rium state of an aerodynamiC response may become unstable to small disturbances. The replacement of the 
unstable state by a new stable equilibrium state satisfying the same boundary conditions implies failure 
of the uniqueness condition, and may imply failure of the existence condition as well. Thus, the equilib­
rium state undergoes a bifurcation, and the circumstances are precisely those that bifurcation theory is 
designed to address. Although the requisite amendments were not carried out in Ref. 5, it was concluded 
that bifurcation theory would provide the means to extend the mathematical model so as to acknowledge the 
occurrence of aerodynamic bifurcation phenomena. As a consequence, the model would have the potential of 
accounting for those critical points in maneuvers where sudden and dramatic changes in flow structure may 
occur. 

In this paper, we shall try to validate the conclusion of Ref. 5, and demonstrate how the mathemati­
cal model can be amended to accommodate the occurrence of aerodynamic bifurcations. A number of important 
aerodynamic bifurcations will be defined and some of their potential effects on dynamical systems illus­
trated. Following the analysis presented in Ref. 5, we shall show how the approach to the modeling 
involving nonlinear indicial responses can be made compatible with an approach based on the use of non­
linear algebraic functional expansions. The latter approach, which has the virtue of concreteness, was 
formulated originally (Ref. 6) to address nonlinear problems in the field of electrical circuits and sys­
tems. Its adaptation here exemplifies the community of interests developing across various disciplines 
through the unifying medium of research in nonlinear dynamical systems. 
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2. MODELING INFLUENCE OF PAST MOTION BY PULSES 

The following is a slightly modified version of the analysis originally presented in Ref. 5. Again, 
for clarity, the two-dimensional wing is adopted as illustration, although the results will have more 
general bearing. 

Let the wing move away from a coordinate system whose origin is fixed in space at the center of grav­
ity at a time ~ - O. The distance traveled by the center of gravity along the flightpath is measured by 
a coordinate s. Let the center of gravity move at constant velocity Vo ' so that the trace of its path, 
plotted against time ~,is a straight line. This is shown on Fig.'. The wing is allowed to undergo 
changes only in the angle of attack a, where a is the angle between the velocity vector and the wing 
chord line. Projections of the leading and trailing edges of the wing onto the plane containing the 
velocity vector are maximum when a - O. These maximum projections also trace out straight lines on 
Fig. " parallel to the trace of the center of gravity. 

As illustrated in Fig. " let the angle of attack a be zero for all time ~ except at ~ - ~" 
where a pulse occurs of amplitude a(~,) and of infinitesimal duration ~~,. Consider the response to 
the pulse at ~, of the lift coefficient CL at a measuring time t subsequent to ~,. The lift 
response at t will be a function of the elapsed time t -~, and the amplitude of the pulse aCt,). If 
we assume that there will be a range of a (0 < a < a,) in which the dependence of CL on a(~,) is ana­
lytic, then we can write the response in CL as a Taylor-series expansion in a(~,) of the form 

CL(t) - CL(t - ~"a(~'»dir - 1:: an(t - ~,)[a(~,)]n ~~, 
n 

(1) 

The first of the forms in Eq. (') will be used in the subsequent analysis to distinguish between direct 
(subscript dir) and interference (subscript int) effects. 

Now let us consider the response in CL at the measuring time t 
and ~2 with ~l'~2 < t. Here, in addition to the direct influence of 
isolation, the nterference between the pulses also will influence the 
be written in a form resembling a product of responses to single pulses 

to a pair of pulses located at ~, 

each of the pulses acting as if in 
lift. The interference effect can 

CL - 1:: bmn(t - ~"t - ~2)[a(~,)]m[a(~2)]n ~t, ~t2 
int,2 m,n 

(2) 

where the subscript (int,2) means "interference between a pair of pulses." The form vanishes properly 
with the vanishing of either of the pulses and retains the analytic dependence on angle of attack. With 
the addition of the direct influence of the two pulses, the lift coefficient at time t takes the form 

(3) 

The process of adding pulses can be continued indefinitely in the same way. At the next stage, the 
interference between triplets of pulses must be considered as well as that between pairs. Going to the 
limit of a continuous distribution of pulses starting at time ~ - 0 yields a summation of multiple inte­
grals having the form 

+ ••• (4) 

with 

~ rt n 
C

Ldir 
- ~ J

o 
an(t - ~,)[a(tl)] dt1 (5) 

CL - 1:: it [a(~2)]m d~2 Io~2 bmn(t - ~l,t - ~2)[a(~,)]n dt, 
int,2 m,n 0 

(6) 

CL - 1:: It [a(~3)]m dt3 I~3 [a(~2)]n d~2 
int,3 m,n,p 0 0 

Written as a nonlinear functional expansion, Eq. (4) represents the lift coefficient at time t in 
response to an arbitrary variation of a over the time interval zero to t. The form of Eq. (4) confirms 
an important point made in Ref. 6. It will be noted that a partial summation consisting of the leading 
term from each of Eqs. (5), (6), ••• forms a Volterra series (Refs. 6,7). The fact that there are terms 
left over confirms that the a priori adoption of a Volterra series to represent the lift coefficient would 
have been insufficiently general to accommodate the Taylor series form of the dependence on angle of 
attack. 
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3. FORMATION OF INDICIAL RESPONSE 

Given Eq. (4), one can now use it to form the indicial response in accordance with the definition in 
Ref. 8. To indicate the form of the result, it will suffice to consider terms in Eq. (4) only through the 
series representing CL • Two motions need to be considered. In the first, the wing undergoes the 

int,2 
motion under study a(~) from time zero up to a time ~ - ~,where ~ < t. Subsequent to ~,a is held 
constant at a(~). Thus, in Eqs. (4), (5), and (6), 

a, (~) - aU;) 

- a(~) 

o<~<~} 

~ ~ ~ 

The direct and interference contributions to CL(t) take the form 

C - E i~ an(t - ~,)[a(~,)]n d~, + E [a(~)]n it an(t - ~,)d~, 
Ldir non ~ 

CL - E i~ [a(~2)]m d~2 i~2 bmn(t - ~"t - ~2)[a(~,)]n d~, 
int,2 m,n 0 0 

+ E [a(T)]m it d/;2 i ~ bmn(t - /;"t - £2Ha(/;,)]n d/;, 
m,n ~ 0 

"t'" m+n it I/;2 + ~ [a(~) ] d/;2 bmn(t - /;"t - /;2)d/;, 
m,n T 't 

In functional notation (Ref. 7), the lift response to the same motion is 

(8) 

(9) 

('0) 

where the notation in the first form should be understood to mean that CL(t) is a functional of the vari­
ation a,(/;) over the interval 0 < /; < t. The second form, which is defined in Ref. 8, is designed to 
make more explicit that a,(I;) represents the motion under study a(/;) over the interval 0 < I; < ~, but 
is constrained to remain constant at a(~) for ~ S I; S t. Thus, CL(t) is both a functional of a(/;) and 
a function of t and ~. 

In the second motion, the wing undergoes the same angle-of-attack history a(/;) up to time ~. Sub­
sequent to ~,the angle of attack is again held constant, but is given an incremental step change ~a 

over its previous value of a(~). Thus, in the second motion, 

('1) 
- ah) + ~a 

The direct and interference contributions to CL(t) become 

E £~ an(t 
n E [a( ~) + ~a]n It an(t - /;, )d/;, C - - 1;, Ha(/;,)] d/;, + Ldir n n ~ 

E 1~ m I/;2 n 
CL - [a(/;2)] d/;2 bmn(t - /;"t - /;2Ha( /;, )] d/;, 

int,2 m,n o 0 
('2) 

+ E [ah) + ~a]m it d/;2 i~ bmn(t - /;"t - /;2Ha(/;, )]n d/;, 
m,n ~ 0 

+ E [a(~) + M]m+n It d/;2 I/;2 bmn(t - /;"t - /;2)d/;, 
m,n ~ ~ 

Again, written as a functional, the lift response to the motion a2(/;) is 

('3) 

The indicial lift response is formed by taking the difference between Eqs. (9) and ('2) (or between 
Eqs. ('0) and ('3», dividing by the incremental step ~a, and going to the limit as ~a ~ O. Existence 
of the limit is ensured by the analyticity of the functional dependence on a(/;). The result is 
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+ E m[o(t)]m-' It dt
2 
it bmn(t - t"t - (

2
)[0(t,)]n dt, 

m,n t 0 

+ E (m + n)[o(t)]m+n-, It dt2 Jt
2 bmn(t - t"t - ( 2)dt, ('4) 

m,n t t 

Eq. ('4) reveals the form of the indicial lift response to a step change in angle of attack in terms of 
functional expansions. The first and third terms on the right-hand side of Eq. ('4) do not depend on the 
past motion, but only on the level of the angle of attack at which the step waS made. The second term 
depends on the past motion, since o(t,) with 0 < t, < t appears within the integral. The leading term 
of this past dependence has the form 

it dt2 it b,,(t - t"t - ( 2 )0(t,)dt, 
t 0 

Dependence on the past thus arises from interference effects between pulses prior to t, the origin of the 
step, and perturbation pulses of O(ho) originating subsequent to t. In the general case, and just as 
before (Ref. 8), the indicial response is itself a functional. 

In fact, in formal terms (see Ref. 9 for a useful account of the essentials) the operations involved 
in forming the indicial response amount to taking a Fr~chet derivative of the functional CL[o,(t)]. To 
see this, we adopt the notation of Ref. 9, letting 

h - £0 ( '5) 

where we set 

£ - ho 

0-0 ('6) 

-, 
50 that 

('7) 

Then, following Ref. 9, we have 

d 
- d£ CL[o,(t) + £0]1£_0 

- CL[a,(t)]n ('8) 

The equivalence of the operations yielding Eqs. ('4) and ('8) should be evident. Finally, to conform with 
the notation of Ref. 8, we set 

hCL(t) 
lim ~ - CL[a,(t)]o • CL [a(t);t,t] ('9) 
ha-+O 0 

where the indication of a separate dependence on t and t rather than on elapsed time t - t alone 
should be noted. It can be easily verified that the first and third terms in Eq. ('4), which depend only 
on o(t), indicate a dependence on t - t alone; however, as a consequence of its dependence on the past 
motion, the second term cannot be cast as a function of t - t alone. 

4. GENERALIZED SUPERPOSITION INTEGRAL 

Just as before, Eq. ('9) can be used to form a generalized superposition 
in CL to an arbitrary angle-of-attack variation. The result is 

rt d 
CL(t) - CL(t;a(O» + J_ CL [o(t);t,t] d~ dt 

o a 

integral for the response 

(20) 
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with 

(21) 

It is important to understand the meaning of the first term in Eq. (20). It is the contribution to the 
lift at time t caused by the flow field existent at the initial instant t· O. It would be the only 
contribution if the angle-of-attack variation subsequent to t· 0 had remained constant at a(O). A 
reading of the notation of the second form for this term in Eq. (21) (cf. the definitions following 
Eq. (10» provides a more complete interpretation: The first term in Eq. (20) is the lift at time t due 
to an angle-of-attack variation aCt) which is equal to the motion history prior to t· 0, and which is 
constrained at t = T • 0 to remain constant at a(O) for all t ~ T • O. by substituting Eq. (14) for 
CL [a(t);t,T] in the integral term in Eq. (20) and carrying out the integration, one will verify that the 

fo~m of Eq. (4) is restored through terms of the series representing CL (i.e., through Eqs. (5) 
int,2 

and (6». We conclude first that an approach to modeling based on nonlinear indicial responses and gener-
alized superposition integrals is compatible with one based on nonlinear functional expansions. Second, 
validity of the approach rests on the assumption of Fr~chet differentiability of the lift response 
CL[a(t);t,T] over the interval 0 < T < t. Invalidation of this assumption may signal the occurrence of 
an aerodynamic bifurcation. 

5. CONNECTION WITH BIFURCATION THEORY 

Consider the first of the two maneuvers involved in the formation of the indicial response, that is, 
the maneuver (cf. Eqs. (8) and (10» to which the lift response CL[a(t);t,T] corresponds. The angle of 
attack attains a constant value aCT) subsequent to T, and it is reasonable to expect that the flow field 
at the subsequent time t will approach an equilibrium state that corresponds to this fixed boundary 
condition as the elapsed time t - T +~. Heretofore (Ref. 8), the analysis has contained an implicit 
assumption that as the flow field approached the equilibrium state it became time-invariant, which meant 
that the corresponding lift coefficient CL approached a unique constant value CL(m;a(T» as 
t - T +~. As long as this was true, it was reasonable to expect that an incremental change in aCT) of 
O(~a) would result in an incremental change in CL(m;a(T», likewise of O(Aa). We now recognize that at 
least two conditions must be satisfied in order that this be true: (1) The change of O(Aa) must not 
result in a loss of analyticity in the dependence of CL[a(t);t,T] on a(t). (2) The time-invariant equi­
librium flow represented by CL(~;a(T» must be asymptotically stable to small perturbations. We deal 
with the second condition here, assuming for the moment that the first condition has been satisfied. 
Although exceptions to sufficiency can be envisioned, we shall restrict our study to the class of flows 
for which asymptotic stability of the equilibrium state is not only necessary, but also &ufficient, to 
ensure that CL[a(t);t,T] will be Fr~chet· differentiable. 

It can happen, however, that as aCT) is increased in small increments, a critical value of aCT) can 
be reached at which the stationary equilibrium flow represented by C (~;a(T» will no longer be stable to 
small perturbations. Loss of asymptotic stability signals loss of Fr~chet differentiability at the criti­
cal value of a(T). With the stationary equilibrium state asymptotically unstable, the system will seek a 
new equilibrium state, and of those that are possible will select one that can remain stable to small 
perturbations. This is precisely the situation that bifurcation theory is designed to address. Bifurca­
tion theory provides a means of classifying and characterizing the properties of the new equilibrium 
states that can arise when the given equilibrium state becomes unstable. We call the replacement of an 
unstable equilibrium state by a new stable equilibrium state an aerodynamic bifurcation. We will now show 
how the mathematical model Eq. (20) can be amended to acknowledge its occurrence. 

Referring to Fig. 2, let us assume that the angle-of-attack variation under study a(T) passes 
through a critical value ac at a value of T· TC within the interval of interest 0 < T < t. If the 
angle-of-attack variation aCT) were constrained to remain constant at ac for all T > TC' the corre­
sponding lift response CL[a(t);t,Tc] would begin to depart from an initially infinitesimally close neigh­
boring response, such that CL[a(t);t,Tc] would not be Fr~chet differentiable. Thus, we cannot allow the 
integration in Eq. (20) to proceed beyond TC without acknowledging the loss of Fr~chet 
differentiability. Let us assume that for all other angles of attack within the range a(O) < a < a(t) 
the lift responses represent asymptotically stable flows permitting Fr~chet differentiation. Then we can 
isolate the critical state by stopping the integration in Eq. (20) just short of TC and starting again 
just beyond ~c' Within the isolated interval ~c - E < ~ < ~c + E, we acknowledge the aerodynamic 
bifurcation by allowing the solution to change discretely to a new equilibrium state. Thus, 

where 

T -£ 

I c ~ CL(t) • CL(t;a(O» + CL [a(t);t,T] dT dT 

i
t 

+ . 

T +£ 
C 

o a 

CL [a(t);t,T] ~~ dT + ACL(t;ac ) 
a 

(22) 

(23) 

This procedure was introduced earlier (Ref. 8) to acknowledge the occurrence of mean or constant 
values of the 11ft coefficient in the equilibrium state CL(~;a(T» which could exhibit the discontinuous 
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and double-valued behavior characteristic of hysteresis. This was a case in which the first of the two 
conditions just stipulated, namely, analytic dependence of CL[a(~);t,~] on a, was violated. The partic­
ular way in which this occurred is common in aerodynamics: The variation with a of the lift coefficient 
in the equilibrium state CL(~;a(~» develops a fold at a critical value of a, ac ' so that the slope of 
CL(~;a(~» versus a becomes infinite there. A jump in CL(~:a(~» necessarily ensues to the upper 
branch of the folded curve with an infinitesimal increase in a beyond ac ' and hysteresis follows on the 
return route. We show this as sketch (a) in Fig. 3 along with, for comparison, sketches (b) and (c) of 
the two most common forms of aerodynamic bifurcation. These sketches represent bifurcation to another 
time-invariant equilibrium state. The distinction between the class represented by sketch (a) (the class 
studied in Ref. 8) and the examples of aerodynamic bifurcations should be noted. In sketch (a) there is 
only one solution curve; no new branches resulting from instability appear. Discontinuous and doub1e­
valued behavior result merely from the fold that develops in the solution curve. In the case of super­
critical bifurcation, sketch (b), a new branch of stable solutions appears which is connected to the old 
branch at the critical point ac • Beyond ac ' two branches of solutions exist satisfying the same bound­
ary conditions, of which one is stable and the other is unstable. Supercritical bifurcation solutions 
start from zero and are initially infinitesimal as a increases beyond ac ' so that Eq. (23) would be 
zero. Supercritical bifurcation is not an important mechanism by which time-invariant equilibrium states 
exchange stability. The bifurcation can be easily superseded by smooth alternative solution curves 
through a variety of means (cf. Refs. 10-12). In subcritica1 bifurcation, sketch (c), the bifurcation 
solution curve that branches away from the now unstable branch is itself unstable. If it turns back, as 
indicated in sketch (c), the upper branch will be stable. A discontinuous jump in CL(~:a(~» results 
as a increases beyond ac ' and hysteresis follows on the return route, just as in sketch (a). Here, of 
course, Eq. (23) will have a value. 

Figure 3 has had the important function of reminding us that there are at least two mechanisms which 
can invalidate the conditions permitting Frechet differentiation of the lift response CL[a(~):t,~]. 

There may be others. Joseph (Refs. 11,12) notes, for example, that isolated solution branches of flows in 
the equilibrium state can exist which are not connected to other solution branches through bifurcation. 
Later, we shall entertain the possibility that the initial flow as well as the stability of flow in the 
equilibrium state may influence Frechet differentiability. A theory of the means of invalidating Frechet 
differentiability of the lift response offers the possibility of an alternative to bifurcation theory. 
Inasmuch as it would incorporate the latter, it would be a potentially more inclusive way of classifying 
aerodynamic phenomena that are important in flight-dynamics applications. 

6. QUALIFICATIONS 

Before proceeding with the study of aerodynamic bifurcations, we must introduce some important quali­
fications. Our current understanding of fluid-dynamic bifurcations stems almost entirely from results of 
analytical and computational studies of laminar flows governed by the incompressible Navier-Stokes equa­
tions. Within these confines, studies have been further limited to flows in bounded domains. Boundary 
conditions have been simple enough to permit reduction of the linear stability problem (the necessary 
first step in the study of bifurcations) to the form of ordinary differential equations (e.g., the Orr­
Sommerfeld equations). The principal findings on which our current understanding is based are summarized 
in Refs. 10-13. Qualifications are necessary when we attempt to extrapolate this body of knowledge to the 
study of the aerodynamic bifurcations that occur under full-scale flight conditions. These involve turbu­
~ compressible flows which, if averaging and modeling are introduced, will be governed not by the com­
pressible Navier-Stokes equations but by evolution equations of unknown forms. Further, the domains of 
the flows are typically unbounded, rather than bounded. Finally, the boundary conditions, reflecting the 
geometries typical of modern aircraft, ordinarily will not allow reduction of the linear stability problem 
to the level of ordinary differential equations. 

The situation requires us to stipulate a list of presuppositions which will be the basis for the 
extrapolations we make. The list is inspired by one that Lanford compiled to justify the study of turbu­
lence within a framework based on the incompressible Navier-Stokes equations (Ref. 14). Our list will 
merely supplement Lanford's, taking additional account of turbulence modeling, compresSibility, and the 
necessity to consider flows in unbounded domains. The issue of boundary conditions is not addressed on 
the assumption that their increased complexity does no more than increase the role of numerical 
computations. 

6.1 Turbulence Modeling 

Let us consider the flow field to which a typical lift response CL[a(~):t,~] corresponds. We assume 
that the flow field at time ~ - ~ is given (to within a certain accuracy), and we must determine the 
subsequent flow at time t. Inasmuch as a(~) remains constant at a(~) for all ~ - t > ~, we have fixed 
boundary conditions. This form of the fluid-dynamics problem is known as an initial boundary value prob­
lem (IBVP: cf. Ref. 11). We assume that any given realization of the IBVP is governed with sufficient 
accuracy by the compressible Navier-Stokes equations. Paralleling Ref. 14, in the absence of proof we 
simply postulate that a solution of the IBVP would exist for all ~ - t ~ ~ and would be unique. How­
ever, the Reynolds number is sufficiently high so that a solution would exhibit chaotic behavior, implying 
a sensitive dependence on the initial conditions. Thus, small perturbations of the initial conditions 
would cause repetitions of the given motion to result in a set of motions having stochastic properties. 
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The situation calls for the application of some form of averaging of the compressible Navier-Stokes 
equations to suppress the appearance of the small-scale chaotic structures. After averaging, the reper­
tory of solutions of the resulting equations must remain faithful to that of the unaveraged equations, 
neither allowing uncharacteristic solution forms nor losing essential ones. The necessity of closing the 
averaged equations in conformity with this requirement introduces the turbulence modeling problem. The 
convergence of interests this situation represents for the fields of research concerned with turbulence 
modeling and with the modeling of aerodynamic responses has been noted in Ref. 5. In Ref. 2, we have 
tried to show how the theoretical framework underlying the deterministic approach to the study of turbu­
lence might assist the modeling effort, particularly at this juncture, where it is important to give ade­
quate representation of bifurcation phenomena. We cannot go further here in specifying modeling require­
ments except to postulate the one feature that must be retained in common with the original Navier-Stokes 
equations: Whatever the form of modeling adopted, it must remain possible to cast the modeled equations 
in the form of autonomous evolution equations, namely, 

(24) 

where ~ 15 the velocity vector and A Is a parameter (e.g., angle of attack, Reynolds number, Mach 
number). We believe that the premise is a reasonable one, involving no more in principle than the use of 
orthogonal projections (Refs. 15,16) to eliminate gradient terms (e.g., the pressure term) from the mod­
eled equations. 

6.2 Compressibility 

We shall assume that modeled equations of turbulent flows resulting from averaging the compressible 
Navier-Stokes equations remain at least as well-behaved as the original equations and their incompressible 
counterparts. Of course, the new parameters introduced by compressibility (e.g., Mach number) will them­
selves have critical values at which additional bifurcations should be expected. 

6.3 Unbounded Domains 

Let us return to the ISVP represented by CL[a(~);t,t] and assume that the premises of the previous 
sections are now in force. Henceforth, the equations governing the flow field are assumed to be modeled 
equations of turbulent flow, of known form, and satisfying the form of Eq. (24) by suitable projections. 

The issue concerning the absence of bounds on the flow domain arises in evaluating the stability of 
the flow field in the equilibrium state. We say that the equilibrium state is reached in the limit as 
t - t + ~, so that transient effects associated with the initial conditions have vanished. A study of the 
stability of the equilibrium flow must be undertaken first, since bifurcation of the equilibrium state 
will not occur unless a critical value of the parameter in question (here, a) exists at which the flow 
field in the equilibrium state becomes unstable. Stability is evaluated by determining whether an infini­
tesimal perturbation of the equilibrium flow decays or grows with time. The perturbation's fate can be 
determined from a linear spectral problem, the governing equations being obtained from a linearized per­
turbation of the equations governing the equilibrium flow. Typically, with a bounded domain, it can be 
shown that solution of the spectral problem yields a countably infinite set of isolated eigenvalues in a 
complex plane. Stability is indicated if all of the eigenvalues lie in the left-hand plane. On the other 
hand, little is known about the spectrum of eigenvalues for unbounded domains. In the case of flows in 
unbounded domains governed by the incompressible Navier-Stokes equations, it is believed (Refs. 17,18) 
that an incomplete set of discrete eigenvalues exists which again controls stability, and that there is 
additionally a continuous spectrum having negative real part (i.e., lying in the left half of the complex 
plane). We postulate that what is believed to be the case for flows in unbounded domains governed by the 
incompressible Navier-Stokes equations is in fact the case for our problem. 

6.4 Conclusions 

Accepting the last premise (which implies accepting all of the previous ones) leads to several con­
clusions concerning the role of bifurcation theory in the modeling of aerodynamic responses. First, since 
we have postulated that stability of the equilibrium state continues to be controlled by the discrete part 
of the eigenvalue spectrum alone, entailing no change from the rules governing bounded domains, we con­
clude that the role of bifurcation theory regarding the equilibrium state should carryover intact to ' 
flows in unbounded domains. That is, all of the instability mechanisms that have been uncovered by stud­
ies of flows in bounded domains governed by the incompressible Navier-Stokes equations should have coun­
terparts in flows in unbounded domains governed by modeled turbulent flow equations. With the onset of 
instability of the equilibrium state, bifurcation theory again should be capable of classifying and char­
acterizing the properties of the new stable equilibrium states that can arise to replace the unstable one. 

On the other hand, concerned as it is only with the equilibrium state, bifurcation theory does not 
suffice to completely resolve the ISVP from which the indicial lift response is derived. We note that 
when the eigenvalue spectrum lies in the left-half plane, indicating stability of the equilibrium state, 
the ISVP for an infinitesimal step perturbation of the boundary condition a(~); ~ ~ t is a linear 
problem. In fact, the transient flow field from which the indicial response CL [a(~);t,t] is derived can 

be obtained from a suitable superposition of the eigensolutions (including both ehe discrete and continu­
ous parts) of the linear spectral problem. The superposition is made determinate by the necessity of 
matching a prescribed flow field at the initial instant ~. t. This is how the dependence on the past 
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motion is expressed, which makes CL [a(t);t,t] a nonlinear functional even though derivable from linear­

ized perturbation equations. Thus, ~ecalling the derivation by means of functional expansions, we affirm 
that so long as stability of the equilibrium state ensures that CL[a(t);t,t] will be Fr~chet differenti­
able, the differential ~aCL [a(t);t,t] can be determined from a linear problem. With the onset of insta-

bility, however, the perturb~tion flow no longer can be obtained from the solution of the linear spectral 
problem, since at least one of the discrete eigensolutions would grow without bounds. Thus, the incremen­
tal change in lift coefficient given by Eq. (23) must be determined from the fully nonlinear perturbation 
flow equations. 

7. AERODYNAMIC BIFURCATIONS 

In Ref. 1, we postulated six major subdivisions in the form of aerodynamic force and moment responses 
by means of a set of sketches, and these are reproduced in Fig. 4. Although the ordinate fa in each of 
the sketches can be made to represent a variety of characteristics, it will be convenient here to let 
fa represent the lift coefficient in the equilibrium state. We now briefly outline how modeling of the 
aerodynamic responses incorporating the six forms of lift coefficient may be effected by means of the 
amendment we have introduced to accommodate aerodynamic bifurcations. 

7.1 Major Subdivisions 

First, it should be clear that aerodynamic systems represented by sketches (a) and (b) in Fig. 4, 
involving linear or nonlinear single-valued lift variations, do not require modification of the treatment 
contained in, for example, Ref. 8. In formal terms, these systems can be characterized as having aerody­
namic responses CL[a(t);t,t] that are Fr~chet differentiable over the entire angle-of-attack range of 
interest. 

Sketch (c) in Fig. 4 introduces a class of multivalued solutions of the flow in the equilibrium 
state. Mean or constant values of the lift coefficient in the equilibrium state exhibit the discontinuous 
and double-valued behavior characteristic of hysteresis. As we have already noted, such cases were 
treated in Ref. 8 by a procedure similar to the one described here. The class includes both solution 
curves having folds, and subcritical exchanges of stability between time-invariant equilibrium states. 

Sketches (d) and (e) in Fig. 4 introduce bifurcations that result in time-dependent equilibrium 
states. Accommodating these phenomena within the mathematical model will require the use of Eqs. (22) 
and (23). Hopf bifurcation is indicated in sketch (d), wherein a formerly stable time-invariant equilib­
rium state is replaced by a time-varying periodic equilibrium state. The difference in lift responses 
resulting from these two forms of equilibrium states is reflected in Eq. (23). Hopf bifurcations are 
common in aerodynamics. Physically, the usual origin of such a large-scale oscillatory state is the onset 
of vortex-shedding. Of the many examples, we cite here stall on airfoils when the angle of attack exceeds 
a critical value (Refs. 19,20) and the wake of the flow past a cylinder when the Reynolds number exceeds 
50 (Ref. 21). The equ1librium state resulting from a Hopf bifurcation is often succeeded by b1furcation 
to a quasi-periodic equilibrium state with further increase of the parameter. To accommodate this and 
subsequent bifurcations, the integration regime in Eq. (22) must be interrupted at each such occurrence, 
and an interval of 0(£) inserted in which a discrete change, such as Eq. (23), to a new equilibrium state 
is allowed. The quasi-periodic state may be succeeded by an aperiodiC (chaotic) equilibrium state. As 
noted in sketch (e) in Fig. 4, appearance of the latter state signals the presence of a "strange attrac­
tor." The slender body of revolution may undergo such a sequence of bifurcations as angle of attack is 
increased incrementally toward 90°. This example, among others, is discussed at length in Ref. 1. Sev­
eral additional examples of bifurcation sequences relevant to aerodynamic applications are contained in 
Refs. 2 and 22. 

The last subdivision in Fig. 4, sketch (f), representative of aerodynamic systems having strong rate 
dependence, goes beyond the previous ones in that more is at issue in the modeling than accommodating 
bifurcations of the equilibrium state. An adequate representation of the aerodynamic system in this cate­
gory of problem represents a severe test for any mathematical model. We believe that the oscillating 
airfOil in what is referred to as dynamic stall is exemplary in characterizing the nature of the problem 
in this category. Fortunately, a comprehensive set of experimental results exists for the problem, 
reported in a series of papers by McAlister, Carr, and McCroskey (Refs. 19,20). Included are excellent 
flow-visualization pictures which reveal many features of the physical mechanisms involved. In the 
following section we refer to these results and briefly demonstrate the extent to which our amended model, 
Eqs. (22) and (23), is capable of capturing their essentials. 

7.2 Dynamic Stall 

Figure 5, reproduced from Ref. 1, is representative of some of the principal results of Refs. 19 
and 20. Here, angle of attack a is defined geometrically rather than kinematically as before. Flow­
visualization pictures (obtained by means of the hydrogen-bubble technique, Ref. 19) of the airfoil oscil­
lating about the quarter-chord clearly show that as the airfoil passes through a given angle of attack 
(a - 15°) with a increasing (a > 0), the flow has a very different character than it has as the airfoil 
passes through the same angle of attack with a decreasing (a < 0). The plots of CL versus a at the 
bottom of Fig. 5 (Ref. 20) reveal that the lift variations likewise are very different, depending on 
whether a is increasing or decreasing. With a increasing, the instantaneous value of the lift 
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coefficient can significantly exceed its static value (more precisely, in our terms, the mean value of the 
lift response in the equilibrium state), while the opposite is true with a decreasing. Finally, the 
differences between lift coefficient with a increasing and decreasing are dramatically enhanced as the 
reduced frequency k is increased incrementally. Increasing k may be interpreted as increasing the 
magnitude of ~,since with a = a + a sin wt (Fig. 5) and k = wc/2V , we have l~c/2V I = a k. moo 0 max 0 

Thus, both sign and magnitude of a significantly influence the experimental results. These are 
important new features that a mathematical model ought to be capable of capturing. 

Let us first take up the issue of aerodynamic bifurcation in the equilibrium state for the airfoil 
under study. As the angle of attack is increased incrementally, a critical value of a is reached 
(a < 10°) at which separation of the flow begins, signaled by the appearance of a Singular point in skin 
friction on the upper surface near the leading edge. With an infinitesimal increase in a, the singular 
point splits to form a half-saddle point of separation followed by a half-saddle point of reattachment, 
creating the familiar leading-edge separation bubble. The onset of separation is designated a structural 
bifurcation, inasmuch as it signals a change in the topological structure of the flow (Refs. 1,22). The 
change occurs uniquely (the original flow structure no longer represents a possible solution of the flow 
equations) and the flow remains steady. At an angle of attack of about 12°, an inflexional flow profile 
within the bubble becomes unstable, and periodic vortex-shedding begins. This is a Hopf bifurcation and 
available evidence suggests that it is supercritical. Figure 6 is a bifurcation diagram of the event with 
amplitude of the periodic lift fluctuation, designated CL (m;a(T», as ordinate. The mean value of the 

lift coefficient in the equilibrium state is shown in the ~ame figure. To conform with the notation of 
Ref. 5, we designate it by CL(m;a(T». Beyond a - ac - 12°, the diversion of some of the available 
energy to maintain the fluctuation causes CL(m;a(T» to begin to drop away from the values it would have 
taken (dashed curve) if the original stationary flow had remained stable. Its variation with a is that 
of the measurements for the curves labeled "static" in the plots of CL versus a in Fig. 5. In the 
absence of contrary evidence, we assume that no further aerodynamic bifurcations occur over the remaining 
range of angle of attack. Thus, Eqs. (22) and (23) should apply to the OSCillatory motion illustrated in 
Fig. 5, with Eq. (23) required at a = Qc - 12°. 

Now let us examine the behavior of a typical lift response CL[Q(~);t,T] for the part of a cycle in 
which a is increasing (~ > 0), and let us choose a(T) to be somewhat larger than a = 12°. During the 
portion of the motion (0 < ~ < T) before a(~) is constrained to remain constant at arT), the conditions 
correspond to those depicted via flow visualization in the left-hand photograph of Fig. 5. Let us focus 
attention on the flow component parallel to the airfoil surface at a station near the leading edge at 
time ~ just prior to ~ - T. We choose to observe the flow in the same reference frame as the one in 
which the camera photographing the flow was situated. The origin of coordinates is fixed to the airfoil's 
axis of rotation, but, rather than rotating with the airfoil, the coordinates remain stationary relative 
to the oncoming wind. Within this reference frame, the instantaneous velocity profile at the fixed sta­
tion may be viewed as having two components, as shown in Fig. 7(a). The first profile is the time­
invariant mean profile which would exist alone were the airfoil to remain stationary at the instantaneous 
position a(~) = a(T). It has a region of reversed flow typical of the velocity profiles within the sepa­
ration bubble in the equilibrium state. The second profile represents velocity induced by the motion of 
the airfoil. Its magnitude at the airfoil surface is directly proportional to the angular velocity ~(~), 
and in particular, since ~ - T, it is proportional to ~(T). It is clear that with ~(T) > 0, this con­
tribution tends to diminish the region of separated flow, and more so as ~(T) is increased. The situa­
tion begins to change as soon as ~ exceeds T, for then a is constrained to remain constant at 
a(T). As shown in Fig. 7(b), while the first profile remains the same, the second profile immediately 
Changes, since the velocity at the wall must go to zero as soon as the airfoil stops moving. With 
increasing values of ~ this profile decays progressively, so that the zone of separated flow associated 
with the first profile gradually begins to appear. After a lapse of time, a separation profile emerges 
that is unstable to small perturbations. In response, the periodic fluctuation characteristic of vortex­
shedding begins, and its amplitude grows toward the constant value corresponding to the amplitude of fluc­
tuations in the equilibrium state at the chosen value of a(T) > ac • We show this schematically in 
Fig. 8. The interval of ~ during which the onset of fluctuations is delayed is denoted by T; clearly, 
the duration of T is directly proportional to the magnitude of ~(T). During the interval T, in which 
the flow over the upper surface of the airfoil remains more or less attached, the mean value of the lift 
coefficient tends toward a value representative of the attached-flow condition. A conservative estimate 
for it would be the value obtained from a computation based on inviscid flow theory; we indicate it on 
Fig. 8 as an upper bound (dashed line). After the fluctuation begins, the mean value of the lift coeffi­
cient begins to decline toward the value it reaches in the equilibrium state. Thus, with a(T) > 0, the 
instantaneous mean value of the lift coefficient can overshoot its "static" value; the extent depends 
directly on the length of the interval T, which in turn depends directly on the magnitude of a(T). 

The beh~vior of the analogous lift response CL[a(~);t,T] for the part of a cycle in which a is 
decreasing (a < 0) is very much the reverse of the behavior just described. Let aCT) have the same value 
as before (a(T) > ac )' so that over the portion of the motion 0 < ~ < T, conditions correspond to those 
depicted in the right-hand photograph of Fig. 5. In sharp contrast to the previous case with ~ > 0, the 
velocity profile induced by the airfoil's motion drastically extends the separated flow regime, particu­
larly while the airfoil is moving, and the more so as a(T) is increased negatively. After ~ exceeds 
T, whereupon a is constrained to remain constant at a(T), the violent fluctuations begin to die down as 
the second profile dies away. In contrast to the previous case, there is no interval in which the airfoil 
is free of fluctuations. The time it takes for the violent fluctuations to die down to the level 
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representative pf the equilibrium state is directly proportional to the magnitude of 1~(t)l. During this 
interval, the mean value of the lift coefficient must be less than its "static" value; the extent of the 
difference again depends directly on the magnitude of 1~(t)l. (We note in passing that large values of 
1~(t)1 may represent a class where Fr~chet differentiability, could depend on more than stability of flow 
in the equilibrium state. It may depend as well on the nature of the initial flow. The possibility will 
require further study.) 

This explanation of events suggested by the form of modeling we have adopted would appear to be in 
full accord with experimental observations. With one potential reservation, we conclude that a mathemati­
cal model at the level of Eqs. (22) and (23) will be capable of incorporating the events we have 
described. 

7.3 Applications to Dynamical Systems 

We have seen that the amended mathematical model should be capable of describing the aerodynamic 
characteristics in all six forms of aerodynamic force (or moment) responses illustrated in Fig. 4. The 
forms involving aerodynamic bifurcations that result in time-dependent equilibrium states 
(sketches (d)-(f), Fig. 4) are of particular interest. Applied to problems involving dynamical maneuvers 
of aircraft, these forms will require extensive and novel experimentation. Problems in this category can 
be divided into two subclasses. 

The first subclass of problems involves oscillatory motions about an equilibrium state at which a 
bifurcation occurs. This was the case in the dynamic stall experiment studied in the last section. Simi­
lar cases need to be studied in which the oscillatory motions are free, rather than forced" to determine 
how vortex-shedding frequencies may be modulated by the system's natural frequencies, causing, for exam­
ple, "frequency lock-in." Another potentially important question is whether vortex-shedding (from, e.g., 
three-dimensional analogs of the airfoil's leading-edge separation bubble) may be a source of wing rock., 
Here, the phase relations between vortex-shedding on the two wing panels would appear to be a controlling 
factor. 

The second subclass of problems involves oscillatory motions that remain within a space free of crit­
ical values of parameters. Here, simplifications in the modeling can be effected as previously (Ref. 8) 
in connection with time-invariant equilibrium states. Dynamical systems within this subclass of problems 
involving vortex-shedding from obstacles have inspired a large collection of literature under the category 
of "vortex-induced oscillations." Excellent surveys of the field have been published by Sarpkaya 
(Ref. 23) and very recently by Bearman (Ref. 24). The archetypal problem is the flexibly mounted cylinder 
immersed in a uniform oncoming stream. Applied to this problem, our approach to modeling yields a differ­
ential equation of the form 

(25) 

where the quantities h,~,K characterizing the spring-mass system are illustrated in Fig. 9(a). The 
forcing term, which expresses the contribution of the fluctuating lift due to vortex-shedding, is novel in 
that the amplitude B and frequency ware coupled to the velocity h on the left-hana side. Our 
modeling approach provides an explanation as follows: Amplitude B is a function of instantaneous 

J 2 ·2 Reynolds number (Fig. 9(b», which makes it a function of total velocity, Um + h. Strouhal number k, 
the dimensionless frequency of the fluctuating lift in the equilibrium state, is a constant, independent 
of Reynolds number in the range of velocities of interest (Fig. 9(b». This makes w" the actual fre­
quency, a function of h through 

k wd wd _ const. 

- Utot - r U: + h2 
(26) 

We have found that Eq. (25) has a rich repertory of solutions, and appears to be capable of capturing 
distinctive features of the system's behavior (frequency lock-in, amplitude jumps, hysteresis) that care­
ful experiments have revealed (Refs. 23,24). The equation's richness is easier to understand if we trans­
form it into a set of autonomous first-order equations. There are three such equations, a number which 
suffices to permit solutions having "chaotic" behavior. We believe that study of simple systems such as 
this one can teach us how to perceive what otherwise might seem bizarre or even random behavior on the 
part of more complicated dynamical systems such as maneuvering aircraft. 

8. CONCLUDING REMARKS 

This paper is a continuation of our effort to provide a consistent formulation and theoretical method 
for studying nonlinear problems in flight dynamics. We have proposed a framework having parallel observa­
tional and mathematical components to facilitate study of the aerodynamiC contribution to the flight­
dynamics system. The observational component consists of the elements structure" change, chaos, and 
scale. These are complemented by elements of a mathematical framework featuring the language of topology 
and concepts drawn from the theory of nonlinear dynamical systems. Here, particular emphasis has been 
placed on the element of change and its mathematical representation by means of bifurcation theory., 

Of the two principal realms of application of bifurcation theory to flight-dynamics studies, we have 
concentrated attention on its role in the mathematical modeling of the aerodynamic contribution to the 



aircraft's equations of motion. Our study stressed a number of themes which led to the following 
conclusions: 
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1. Studies in nonlinear flight dynamics can be enhanced by linking them to the common features of 
parallel studies in various allied fields. The unifying medium is the rapidly growing body of theory 
underlying research in nonlinear dynamical systems. Exemplifying this, our approach to modeling, involv­
ing nonlinear indicial responses and generalized superposItion integrals, was made compatIble with one 
originating in the field of electrical Circuits and systems, based on the use of nonlinear functional 
expansions. Operaticns involved in forming the indicial response were found to be equivalent to Frechet 
differentiation. Invalidation of Frechet differentiability proved to be the common element signaling the 
necessity of amending the mathematical model to accommodate potential discontinuous aerodynamic 
behavior; Aerodynamic bifurcation is one means of Invalidating Frechet differentiability. 

2. Aerodynamic bifurcation can be defined as the replacement of an unstable equilibrium flow by a 
new stable equilibrium flow at a critical value of a parameter. Acceptance of a list of presuppositions 
permitted extrapolating our understanding of aerodynamic bifurcations from a framework involving bounded 
laminar flows governed by the incompressible Navier-Stokes equations to one involving unbounded turbulent 
flows governed by modeled evolution equations based on the compressible Navier-Stokes equations. The 
issue of aerodynamic bifurcations represents. a convergence of interests for the fields of turbulence 
modeling and the modeling of aerodynamic responses, Amended to accommodate aerodynamic bifurcations, with 
one potential reservation the mathematical model should be capable of describing the aerodynamic 
characteristics of all six major subdivisions .that we have postulated for the aerodynamic response. 

3. Aerodynamic bifurcation is one of at least two means of invalidating Frechet differentiability of 
the aerodynamic response. A theory for enumerating these means offers a possible alternative to bifurca­
tion theory. Inasmuch as it would incorporate the latter, it would be a potentially more inclusive way of 
classifying aerodynamiC phenomena that are important in flight-dynamics applications. 
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Fig. 3 Comparison of forms of time-invariant lift coefficients in the equilibrium state. (a) Fold; no 
bifurcation. (b) Supercritical bifurcation. (c) Subcritical bifurcation. 
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Fig. 6 Bifurcation diagram for amplitude of lift fluctuation. 
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Fig. 9 Flexibly mounted cylinder. (a) Spring-mass system. (b) Bifurcation diagram for cylinder in 
uniform stream. 
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