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SUMMARY

An analysis procedure has been developed and incorporated into COSMIC/
NASTRAN that permits large dynamic degree of freedom models to be processed
accurately with litile or no extira effort{ required by the user. The method
employs existing capabilities without the need for approximate Guyan reduction
techniques. Comparisons to existing solution procedures presently within
NASTRAN are discussed.

INTRODUCTION

The search for an effective methe for performing & dynamic analysis of
complex siructures has been under continuing study for many decades. In order
to reduce the number of governing equations, the usual approach was to use
modal coordinates. These modal coordinates are develcped by employing clas-
sical eigenvalue extraction procedures. With this approach as the accepted
analysis procedure, a conceried effcri starting in the 1950's was made in
developing various eigenvalue extraction methods. Several of these options
presently exist in NASTRAN to develop these dynamic properties.

In pursuit of efficient and accurate eigenvalue methods, Jennings (Ref. 1)
gives a rather brief but compleie review of methods for sclving dynamic equa-
tions to determine craracteristic responses. The Lanczos method was reporied
as one of the more efficient methods for the soluiion of structural eigenvalue
problems. Further investigation by Nour-Omid et al. (Ref. 2), illustirated
that the lanczos method had tremendous advaniages over otiher classical
eigenvalue exiraction methods. With all the various eigenvalue procedures
available, the choice of which numerical procedure should be used for solving
a dynamic response problem depends upon the problem characteristics and
solution requirements.

The solution process for the dynamic analysis developed in NASTRAN is
separated into three phases: assembly, solution, and response recovery. As
pointed out in Section 4.0 of the NASTRAN Theoretical Manual, as problem size
increases, the cost of the firsi and third phases increases linearly; whereas
the second increases cubically with the number of degrees of freedom. The
eigenvalue solution phase is usually considered the mosi costly.
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Wilson (Ref. 3) demonsiraled how the eigenvalue procedure could be cir-
cumvented. He classified it as ithe "Rii=" method. Arnold et al. (Ref. 4),
demonsirated how the Ritz procedure could be incorporated into MSC/NASTRAN and
showed that ii would be less coslly and more efficient ihan previous techniques.
Reference 4 also discusses tke relailionship between Lanczos and Ritiz.

Other meithods using the basic concept of Lanczos have been suggestied by
Gupta (Ref. 5) using a lanczos-Householder algoriithm, Newman and Flanagan
(Ref. 6) using FEER, and by Newmen and Mann (Ref. 7) using complex FEER
methods for COSMIC/NASTRAN. These methods differ from the present case in the
selection rrocess of the siarting vectors. Also, the method of obtaining the
additional vectors is different.

TECHNICAL DISCUSSION

Although the use of Ritz vectiors can be applied to ihe dynamic analysis
of any linear system, it is particularly well suiled to aprlication in the
field of dynamic structural analysis. The nalure of cerlain dynamic loadings,
or rather the analytical representalion of Llhe loadings, allows the Riiz
approach to almost assuredly use fewer modes for the same accuracy as a conven-
tional analysis using natural frequencies and mode shapes. The use of a static
load vector in the dynamic excitation direction in deriving the stariing Ritz
veclor eliminates the need for a static correction due to higher order modes.

As menticned earlier, the solution of ihe eigenvalue problem for large
systems is the major computational task involved in dynamic analysis. For
very large systems, this .ask is ofien not even practical, and instiead is
supplemented with an additional step of static condensaiion ardi Guyan reduc-
iion, or by use of substructuring techriques. All ihese techniques are
ascceptable and are in standard practice with COSMIC/NASTRAN today; however,
all involve the solution of large eigenvalue problems even if the tolal
problem has been reduced into workable substiruciuves. The Ritz algorithm, to
be defined in detail laier, allows the analyst to bypass the solution of a
large eigenvalue problem, and instead solve a smaller eigenvalve problem
involving unly the Ritiz modes of significance to the analysis. Nour-Omid and
Clough (Ref. 3) have shown how even this siep could be eliminated. Also
presented here is a meihod of using an error norm io define the number of Ritiz
vectors required to ottain accurate dynamic analysis resulis.

Derivation of Ritz Vectors

Given a physical sysiem whose mass and stiffness properties have been
discretized to N degrees of freedom given by the structure mass matrix, M, and
siructure siiffness matrix, K, the iniiial stiep in the algoriihm is to faclor
K such that

K = 1onT (1)
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The startiing vectior x? carn then be obtained by solving

Kx* = f (2)

where f is a atatic load vector which representis ithe spalial distribuiion of
the dynamic loading.

Once the firsi Ritz vector x* is obtained, an iteraiive process is begun
for the solulion of a full L sel of Ritz vectors. This process .un be divided
into three steps which are given below.

Step 1: Solution for x* is made using the factored siiffness mairix from
Equation (1)

Kx; = Mxi_1 (%)
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Step 2: i 1 ’ if 1 <L go to 1, otherwise proceed

Step 3: Orthogonalize x; with respect to previous i - 1 vecilors

e5 = x? Mx;, J=1, eee i -1 (4)

- T (5)
x** = x% o c.X, 5
i 1osn 3

x,Mx, =1 (6)

The result of this iterwtive process is an N by L mairix of vectors, X, which
is mass orthogonal, but still must be orthogonalized with respact io the
stiffness mairix. The final sei of Riiz vectiors mus{ be mass and siiffness
orthogonal 1o uncouple the equaiions of motion, and ihis orthogonalization can

be accemp-ished by solving the following eigenvalue problem for 25,
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(k* - miM*]z, =0 (1)

where K* = X KX (8)

M* = XMX =T (9)

The final matrix of Ritz vectors, °X, is then oblained using tihe mairi: of z;
vectors, Z, as a transformation for X,

0x = Xz (10)

Error Norm Definition

The definition of an errcr norm is a key elementi in application of the
Ritz algorithm. Wilson originally devised an error norm defined as

(¢ - ) p4M°xj)
e = I (11)
£f

where

P; = Ong = pariicipatizn factor (12)

and the vectors 9%, are the final mass and stiffness orthogonal Ritz veciors
oblained from Equa%ion (10). This errcr norm varies from e = 1.0 if no vec-
tors are used, to e = 0.0 if all vectors are used. Arnold, Citerley, et al.,
used this same definition of error, btul applied it using ihe non-stiffness-
orthogonalized Riiz vectlors x., rather than Ox, . This definitlion then permite
error eusiimation prior 1o eigenvalue extractioﬂ performed on Equation (7). 1In
addition, they estatlished another error norm to quantify the influence of the
input excitation frequency content on the adequacy of the selecied Ritz
vectors. Examination of this type of error norm will be required for high
frequency inpul excitation.
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IMPLEMENTATION INTO NASTRAN AND NUMERICAL RESULTS

The Ritz procedure ~as implemented into NASTRAN using the DMAP capa-
bilities. A flow charti of a typical IMAP alter is shown in Figure 1. The
procedure has been incorporated into SOL 3, 11, and 12. Although details of
the IMAP alter are slightly different for each rigid format, the flow chari of
Figure 1 outlines the general procedure.

Block 1 of Figure 1 processes the stalic loads. As many subcases as
necessary are input by the user Lo generate the static loads which are to
represent the spaticl disiribution of the dynamic loads. Modules SSG1, SSG2,
and SSG3 are used for the processing and subsequent set reductiou.

Block 2 of Figure 1 uses the lower triungular factor of the siiffness
matrix (L of Equation (1)) to solve for the firsi set of vectors. Block 3 is
a loop, which calculates additional veclors described previously.

Block 4 uses a du module, MODB, to orthonormalize the generatled vec-
tors (see Equaiions (4T2§). Block 5 then czalculaies the generalized mass and
sliffness mairices of Equations (8) and (9). Block 6 uses the REAv module to
perform the eigenvalue/eigenveci.r analysis of Equatiion (7) and form the Ritz
vectors using Equation (10). FPFinally, Block 7 equivalences ihe Riiz vectors
to the regular A sei cigenvectors (PHIA) for subsequeni use in the DMAP rigid
format.

A dummy module, MODB, was writien to perform several tasks denending
upon the inpul parameters. It is used in Block 3 io append the newly
calculated vectors to the previous vectors. Additionally, alihough not shown,
it was found necessary to normalize the newly computed vectcrs in Block 3
after each pass through the loop in order to prevent numerical round-off
problems. This was also performed by the dummy module. The dummy modu. »'s
final job was to orthonormalize the vectors in Block 4, using ithe Gram-Schmidt
orthonormalization procedure.

The Ritz procedure was previously implemented into the MacNeal-Schwendler
version of NASTRAN. Comparisons of ihe Riiz procedure to MSC/NASTRAN's Gener-
alized Tynamic Procedure have been reported (Ref. 3). The Ritz procedure was
also compared to COSMIC/NASTRAN's FEER method. Table 1 presenis frequency
comprrisons and total CPU time using the FEER method and the Ritz method or a
relat -ely small problem. As can be seen, both methods yield similar results,
the Riiz method being slighily faster.

However, it is not proper to directly compare the FEER method with Ritz,
since they are intended to serve different purposes. The FEER (or any ocher
eigen-extraction) routine is designed to find all the eigenvalves and associ-
ated eigenveciors below a certain user specified number. These modes may or
may not be good representations for use in a forced dynamic response. Ofien
i1 is found that only certiain modes participate due to the nature uf the
forcing function. The Ritz method uses static representaiions of the dynamic
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forces applied as a basis for iits “eigenvectors”. The only "modes” calculated
correspond to Llhose excited by the forcing function. Therefore, fewer un-
necessary modes are used; additionally, as pointed out previously, static
corrections (such as Modal Acceleration) tech iques are noi necessary, since
the Ritz vectors necessarily accurately represeni the total force applied to
the structure.

CONCLUSIONS

The Ritw procedure for dynamic analysis has been presented. The procedure
is relzted to other popular methods of eigenvalue/eigenvecto. analysis; how-
ever, it does not atiempt io obtain all the modes of the system. Instead,
only .hose "modes”™ which are excited by ithe dynamic loading are obtained.

A flow chart of the DMAP implementation has been presented. NASTRAK's
DMAP capabiliiy, aloag with e use of a dummy module, made this implementation
fairly simple. The method was compared to the FEER method for one problem.
The predicted frequencies compared well, while the cost cof the Ritz method was
less. The same conclusions were shown oy Arnold, Citerley, et al. with more
dramatic cosi savings for very large analysis problems. These resulis clearly
demonstrate the impact that the Ritz algoriihm can have cn reducing analysis
cost.

The benefits of the Ritz algorithm in dynamic analysis can therefore be
summerized as:
1. Order of magnitude :aoduction in deriving eigenvalues and eigenvectors for
mode superposition analysis.
2. Better accuracy for fewer vectors.
3. No static correcition needed for higher order modes.
4. No static condensation or Guyan reduction required for large systems.

5. Error estimation can be made to delermine the adequacy of selecied Ritiz
vectiors.
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TABLE 1

FREQUENCY AND TIME RESULTS FOR A SMALL MODEL,

RITZ YERSUS FEER METHODS

CYCLIC FREQUENCY

MODE RITZ (H2) FEER (i1Z)
1 2.836471E+02 2.836471E+02
2 5.015972E+02 5.015972E+02
3 7.418652E+02 7.401528E+02
4 8.908441E+02 8.792196E+02
5 9.876880E+02 9.876671E402
6 1.189213E+03 1.189210€+03
7 1.902981E+03 1.691335E+03
8 2.178580E+03 2.165648E+03
3 28520476403 2.467984E+03
10 3.239252E+03 2.906139€+03
T°f2;"_“s‘:c;"'e 218 270
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1
Process static loads {f) using SSGl1,

$SG2, and SSG3 modules

2
Calculate first vector
_x-1
xi’ =K " f
>
3
toop to calculate additional vectors
f xt = Kl mxt
iei+]l
Yas
1

Orthonormalize vectors using MODB

Calculate K* = X' KX

Perform eigenvalue/eigenvector
extraction using READ MODULE
FORM °X = XZ

pr——

7
Equivalence °X to PHIA for use in

rest of DMAP

Figure 1 Flow Chart for Implementing Ritz Procedure into NASTRAN
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