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SUMMARY

A new crack element has been developed ard incerporated into COSMIC/
NASTRAN. The element is considered linear, isotropic, and homogeneous. Mode
I and IT siress intensity factors are sutomatically calculated. Comparisons
to theoretical p'ane strain solutions for several geownetries are presented and
demonsirate the accuracy of the developed elementi. Extensions of the element
in three dimensions, anisciropic material, and plastic analysis are discussed.

INTRODUCTION

Crack or singular elemcnts have been developed for finite element analysis
for almost as long as finite element codes have been available. These eclements
usually are classified as either hybrid or singular element forrulations. Many
of the elemenis developed suffered from either lack of accuracy, gencrality, or
consistency. Barsoum (Ref. 1) points out shortcomings of several different
elements. These shoricomings include inability to model rigid hody or constant
strain modes, inability to include thermal or hody force effects, and lack of
compatibility wiih other elementis.

The elemenis developed by Barsoum (Ref. 1) and Henshell (Ref. 2) rectified
many of ilhe p oblems described above; however, these elements were limited to
displacemeni of the form rt/2, Consequently, they could only model strain
singularities of the form r-1/2, Recently, Siern (Ref. 3) and more recently,
Hughes and Aikin (Ref. 4) have introduced families of conaistent, conforming
elesents which allow displacemenis of the form r'. While the Stern elemeni
appears to have the resiriction that O < vy ¢ 1, the element of Hughes and
Aikin is valid for all y > O. The element described herein is based upon
sheze functions suggested by Hughes and Aikin (Ref. 4).

The element presented here possesees the required rigid body and constani
strain mcdes. It properly models thermal, bedy force, and pressure loading
conditions-. Additionally, it is compatible wi‘h standard linear or quadratic
igeparametric elements and can possess either 5 or 6 nodes. Finally, it can

< used as a nonsingular elemeni with a variable number of nodes.
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ELEMENT FORMULATION

The follcwing derivetion foilows Hughes and Aikin (Ref. 4). Referring to
Fimurc 1, the standar? bilinear 3shape functlions are used for nocdes 1 tnrough
4:

Ny(r,s) = (1-r)(1-s)
Ny(r,s) = 1(1-8)
(1)
Ns(r,s) = rs
N4(r,s) = (1-r)s
Tre shape funciions for nodes 5-8 sre chosen as:
Ng(r,s) = (1-8)P(r,¥)
HG(r,s) = rP(s,2)
(2)
K,(r,s) = sP(r,Y)
Ns(r,s) = (1-r)P(s,2)
where

P(x,v) = 2( x - 2=2(1/2)Tx (3)

1 - 2(1/2)7

It can be easily shown that the shape functiions for nodes 5-8 reduce to
the standard quadraiic serendipity element wher Yy of Egquation (3) is set equal
to 2. Ii can ulso be seen thai the shape function for nodes 5-8 satisfies ihe
interpolation property at 211 nodes of the elemert. That is:

= Y =
Ni(rj) Gij and Ni(sj' 8

where r. and s. are values of r and s at node j and § ., is the Kronecker
delta. "However, the shape funciions essocieted with fiddes 1-4 do not satisfy
the interpolsiion property at nodes 5-8. Following the standara technique
(Ref. 4), tne shape func.ioms fo: nodes 1-4 are mcdified as follows:

33



+

[Ns(r,s)

N1 * N1(r,s)

Ns(r,s)]/Z

+

NZ + Nz(r,S) - [Ns(r!s) Ne(rts)]/z

(8)

t

N3 . N3(r,s)

N4 . N4(r,s) - [N7(r,s) + Ns(r,s)j/Z

[NG(r,s) + N_(r,s)]/2

where the + reads: "is replaced by."

It can now be secen that the shape functions for all eight nodes satisfy

the required irierpolation property. Additionally, the shage functions are
+3 5 Y

capable of exactly representing the monomials 1,r,s,r ,rs,s ,r s, and s<r.
The _..2sence of 1,r and s ensure_representation of rigid body and constant
sirain modes. The presence of rY allows exaci representation of displacements
of ihe form rY. Note that this will result in a line singularity of the
form r' = upon differentiation.

In order to represent point singularities, the quadrilateral mst be
degenerated into a triangle. This is done vy coalescing nodes 4, B, and 1 as
can be .one for standard isoperametric elements (Pef. 5) and as is shown
schematically in Figure 2. Thus, finally, for a point singularity, the share
function associated with nude 5 is replaced with:

N1(r.5) + K, (r.s) + 5'4(r,3) + NB(!',S) (5)

Tris is easily programmed intc the element routine. The generality of
the ahove derivation allows use of Lhe same shape functions as the basis of
three-dimensional elements which possess line singularities.

In summary, for the & node triangle, the shape function associated with
node 1 is giver by Equation (5), the shape functicns associaied with nodes 2
and 3 are given by N, and N; ¢ Equation (4), and the shape functicns
associated with nodes 5 through 7 are given by Ng through K, of Equation (2).

Given the shape functions for the element, calculatinn of the stiffness
matriz, thermal load vector, and graviiy load veclor follcws the standard
procedure &s described in Reference 6. These gquantities are iherefore given
as:
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3
Er 0
- o i 2
z3=L% , K= ]I N1 "'] ’ L =10 I ’
3 3
&5 31|

and I is a 2 x 2 identity matrix.

See Peference €& for mcre detaiis. The actual integratior is performed via
Gaussian quadrature. That is, the integrals are approximaied as:

j £f(x) ax

I
[Nalels

v, f{a) (7)
s J J

J

4
i

Due to the formulatior, il can be shown that along ike s directiioun, the
integraticn order needs to bde, at mosi, 4 in order to exactly integrite ilhe
element. For an undistoried element, a maximum intiegrat<on order of 3 is nec-
essary, although often an inrtegration crder of 2 yields resulis just as good.
Along the r direction, the method for an exact integration has not hteen ascer-
tained. Currently, an integration order of 4 or 5 seems to su{fice along the
r direction. An exaci integratiion formula analogous to ithe formula rresentied
in Reference 3 or Reference 7 will hopefully be derived in thke near future.

Calculation of the stiress intensity faclora are perfcrmed using the
equations:
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1/2

- G lim Ié‘_ =
KI " 200<v) 0 \r ] uy(e )
(8)
1/2
_ G lim 2w -
KII - 221-v5 r+) ‘r ) ux(e )

where the nomenclature is shown in Figure 3. Alternatively, similar equations
in terms of stresses can be used. It has been found here and noted elsewnere
(Ref. 8) that Bquation (8) yields more accurate results than the similar
equations in terms of stresses. The values of the stress intensity factors
are calculated at each of the integraiion points along the r direction and
extrapvlated to r=C using Lagrangian inierpolation.

Extension of the above formulation io three dimensions is straightforward.
As discussed in Reference 4, the three-dimensional shape functions are simply
producis of the two-dimensional shape functions in r and s with the desired
one-dimensional shape function in t. For example, the shape functions for the
three-dimensicnal element of Figure 4 are given by:

N. (r,s,t) = tNy(r,s)
B¢ (r,s,t) = tRe(r,s)
No (r,s,t) = (1-)N4(r,s)

Nyo(r,s,t) = (1-t)N6(r,s)

The above element formulation may be extended to anisotropic materials by
using the appropriate anisoitropic material matrix D in Equation (6). When
appropriste. D could be differen: at each integration pciri.

In order to incorporate plasticity eff-cts, it is suggestoed that standard
techniques currently used for plasiicity in regulsr elemenis could also be
applied to the present element. That is, after each load incremeni, each
integraiion point in the element wovld be checked to see if it has gone plastic
or not. If plasticity has occurred, then en algorithm such as radial-return
(Ref. 9) would be used to bring the stress back to the yield sarface. The
element's internal forces, used to calculate the out-of-balance loed vector
would be given in standard form as:
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Additiorally, the order of the strain singularity would have to be updated,
depending upcn the hardening properties of the material (Ref. 10).

IMPLEMENTATION IN NASTRAN

Implementatior of the creck element into RASTRAN was performed via the
dummy element CDUM1. This procedure is covered in Reference 11. The present
element was modeled after the QDMEM1 element routines, due to their similarity.

The first step was to create a subroutine KDUM! which generates th~»
stiffness and mass matrices. The mass matrix may be either consistent or
lumped. When the mass matrix is used for calculation of graviiy lcads, the
consistent mass matrix should be specified. This subroutine is eventually
linked to NASTRAN LIKK 8.

For computation of thermal loads, the subroutine EDTL must be modified to
make a call to SSGETD before calling the routine T'M1. The dummy coding in
routine LUM1 is then modified to calculate the thermal load vector based on
the connecting grid poini temperatures. Optionally, the element centroidal
temperature could h-—-e been used, although this is generally not recommended
since temperature gradients near i*e crack could not be accurately represented
in this way. After modifying EDTL and DUM1, they must be linked %o NASTRAN
LINK 5.

Finally, the dummy coding for the SDUM11 and SDUM!2 routines must be
modified so that they perform the required operations. SDUM1!1 performs the
preliminary geomeiry calculations and creaies the S mairix which relates
element siresses (including stress intensity factors) to the element's grid
point displacements. SDUM12 then uses the S meirix, grid point displacements,
and temperatures to compute the centroidal siresses and siress intensity
faciors and writes them to the output file. After modifying the SDUM11 sand
SDUMi2 coding, it is linked to NASTRAN LINK 13. This completes the
implementation into NASTRAN.

NUMERiICAL RESULTS

In order %o assess the accuracy of the present element, four different
crack geomeiries/loading conditions with known solutions were analyzed.

Figure 5 shows the different geomeiries analyzed. Figure 6 presents four
different mesh sizes which were used to analyze the first three crack geome¢-
tries. Figure 7 shows the boundary conditions used. For the edge crack with
a peint load, Figure 7 is modified so that the load is applied at the edge of
the crack. Table 1 presents the errors associated with both the crack opening
diaplacement (COD) and the mode I siress intemsity factor KI' As can be seen,
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the COD is less sensitive to the mesh size, while the Ky values appear to be
converging to their exact soluticens. However, the edge crack with a point
load solution appears to overshooit the exact Ly about 5%. %+ should be men-
tioned that the "exact"™ solution for the edge crack specimen with a point load
is considered to te accurate to within 2%. The other exact solutions were
considered to have accuracies better than 1%. These exact solutions were
obtained from Reference 12.

Figure 8 presents a model cof a central crack in a finite plate. To ascer-
tain the accuracy of the element's mode II siress intensity factor, KII' the
model of Figure 8(a) was used. The results for both K; and KII are presented
in Table 2. As can be seen, the KII is within about 4% cf the exact solution.

In summary, both TOD and stress intensity factors appear to be accurately
represented even for relatively course meshes. The acruracies cbtsined are
well within the accuracies required by typical engineering calculaticns. This
is due to the fact that the scatter alone, in the KI values during a typicel
test, may be 10%.

CORCLUSIONS AND FUTURE RESEARCH

An element formulation has been presented that accurately models singu-
larities. The form of the singularity is general and the two-dimensional
element developed may ve easily extended to three dimensions. Additionally,
the element may be used as a standard, variable number of nodes guadratic
element. The element has been incorporated into NASTRAN and compared to
several known solutions.

Future research will include more tesis of the element against kmown
exact solutions. Additionally, an exact integration rule is desirable, and
work to develop this will be performed. The element formulation will then be
extended to three dimensions and the code will be incorpcrated into NASTRAN.
Finally, exteisions to include anisotropic materials and plasticity are
possible and should be studied further.
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TABLE 1  ERRORS IN COD AND K, AS A FUNCTION OF MESH
37 Grid Mesh | 77 Grid Mesh | 86 Grid Mesh | 95 Grid Mesh
CENTRAL CRACK COD Error (%) - 7.73 - - 2.82 - 2.92
K, Error (%) 11.63 1.69 1.22
EDGE CRACK WITH COD Error (%) - 5.24 - - 2.60 - 2.64
UNIFORM STRESS Ky Error (%) - 6.26 - - 3.19 - 2.05
EDGE CRACK WITH COD Error (%) - - -
POINT LOAD K; Error (%) ~26.11 - - 0.40 5.26
TABLE 2 ERRORS IN K, and K, FOR 234 GRID MESH
Error (%)
CENTRAL CRACK IN Ky - 1.37
SHEAR, FINITE PLATE
K 4.23

II
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Figure 1  Nomenclature for Eight Node Iscparametric Element

r=1

Figure 2 Degeneration of the Eight Node Element to a Six Node
Triangular Element
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Fiqure 3  MNomenclature for Crack Geometry

Figure 4 A Possible Three-Nimensional Generalization of the
Two-Dimensional Element of Figure 2
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Crack Geometries Modeled (dimensions in cm's
{a) central crack

(b) edge crack, uniform load
(c) edge crack, pnint load
(d) central crack in shear
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Figure 6 Different Mesh Sizes Analyzed
(a) 37 grid mesh
(b) 77 grid mesh
(c) 86 grid mesh
(d) 95 grid mesh

(d)
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Figure 7 Boundary Conditions for Edge Crack and Central Crack Specimens
(a) edge crack
{b) central crack
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(a) Toading condition for KII calculation

/

(b) loading condition for Ky calculation

Figure 8 Model of Central Crack in Finite Plate
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