NPLCT: AN INTERACTIVE PLOTTING PROGRAM FOR
NASTRAN FINITE ELE'MENT MODELS

Gary K. Jones and Kelly J. McEntire
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771

SUMMARY

NPLOT (NASTRAN Plot) is an
interactive computer graphics program
for plotting undeformed and deformed
NASTRAN finite element models. It
has besn developed at NASA’s Goddard
Space Flight Center. It provides
flexible element selection and grid
point, ASET and SPC degree of freedom
labelling. It is casy to use and
provides a combination menu and
command driven user interface.
NPLOT also provides very fast hidden
line and haloed line algorithms. The
hidden line algorithm in NPLOT has
proved to he both very accurate and
several times faster than other existing
hidden line algorithms. It uses a fast
spatial bucket sort and horizon edge
computation to achieve this high level
of performance. The hidden line and
the haloed line algorithms are the
primary features that make NPLOT
unique from o.her plotting programs.

INTRODUCTION

Structural analysts at the Goddard
Space Flight Center, GSFC, have
always had the need to be able tn
graphically display finite element
models quickly and accurately. Plots

with depth cues give a much better
visual representation and aid the
analyst in interpretation and error
checking. On a vector type of graphics
device (such as Tektronix 4014's or
pen plotters) the two best ways to show
depth is via hidden line plotting or by
haloed line plotting. The problem with
the available hidden line algorithms is
that they are norm-lly time consuming
and interfere with the quick response
time dosired in interactive graphics.
One of the authors, Gary Jones, has
developed a hidden line algorithm that
satisfies these needs. This algorithm
provides fast and accurate hidden line
plotting of finite element models. The
response time to plot a hidden line view
of a model is near that for a normal
all lines visible plot and provides
linear time performance. A variation
of this algorithm was used to produce a
fast haloed line plot routine. A haloed
line plot shows all aft lines broken to
show depth. It is particularly well
suited for plotting models composed of
many line elements and few surface
elements. For this class of models,
hidden line plotting is not an effective
tool.

This paper describes the current
version of NPLOT. First, the
development of NPLOT is discussed.
Second, a description of NPLOT is

110

given, describing the many useful
ceatures found in NPLOT. rhird, 2
detailed discussion of the hidden/halo
line algorithm is presented aiong with
benchmark performance data of
NPLOT compared with other hidden
line algorithms. Finally, concluding
remarks are presented followed by
references and figures.

NPLOT DEVELOPMENT / GOALS

The development of NPLOT was
informally initiated in 1981 as simply a
base for testing haloed and hidden line
algorithms. Once these algorithms were
developed and had proved to be very
effective tools for model display, the
main goal became to develop NPLOT
into an effective tool for the structural
analyst. NPLOT was and is currently
being developed to meet specific goals
and targets. The prime development
target for NPLOT is that it must be an
effective state-of-the-art graphics tool
for GSFC structural analysts. Some
specific requirements are:

1. NPLOT must effectively support
the NASTRAN structural analysis
code being used at GSFC.

2. NPLOT must run on the Digital
Equipment Corporation VAX
computers used by the Engineering
Directorate at GSFC and support
the available graphic hardware;
i.c., Tektronix and Raster Tech-
nology tcrminals and Hewlett
Packard pen plotters.

3. NPLOT must provide fast inter-
active performance together with a
easy to use human interface.

4, NPLOT must provide effective
graphic tools such as haloed and
hidden line plotting.

NPLOT used as its starting point
the PLOT code developed at GSFC by
M. Weiss and M. Johns for the plotting
of NASTRAN finite element models;
however, at its c—rrent state of
development, NPLO: contains almost
none of that original code. Origiuul
algorithms and routines were developed
fo: haloed line, hidden line, and
horizon edge computation. A new
executive was developed together with
a better and more compleie NASTRAN
interface. It is expected that NPLOT
will continue to evolve to meet ncw
requirements; some of the near term
activity will focus on:

1. Develop and add a fast shaded
color hidden surface algorithm to
NPLOT. The preliminary concept
for the algorithm has been
developed but it remains to be
implemented and debugged. This
algorithm would enable NPLOT to
provide effective support for
displaying model stresses, energy
levels, and temperatures.

2. Add mode shape animation
capability to NPLOT. This feature
would make use of the multipie
bit planes on the Raster Tech-
uology terminals to provide film
strip animatio..

3. Interface NPLOT with the
integrated Analysis Capability,
IAC, program [1,2] developed by
Boeing Aerospace Company for
GSFC. This would provide NPLOT
with cood access to a wide
spectrum of wuseful NASTRAN
output data.

4. Investigate the feasibility and
effectiveness of running NPLOT
on an IBM PC-AT desktop
computer system.

111

DESCRIPTION OF NPLOT

NPLOT has proved to be a very
useful and versatile computer graphics
program. It meets most of the plotting
requirements for those who use
NASTRAN at GSFC, It is also in use
at MNASA/LaRC, NASA/JSC and
several GSFC contractors. In this
section the NPLOT implementation
will bc discussed first, followed vy o
description of NPLOT’s features and
thenr a few words on NPLOT’s user
interface.

Implementation:

NPLOT was developed on a DEC
VAX computer running the VMS
operating system. The graphics was
developed using a Tektronix 40XX
storage tube terminal and a Tektronix
4105 raster terminal. NPLOT makes
graphics calls to Precision Visual’s
DI3000 graphics subroutines. This
subroutine package follows the Core
standard. Making calls to DI3000
allows NPLOT to be device inde-
pendent and therefore can be run on
any terminal that has a DI3C00 device
driver. For those sites that do not have
a license for DI3000, a set of interface
routines have been deveioped that
translate the DI3000 calls used i~
NPLOT into Tektronix PLOTI10 calls.

Extensive use of the structured
programming constructs and character
mapripulation functions of FORTRAN
77 are incorporated into the computer
code. The character manipulation
functions allow NPLOCT to efficiently
process NASTRAN free ficld bulk data
decks. Non-standard FORTRAN 77
statements were avoided to allow the
code to be transportable. The only
problem that may occur when
compiling NPLOT with a non
YVAX/VMS FORTRAN 77 compiler
may be with a few open statements.

Note however, NPLOT does make use
of the virtual memory feature of
VAX/VYMS to speed operatinn and
simplify implementatior; this fact
could make transfer of NPLOT to a
non-virtuai memory computer diff-
icult.

Geometry may be entered in
rect. .gular, cylindrical, and spherical
coordinate systems ucing the CORD2R,
CORD2C and CORD2S NASTRAN
cards. The CORDIR, CORDIC and
CORDIS cards are not supported. The
coordinate systems may reference other
coordinat¢ systems since it is not a
requirement that each reference the
vasic system. This combination allows
a tree structured geoiactric system to
be processed. The NPLOT user may, at
his command, output a table to disk
containing the grid point ID’: and the
XYZ coordinates in the basic system.

Features.

Clearly the most important feature
of NPLOT is its ability to create
hidden lirc and haloed line views of
mathematical models both quickly and
accurately. The hidden line algorithm
generates views of models with all
hidden lines removed, figure 1. The
haloed line algorithm displays viev's
with aft lines broken ir an effort tr
show depth while keeping the entir
modcl visible, figure 2 . A discussion
of these algorithms follows in the next
section. NPLOT, of course, also can
plot a normal all lines visible view of a
model usually referred to as a wire
frame view, figure 3,

Another important feature of
NPLOT that allows it to perform post
processing is its ability to plot
deformed shapes, figure 4. NPLOT
reads the displacements from a
NAS . RAN F06 file. It can read either
static displacements or eigenvectors.

112

A1l subcases or mode shapes can be
read in at once. The displacements arc
written into a unformatted scratch file
where they arce available for rapid
access when the user wishes to display
a deformed shape. It is then a simple
matter to enablc the deformed shape,
change subcases or mode shapes and
change the scale factor for subsequent
plots.

NPLOT allows the user o specify
clement filters which 3select specific
elements for plotting. Elements can be
selected based wupon tk .r type,
property, and ID. Elements can also be
selected bv a model segment. This is
accomplished by inserting special
segment delimiters in the bulk data
deck and then specifying the delimiter
label during the interactive session.
Any or all of these filters cc1 be
activated at the same time to allow a
great deal of selectivity. The clemeats
can then be labelled with their
respective ID’s with a simple command
once the piot 13 displayed on the
screen, figure 5.

NPLOT also allows the user con-
siderable fexibility in specifying which
grid points are to be labeled with their
grid point ID’s. Specific grid point
ID's can be selected and an cight
character name tag can be associated
with each grid point. The name tag can
be useful for distinzt identification.
The user can aiso specify SPC sets,
ASET and OMIT grid points to be
labelled. These grid points will then be
1abelled with name tags indicating thc
degrees of freedom involved, figure 6.

NPLOT allows the standard display
operations such as rotation and
perspective. It also allows different
view planes to be sclected. These are
X-Y, Y-Z and X-Z viewing planes. A
.oom functior is also allowed on
terminals with a locator such as a
graphics cursor, tablet, light pen or joy

1

stick. The center of the area desired
for zooming is sclected with the locator
and then a numeriz key is pressed to
indicate the zooming scale facior.
Another display fecature available is
the Z-axis cut option which allows the
user to cut away 2 percentage of the
fore part of the model, figure 7. This
is useful because it can reveal detail on
the inside of a model.

Tre calculation of the model’s
horizon ¢dges (edges where visibilty
can change) is normally used just to
speed up the hidden line computation.
Howcver, missing elements can be
cicariy located 1or most models by just
plotting the horizon edges. NPLOT lets
the user toggle the display set from all
edges to just the horizon edges.
Illustrated in figure 8 is a wire frame
plot of tae horizon edges for a model
with a missing ciement.

Another feature that aids the user
is the plot file generator. Before
beginning a plot the user can toggle on
the plot file generator which will write
all subsequert plot labels and screen
vectors into a plot file until the toggle
is turncd off again. This plot fiie can
then be read by other programs such a
pen pletter program. The HP7580A pen
plotter is used by GSFC's Mechanical
Engineering Branch when larger and
rore precise plots are desired.

User Interface:

NPLOT’S user interface is in-
tended {0 make NPLOT easy and quick
to use. it is also intended to allow
frequent users to become efficieat at
using the program. Fraquent use will
enable users to take short cuts once
they are familiar with the instruction
.et. This aim is accomplished by using
a combination of menu and command
driven user interface with available
help menus for detailed information

concerning each command. NPLOT is
controlled via commands from two
miin menus. The basic command/menu
structure is:

Within each of these menus are
commands that invoke sub-menus. The
input menu is used for sclecting
element sets, clement labels, grid lateis
and dcformation sets. The plot menu
1 used to select the display operations
and then to execcute the plot option
desired. Once the plot is on the screen
the interface becomes commaad
driven. The same commands that were
available from the preceding menus are
now available for immediate
execution. This cnables the frequent
user to avoid returning to the menu
every time he wishes to manipulate the
display or execute a command.

| <===< INPUT BULK DATA DECK

>+

| | -====> PLCTS
| PLOT MENU |
! I

--~=> ELEMENT SELECTION MENU

+==-=> LOAD DEFORMATIONS MENU

COMMAND MENU STRUCTURE

114

HIDDEN LINE / HALOED LINE
ALGORITHMS

Hidden Line:

The development of a new hidden
Iine algorithm was noi taken lightly.
Techriques to perform hidden line
plotting have been much discussed
beginning with the advent of computer
graphics in the ecarly 1960’s and
continuing into the present era. Given
the bulk of this prior wo.k [3-11,, why
develop a2 new method? The answer is
that th2se prior methods, as of 1980,
appeared to lack the speed necessary
for effczctive 1interactive use, lack
fcatures necessary to plot NASTRAN
models, or the referenced papers
provided insufficient implementation
details. Except for the Watkins
technique [11], coded algorithms wese
not available. Experience in using the
Watkians technique had shown it to be
not acceptable for hidden iine plotting
of NASTRAN models. Refcrences 12
through 16 wers published after our
algorithm had b.en sabstantialiy
completea.

Several different variations of
the same basic hidden line method
hav~ uveen sequentially developed by
G. Jones in the course of this effort.
To kecp track of the different
versions, they were assigned names
JONES/A through JONES/E. JONES/D
was used in the first production version
of NPLOT and was described in
refcrence 17. The fastest and most
recent version of the hidden iine
algorithm, JONES/E, is incorporated
into the current version of NPLOT.
The basic flow for JONES/E is as
follows:

1. INPUT: The main inputs to
JONES/E from NPLOT are the
globai edge list, giobal surface list,
edge/surface adjacency table and

115

grid point table. It should be
noted that NPLOT operates to
produce nonredundant global edge
and surface lists. The global
surface list uses ¢ four node flat
su-face representation; NPLOT
processes triangles through 20 node
solid clemeats to this sur”ace data
format.

PREPARATION: The edge and
surface lists are processed to
produce arrays for edge and
surface data. For example, the
minimum/maximum X, Y, and Z
values for e~ch edge and surface
are computed. The horizon edges
of the object for the viewing
transformation are coemputed.
Spatial sorting of the ecdge and
surface data 1s performed.
Illustrated in figure 9 is a
simplistic view cf th< spatial sort
cells used by JONES/E. Based on
the complexity cf the model, N x N
mesh X-Y sort cells are imposed on
the model and lists of pointers to
horizon ¢dge data and surface data
are genecrated for each cell via
bucket sorting. Different mesh
densities are vsed for edge and
surf2ce sorting. The mesh density
used for the horizon edge sort is
based on the total number of edges
in the model. The mesh density
for surface sorting is based on the
number of surfaces in the model
The functional relationship
between these measures of model
complexity and mesh densities are
set heuristically by varying the
mesh density and observing the
resulting performance for a
number of models. JONES/E
currently uses mesh definitions
derived for JONES/D and so may
not be optimum. After the cell
lists are created, they are dcpih
sorted based on the depth of the
horizon c¢dge or surface.

3. EDGE VISIBILITY: The global edge
list is processed in two passes. On
the first pass only the horizon
edges arec processed and the
remaining edgss arc processed on
the second pass. In either case the
subsequent loop operations are the
same. The edge cell coordinates for
the edge 2rc¢ determined via a
look-up table. The cdge cells
associated with the edge are binary
searched to find the depth to limit
the search for horizon cdges that
intersect with the edge. Its inter-
sections with all horizon edges, that
have not been found to be invisible
by a prior calculation, are
dctermined. The edge is broken into
segments using its end points and
the points of intersection. Each
segment is either ail visible or all
invisible. The mid-point of each
se,ment is computed and chkecked
against the appropriate cell surface
list to ascertain visibility. This
requires computing the surface cell
coordinates fcr the mid-point and
then performing a binary search to
find the depth in the surface ceil
list to limit the search for obscuring
surfaces. Containment and depth
computations are then performed to
ascertain mid-point visibility, and
hence, segment visibility.

This algorithm was tailored to
support the plotting of NASTRAN
models, therefore in the current
implementation:

1. A line penetrating a surface usually
results in a visible plot error. This
is desirable for NASTRAN plotting
since this usually indicates a
modclling error.

*

Grid pcints arc required where
elemcrts meet. This is normally the
casc in NASTRAN models.

3. Surfaces must be p'anar for
accurate plotting. Thig is true for
commonly usecd NASTRAN cle-
ments.

In operation, the algorithm is
remarkably fast for plotting NASTRAN
models. There are two chief reasons for
this speed. The first being the efficiency
of the spatial sort and the horizon edge
technique in reducing the number of
edge to edge compares in computing the
required line intersections. The second
being the cffectiveness of the spatial
sorts in reducing mid-point to surface
compares in computing cdge segment
visibility.

fhe spatial sort fuactions as a
divide and conquer technique; :his is
facilitated by the fact that in general
NASTRAN models have fairly uniform
topological granularity and the relative
granule size decreases as model size
increases. Thus. the spatial sort serves to
linearize th2 operation of the algorithm.
1t is worth poting that Writtram [14] in
a article published concurrently with
the development of NPLOT us:d a
horizontal strip form of spatial sort to
achieve a high speed hidden line algor-
ithm. The form of the spatial sort in
JONES/E, and in the prior JONES/D,
algorithm 1, somewhat different from
Whittram’s in that the spatial cells are
boxes not strips and the fact that in
JONES/E (ar.d JONES/D) the hiddean
fine devermination does not make use o1
the concept of an active edge list or an
active polygon list to reduce tae
computations.

The main difference between the
current JONES/E algorithm and the
prior JONES/D is the addition of the
horizon edge method to the algorithm. A
horizon edge is any model edge across
which visibility can change. The
concept of using horizon edges in
hidden line computation was noted by
Appel {18] and mecre racently used by

116

Hornung [16] to geperate a very high
speed hidden line algorithm for closed
single surface objects. In JONES/E,
horizon edges are computed 1and used to
drastically reduce the number of edge
compare copoerations. On a per cell
basis, the reduction in operations is
from the order of total edges squared
to horizon edges times total edges. The
nct effect of using horizon edges was
to speed up the algorithm by about 50
percent.

The authors make no claim to
have "solved the hidden line problem”.
Contrz2ry ts vha- some have claimed, it
appears itnhat né existing algorithm is
effeciive for cthe full spsctrum of
coramoc 10o6iogies, for example curved
surfacss. Inagcjuate research and a
lack of understanding of the problem
are usually evident when such claims
are put forth. JONES/E was simply
designed to precess NASTRAN models
or other similar topologies in an
efficient manne:.

Haloed Line:

The use of haloed line plotting
was {irst discussed by Appe: (5} In
haloed line plotting, the aft edges are
broken where they intersect with more
forward edges; this produces a well de-
fined depth effect for the viewer,
figure 2. The initial haloed line code
for NPLOT was written by T.
Carnahan, GSFC, based on the tech-
niques defined by Appel [5]. The haloed
line algorithm in the current version of
NPLOT has been recoded by one of the
authors (G. Jones) to incorporate the
same spatial sort techaiques as in the
JONES/E hidden line algorithm and
thereby increase its speed of operation.

Haloed line computation requires
much mare line intersection calculation
than hidden line plotting thereby

increasing the cpu time. Whereas
niddsn line olotting cffectively
truncates the total edge list. haloed line
plotting operates to increase the total
edge list by splitting up cdges into
severat sepments Thus, haloed line
plotting generates more terminal /0
than wire frame or hidden line
plotting. For these reasons, haloed line
plotting should be slower than the
other plot types.

In haloed line plotting the
NPLOT user can specify the size of the
gap 39 as to produce different effects.
Haloed line plotting can be very
effective in certain situations:

1. For models with few surface
clements but many iinc elements,
CBAR’s and CROD’, haloed line
plotting is very effective at show-
ing depth information. Hidden tine
plotting is ineffective for this type
of model.

2. When the user wants to peer inside
a model but retzin depth cues.
haloed line plotticg is an eftective
technicue. This is similar to
allowing transparency in hidden
surface plotting on raster devices.

Performance-

The basic performance of the
three plots type in NPLOT were
assessed by measuring their
performance with a collection of 20
NASTRAN models. The model sizes
ranged from 55 grids/126 edges/67
surfaces up to 3730 grids/7547 edges
/3626 surfaces. Wire frame and hidden
linc plots of the largest mcdel are
shown in figures 10 and 11. The
performance of the algorithms werc
mecasured in terms of a processing rate
expressed in terms of edges per cpu
second. The cpu times were measured
on a normally loaded VAX 11,780

117

computer and included the time to
petform any preparatory work, execute
the plot function module { wire frame,
haloed, hidden), run the PLOTI!O
module, and perform the [/O to paint
the object on the screen.

Shown in figure 12 is a graph of
the measured performance of the three
algorithms. All three algorithms show
fairly linear performance fcr the range
of modcls used in the tests. Wire frame
piotting yiclded an average rate of
about 300 edges per cpu second, hidden
line plotting was somewhat slower at
about 150 cdges per cpu second and
haloed line plotting was the slowest at
around 100 edges per cpu second. Wall
clock response time for hidden line
plotting was about the same as that for
wire frame plotting. This vas due to
the fact that hidden line plotting
involves less terminal I/O than wire
frame plotting. Haloed linc plotting
was the slowest but this was expected.
Even so, haloed line plotting was
sufficiently fast to meet the demands
of tke interactive user. Haloed line
plotting is the preferred ploi type for
model: with few surfaces aad many
lin¢ clements.

The net effect of the various
optimizing techniques emploved in the
hidden line algorithms can be seen from
our experience in plotting onc of the
test models. The first - cut hidden line
aigorithm was a basic brute force line
intersection technique with little code
optimization; its processing rate for the
test model was about 2.5 edges per cpu
second. A subsequent version with
more code optimization and a few
simple short cuts worked at a rate of
about i8 edges per cpu second. The
JONES/D algorithm, which used the
X-Y spatial sort, performed at a rate of
about 100 edges per ¢pu second. The
JONES/E algorithm in the current
version of NPLOT uses the X-Y spatial
sort together with the horizon edge

technique, and achieves a processing
rate of about 175 edges per cpu second
for this particular model. Thus in this
instance JONES/E performs about 70
times quicker than a brute force
method.

How fast can an optimum hidden
line algorithm run? A reasonable
bounding upper limit might be the
speed for wire frame plotting. For the
particular hardware / software used at
our computer facility (VAX 11/780,
FORTRAN 77, Tektronix terminals
using 9600 baud) the wire frame
process rate was about 300 edges per
second, thereby implying that no
hidden line algorithm could run more
than twice as fast as JONES/E for this
particular computing ¢nvironment.

The Watkins hidden line/surface
method [11] and Hedgley’s algorithm
were compareda to the JONES/E
algorithm via comparative testing. The
MOVIE program uscs the Waikins
method for hidden line and hiddzn
surface cemputation. A VAX impie-
mentation of MOVIE was used for this
study. The MOVIE implementation of
Watkins does not support line element
types so an all surface model was used
to make the comparison. The test
model consisted of 857 surlaces and
1242 edges. The cpu time for just the
hidden line generation i MOVIE was
415 seconds; the corresponding time
for NPLOT was 6.9 cpu seconds. The
SKETCH hidden line routine develceped
by Hedgley [13] was obtained and
converted to the VAX 11/780 comor
er. The routine as delivered was
limited to about 250 polygons;
therefore, a relatively small model was
used for testing, 183 surfaces/324
edges. The cpu time for SKETCH was
19.3 cpu seconds and the time for the
JONES/E algorithm in NPLOT was 1.9
cpu seconds. The level of performance
for SKETCH, about 9 polygons per cpu
second, sezms consistent with the data

118

presented by Hedgley [13). In ref-
er¢nce 13 the processing rate for
SKETCH on a CDC 6500 computer,
which is about the same speed as a
VAX 11/780, was given as about 10
polygons per cpu second.

CONCLUDING REMARKS

The NPLOT computer graphics
program has been shown to be aan
effective tool for the interactive
display of NASTRAN finite clement
models. It offers a variety of statc of
the art tools to aid the analyst. It is
ecasy to use and provides an on line
help facility for the inexperienced
user. NPLOT’s very fast hidden line
and haloed linc algorithms are unique
and effective graphics tools for the
analyst. Analysts usiag NPLOT usually
prefcr hidden line or haloed line plots
in place of wire frame plots due to the
more rcalistic model display. Current
activity is focused on increasing the
post-processing functionality of
NPLOT.

REFERENCES

1. Walker, W., and Vos, R., JAC Excut-
ive Summary, NASA CR-175196,
May 1984,

2. Vos, R.G, Beste, DL., and Gregg,
J., IAC User Afanual, NASA
CR-175300, July 1984.

3. Newman, WM, and Sproull, R.F,
Principles of Interactive Computer
Graphics, McGraw-Hill Co., 1979.

4. Bareau, H., "Convenient Represent-
ation Mecthod For Spatial Finite
Element Structures”", Computers &
Structures, 19(5), October 1979, pp.
815-819.

10.

1L

12.

13.

i14.

119

Appel, A, Rohlf, FJ., and Stein,
AlJ., "The Haloed Linc Effect for
Hidden Line Elimination®, Computer
Graphics, 13(3), August 1979, pp.
151-157.

Franklin, W.R.,, "A Linear Timec
Exact Hidden Surface Algorithm”,
Computer Graphics, 14(3), August
1980, pp. 117-123.

Giloi, WXK., [Interactive Computer
Graphics. Data Structures, Algor-
ithms, Languages, Prentice-Hall Inc.,
1978.

Griffiths, J.G., "A Surface Display
Algorithm", Computer Aided Design,
10(1), January 1978, pp. 65-73

Griffiths, J.G., "A Bibliography of
Hidden-Line and Hidden-Surface
Ailzorithms”,Computer Aided Design,
10(3), May 1978, pp. 203-206.

Griffiths, J.G., "Tape-Oriented Hid-
den Line Algorithm®, Combnuter
Aided Design, 13(1), January 1981,
pp. 19-26.

Watkins, G.S., 4 Real Time Visible
Surface Algorithm, University of
Utah, UTEC-CSc-70-101, June 1970.

Emery, AF., VIEW, University Of
Washington, Department of
Mechanical Engineering, 1982.

Hedgley, D.R., Jr., A General
Solution to the Hidden Line Problem,
NASA RP-1085, March 1982.

Writtram, M., "Hidden-Line Algor-
ithm for Scenes of High Complex-
ity", Computer Aided Design, 13(4),
July 1981, pp. 187-192.

. Janssen, T.L., "A Simple Efficient

Hidden Line Algorithm", Computers
& Structures, 17(4), 1983, pp.
563-571.

16.Hornung, C., "An Approach To A

17.

18.

Calculation-Minimized Hidden Line
Algorithm®, Computers & Graphics,
6(3), 1982, pp. 121-i26.

Jones, GK., A Fast Hidden Line
Algorithm For Plotting Finite
Elemen: Models, NASA TM-83981.
August 1982.

Appel, A, "The Notion of Quant-
itative Invisibility and the Machine
Rendering of Solids", Proc. ACM
National Conference, 1967, pp.
387-393.

120

ORIGHNAL PACE 1§
OF POOR QUALITY

WIRE FRAME PLOT

FIGURE 3

123

! MODE 3

PLOT OF DEFORMED SHAPE

FIGURE 4

124

a1

oRIGHNAL F,..\“,v,.
5F POOR QUAL\"{H",

PLOT WITH ELEMENTS LABELLED

FIGURE §

ORIGH <L .

OF POCK G .

PLOT WITH Z-CUT

FIGURE 7

127

FIGURE 8

LARGE TEST MODEL - WIRE FRAME PLOT

FIGURE 10

130

ORZHY. -
OF PCS:

LARGE TEST MODEL - HIDDEN LINE PLOY

FIGURE 11

131

RATE - Edges Per CPU Sec.

+
’ §

PROC SSSING

1000
- <> & Rad - L4 -
28 e S o o
o [® L3
=] na o
. o =]
aa o o
- © g o a
a o a
x
»
*
100 53
- .x__»rx .
I™3 .t x
- x
r
® WIRE FRAME
9 HIDDEN
»x HALOED
»
10
160 10800 10000

MODEL SIZE - Total Edges

PERFORMANCE OF NPLOT ALGORITHMS

FIGURE 12

132

