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An a n a l y s i s  procedure has been developed and incorporated i n t o  COSMIC/ 
NASTRAN t h a t  permits l a r g e  dynamic degree of freedom models t o  be processed 
accu ra t e ly  with l i t t l e  o r  no e x t r a  e f f o r t  required by the  user. The method 
employs e x i s t i n g  c a p a b i l i t i e s  without t he  need f o r  approximate Guyan reduct ion  
techniques. Comparisons t o  e x i s t i n g  s o l u t i o n  procedures p re sen t ly  wi th in  
NASTM a r e  discussed.  

INTRODUCTION 

The search f o r  an e f f e c t i v e  methe f o r  performing a dynamic a n a l y s i s  of  
complex s t r u c t u r e s  has  been under continuing study f o r  many decades. In  order  
t o  reduce t h e  number of governing equations,  the  usual  approach was t o  use  
modal coordinates.  These modal coordinates a r e  develcped by employing c l a s -  
s i c a l  eigenvalue ex t r ac t ion  procedures. With t h i s  approach as the  accepted 
a n a l y s i s  procedure, a concerted e f f o r t  start in^ in the 1950's was made in 
developing var ious  eigenvalue e x t r a c t i o n  methods. Several  of these  op t ions  
p re sen t ly  e x i s t  i n  NASTRAN t o  develop these  dynamic proper t ies .  

In pu r su i t  of e f f i c i e n t  and accura te  eigenvalue methods, Jennings ( ~ e f .  1 )  
g ives  a r a t h e r  b r i e f  but complete review of methods f o r  s c lv ing  dynamic equa- 
t i ons  to determine c h a r a c t e r i s t i c  responses. The Lanczos method was repor ted  
a s  one o f  the more e f f i c i e n t  methods f o r  the so lu t ion  of  s t r u c t u r a l  eigenvalue 
problems. Further  i n v e s t i g a t i o n  by Nour-Ornid e t  a l .  ( ~ e f .  2). i l l u s t r a t e d  
t h a t  the Lanczos method had tremendous advantages over o the r  c l a s s i c a l  
eigenvalue ex t r ac t ion  methods. With a l l  t he  various eigenvalue procedures 
ava i l ab le ,  the choice of  which numerical procedure should be used f o r  so lv ing  
a dynamic response problem depends upon the  problem c h a r a c t e r i s t i c s  and 
s o l u t i o n  requirements. 

The so lu t ion  process f o r  the dynamic ana lys i s  developed i n  NASTRAN i s  
separated i n t o  th ree  phases: assembly, so lu t ion ,  and response recovery. A s  
pointed out i n  Sect ion 4.0 of the  NASTRAN Theore t ica l  Manual, a s  problem s i z e  
increases ,  the  cos t  of the  f i r s t  and t h i r d  phases inc reases  l i n e a r l y ;  whereas 
the  second increases  cubica l ly  with the  number of degrees of freedom. The 
eigenvalue so lu t ion  phase is usua l ly  considered the  most cos t ly .  



Wilson (Ref. 3) demonstrated how the  eigenvalue procedure could be c i r -  
cumvented. He c l a s s i f i e d  i t  a s  t he  "Ri t? . "  method. Arnold e t  a l .  (Ref. 4 ) ,  
demonstrated how the  R i t z  procedure could be incorporated i n t o  MSC/NASTRAN and 
showed t h a t  i t  would be l e s s  c o s t l y  and more e f f i c i e n t  than previous techniques. 
Reference 4 a l s o  d i scus ses  the r e l a t i o n s h i p  between Lanczos and Ritz .  

Other methods using t h e  bas i c  concept of Lanczos have been suggested by 
Gupta (Ref. 5 )  using a Lanczos-Householder algori thm, Newman and Flanagan 
(Ref. 6 )  using FEEX, and by Newmen and Mann ( ~ e f .  7) us ing  complex FEER 
methods f o r  COSKIC/NASTRAN. These methods d i f f e r  from the  present  case in the  
s e l e c t i o n  process of t he  s t a r t i n g  vectors .  Also, t he  method of  obta in ing  t h e  
a d d i t i o n a l  vec to r s  is d i f f e r e n t .  

TECHNICAL DISCUSSION 

Xlthouph the  use of R i t z  vec to r s  can be appl ied  t o  t he  dynamic a n a l y s i s  
ot' any l i n e a r  system, it is p a r t i c u l a r l y  w e l l  s u i t e d  t o  ap; l icat ion i n  t h e  
f i e l d  of dynamic s t r u c t u r a l  ana lys is .  The na ture  of c e r t a i n  dynamic loadings,  
o r  r a t h e r  the  h n a l y t i c a l  r ep re sen ta t i on  of the  loadings,  a l lows the  R i t z  
approach t o  almost assuredly  use fewer modes f o r  t he  same accuracy a s  a  conven- 
t i o n a l  a n a l y s i s  using n a t u r a l  f requencies  and mode shapes. The use of a s t a t i c  
load vec tor  i n  the dynamic e x c i t a t i o n  d j r e c t i o n  i n  de r iv ing  the  s t a r t i n g  R i t z  
vec tor  e l imina t e s  t h e  need f o r  a  s t a t i c  co r r ec t ion  due to  h igher  order  modes. 

A s  menticned e a r l i e r ,  the  s o l u t i o n  of the  eigenvalue problem f o r  l a r g e  
systems is the  major computational task involved i n  dynamic ana lys l s .  F3r 
very l a r g e  systems, t h i s  -;ask is of ten  not even p r a c t i c a l ,  and i n ~ t e a d  is 
supplemented with an a d d i t i o n a l  s t e p  of s t a t i c  condensation ar.l Guyarl reduc- 
t i o n ,  o r  by use of subs t ruc tu r ing  techciques. A l l  these  techniques a r e  
acceptable  and a r e  i n  s tandard p r a c t i c e  with COSMIC/NASTRAN today; however, 
a l l  involve the  so lu t ion  nf l a rge  eigenvalue prsblems even i f  the  t o t a l  
problem ?.as been reducttd i n t o  workable subs t ruc tures .  The R i t z  algori thm, t o  
be defined i n  d e t a i l  l i t e r ,  a l lows the  ana lys t  t o  bypass the  s o l u t i o n  of a  
l a rge  eigenvalue problem, and ins tead  so lve  a  smal le r  e igenvalae  problem 
involv ing  vnly t he  P i t z  modes of s ign i f i cance  t o  the ana lys i s .  Nour-Omid and 
Clough ( ~ e f .  3) have shorn how even t h i s  s t e p  could be el iminated.  Also 
presented here is a method of us ing  an e r r o r  norm t o  de f ine  t he  n~.mber of R i t z  
vec to r s  requi rad  t o  obta in  accura te  dynamic a n a l y s i s  r a s u l t s .  

Deri-vation of Ri tz  Vectors 

Given a phys ica l  system whose mass and s t i f f n e s s  p r o p e r t i e s  have been 
d i s c r e t i z e d  t o  N degrees of freedom given by the  s t r u c t u r e  mass matr ix,  F1, and 
s t r u c t u r e  q t i f f n e s s  matr ix,  K, t he  i n i t i a l  s t e p  in the  algori thm is t o  f a c t o r  
K such t h a t  



The s t a r t i n g  vec tor  x* c a r  then be obtained by so lv ing  
1 

where f  is a a t a t i c  load vec tor  which r ep re sen t s  t he  s p a t i a l  d i s t r i b u t i o n  of 
t he  dynamic loading. 

Once the f i r s t  Ri tz  vec to r  x7 is obtained,  an i t e r a t i v e  process is begu~; 
f o r  the  s o l u t i o n  of a  f u l l  L s e t  of Ritz  vec tors .  This process ..an be divided 
i n t o  t h r e e  s t eps  which a r e  given below. 

S t ep  1: Solu t ion  f o r  x* is made using the  f ac to red  s t i f f n e s s  matrix from 
Equation (1 ) i 

Step  2: i = i + 1 , i f  i < L go to  1 ,  otherwise proceed 

Step 3: Orthogonalize xy with r e spec t  to  prevj.ous i - 1 v e c t o r s  

and normalize with r e spec t  t o  M t o  f ind  xi 

The r e s u l t  of t h i s  i t e r ~ . t i v e  process is an N by L matr ix of vec to r s ,  X, which 
i s  mass orthogonal ,  but st i l l  must be orthogonalized with r e s p s c t  t o  t h e  
s t i f f n e s s  matrix. The f i n a l  s e t  of Ri tz  vec to r s  muat be mass and s t i f f n e s s  
orthogonal to uncouple t he  equat ions of motion, and t h i s  or thogonal iza  t i o n  can 
be acccmp-ished by so lv ing  the fol lowing eigenvalue problem f o r  zi, 



where 

The f i n a l  matr ix of Ri tz  vec tors ,  OX, is then obtained using the  matri: of zi 
vec tors ,  2, a s  a t ransformation f o r  X,  

ox = xz (I c!) 

Error  Norm Def in i t i on  

The de f i r i i t i on  of a? e r r 3 r  norm is a key element in a p p l i c a t i o n  of t h e  
R i t z  algorithm. Wilsoii o r i g i n a l l y  devised an e r r o r  norm defined a s  

where 

T 
'j 

= OX .f = part ic=pat j- , i l  f a c t o r  
J 

and the vectiors Ox. a r e  the  f i n a l  mass and s t i f f n e s s  or thogonal  Ritz  vec to r s  
obtained from E!qua$ion (I  0j. This e r r c r  norm v a r i e s  from e = 1.0 i f  no vec- 
t o r s  a r e  used, to  e = 0.0 i f  a l l  vec tors  a r e  used. Arnold, C i t e r l e y ,  e t  a i . ,  
used t h i s  same d e f i n i t i o n  of e r r o r ,  but appl ied  it using the  non-s t i f fnsss -  
or thogonalj  zed R i t z  vec to r s  x r a t h e r  than ox . .  This d e f i n i t i o n  then permit? 

j' e r r o r  e s t ima t ion  pr!.or to  eigenvalue extraot iot l  performed on Equation (7). I n  
add i t i on ,  they e s t ak l i shed  another  e r r o r  norm t o  quan t i fy  the  i n f luence  of the  
input  e x c i t a t i o n  frequency content  on the  adequacy of t h e  s e l ec t ed  B i t z  
vec tors .  Examination of t h i s  type of e r r o r  norm w i l l  be requi red  f o r  high 
frequency inpu t  exc i t a t i on .  



IMPLEMENTATION INTO NASTRAN AND NUMERICAL RESULTS 

The R?.tz procedure :;as implemented i n t o  NASTRAN using the DMAP capa- 
b i l i t i e s .  A flow cha r t  of  a t y p i c a l  MAP a l t e r  is shown in R g u r e  1. The 
procedure has been incorporated i n t o  SOL 3, 11, and 12. Although d a t a i l o  o f  
t h e  MAP a l t e r  a r e  s l i g h t l y  d i f f e r e n t  f o r  each r i g i d  format, the  flow cha r t  of  
Figura 1 o u t l i n e s  the  general  procedure. 

Block 1 of  Figure 1 processes the s t a t i c  loads. A s  many subcases a s  
necessary a r e  input  by the  user  t o  genera te  t he  s t a t i c  loads which a r e  t o  
represent  the s p a t i e l  d i s t r i b u t i o n  of the dynamic loads. Modules SSGI, SSG2, 
and SSG3 a r e  used f o r  the  processing and sllbsequent s e t  r e d u c t i o ~ ~ .  

Block 2 of  Figure 1 uses the  love r  t r i ~ n g u l a r  f a c t o r  of the s t i f f n e s s  
matrix (L of Equation (1 )) t o  so lve  f o r  t he  f i r s t  s e t  of  vectors. Block 3 is  
a loop, which c a l c u l a t e s  a d d i t i o n a l  vec tors  described previously. 

Block 4 uses a du module, MODB, t o  orthonormallze the  generated vec- 
t o r s  ( see  Bquntions ( 4 3 ) .  Block 5 then r l c u l a t e r  the g e n e r a l i e d  mass and 
s t i f f n e s s  matr ices of Equations (8) and (9). Block 6 uses the  REX9 module t o  
perform the eigenvalue/eigenvect.r ana lys i s  of Equation (7)  and form the Ri tz  
vec tors  using Equation (10). F ina l ly ,  Block 7 equivalences the Ri tz  vec tors  
t o  the regular  A s e i  eigenvectors  (PHIA) f o r  subsequent use in the  MAP r i g i d  
format. 

A dummy module, MOD9, was wr i t t en  to  perform seve ra l  tasks  de?ending 
upon the  input  parameters. It is used in Block 3 t o  append the  newly 
ca lcula ted  vec tors  t o  the previous vectors .  Addit ional lg,  although not shown, 
i t  was found necessary t o  n o m a l i ~ e  the  newly corcputed vectc''s i n  Block 3 
a f t e r  each pass through the  loop i n  order  to prevent numerical round-off 
problems. This was a l s o  perfarmed by the  dumn~y module. The dumnpr modu: .'s 
f i n a l  job was t o  orthonormalize the vec tors  I n  Block 4, using the  Gram-Schnidt 
orthonormalizst ion procedure. 

The Ri tz  procedure was p~*eviously implemented i n t o  the MacNeal-Schwendler 
version of NAETRAB. Comparisons of tine Ritz procedure t o  MSC/NASTRAN's Gener- 
a l i zed  Cynamic Procedure have been reported (Ref. 3). The Ritz  procedure was 
a l s o  compared to  COSMIC/NASTRAl's FEW method. Table 1 presents  frequency 
comp~r i sons  and t o t a l  CPU time using the FEER method and the Ri tz  method or a 
r e l a t  -?ly small  problem. A s  can be seen, both nethods y i e ld  s i m i l a r  r e s u l t s ,  
the Rita method being s l i g h t l y  f a s t e r .  

However, i t  is not proper t o  dLrec t ly  compare the FEEFi method with Ri tz ,  
s ince  they a r e  intended t o  serve d i f f e r e n t  purposes. The FEM (or any ocher 
eigen-extract ion) rou t ine  is designed to  f ind  a l l  the  e igenva l~ le s  and a ~ s o c i -  
a ted  eigenvectora below a c e r t a i n  user  s p e c i f i d  number. These modes may o r  
may not be good r ep resen ta t ions  f o r  use i n  a forced dynamic response. Often 
i t  is found t h a t  only c e r t a i n  modes p a r t i c i p a t e  due to  t he  na ture  of t h e  
forc ing  function.  The Ritz  method uses s t a t i c  r ep resen ta t ions  of the dynamic 



forces applied as a bas is  fo r  its "eigenvectors". The only "modes" a l c u l s t e d  
correspond to those excited by the forcing furction.  Therefore, fewer un- 
necessary modes a r e  used; addi t ional ly ,  a s  pointed out previously, s t a t i c  
correc1;ions (such as Modal ~ c c e l e r a t i o n )  tech- iques a r e  not necessary, s i n c e  
the W t z  vectors necessari ly accurately represent the t o t a l  force  applied t o  
the s t ructure .  

The R i t ~  procedure f o r  dynamic analys is  has been preaented. The procedure 
is re l s t ed  to other popular methods of eigenvalue/eige~.vector analjrsia; how- 
ever, it does not httempt to  obtain a l l  the modes of the system. Instead, 
only l tose  "modes" which a r e  excited bg the dynamic loading are obtainea. 

A flow char t  of the IMAP impleme2tation has been presented. RASTRAH's 
DUAP capabi l i ty ,  a l o a  d t h  +\le use of a dummy module, made t h i s  irplementation 
f a i r l y  simple. The method was compared to the PEER method f o r  one problem. 
The predicted frequencies compared ue l l ,  while the cost  of the Ritz method was 
less.  The same conclusions were shown by Arnold, Citerley,  et al .  with more 
dramatic cos t  savings fo r  very l a rge  analys is  problems. These r e s u l t s  c l e a r l y  
demonstrate the impact tha t  the Ritz algorithm can have on reducing ana lys i s  
cost. 

The benef i t s  of the Ritz algorithm in dynamic ana'qsis can therefore be 
summerized as: 

1. Order of magnitude ;,duction i n  deriving eigenvalues and eigenvectors f o r  
mode superposition analysis .  

2. Better  accuracy f o r  fewer vectors. 

3. No s t a t i c  correction needed f o r  higher order modes. 

4. No s t a t i c  condensation o r  Guyan reduction required f o r  l s r g e  systems. 

5- Error estimation can be made to  determine the adequacy of se lec ted Ri le  
vectors. 
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TABLE 1 

FREQUEWY AWD TINE RESULTS FOR A W L  ma, 
R I T Z  VERSUS FEER 

~ I C  FREQUENCY 

FEER (tIZ) 

2 -83647 1E+02 

5.01 5972EW 

7 -401 528EW 

8.7921 %EM2 

9 -876671 E+02 

1 ,18921 OEM3 

1 -691 335€+03 

2.1 65648EW3 

2.467984EHI3 

2.9061 39E+03 

270 

R I n  (HZ) - 

1 

2 

3 

4 

5 

6 

7 

8 

3 

I 10 
I 

Total Run Time 
(cpu-sec) 

2.836471 € 4 2  

5 -01 5972E+02 

7.41 8652E+02 

8.908411 E+02 

9.876880€+@2 

1 ,18921 3E+03 

1 .902981E+G3 

2.1 78580EN3 

2.852047E+O3 

3.239252Ei03 

218 
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Figure 1 Flow Chart for Implementing Ritz Procedure into NASTRAN 
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