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SUMMARY

Average elastic Von Mises equivalent stresses were calculated along the throat of
a single lav fillet weld. The average elastic stresses were compared to initial yield
as well as to plastic instability conditions to modify conventional design formulas so
that they can be used to predict either extreme of failure by yielding. A new multi-
plying factor for the conventionz. design formulas is presented. The factor is a
linear function of the thicknesses of the parent plates attached by the rillet weid.

INTRODUCTION

In theoretical analyses of stresses in welds, approximations have not only been
traditionally accepted but have been considered appropriate. Much of the justification
for this has been based on the presumption that analytical means for accurate solutions
are not available. Furthermore, the limited quality control that is possible with many
welding processes has supported this viewpoint. Welding technology is, hrowever,
steadily improving along with the quality control that is necessary to =ns'ire consis-
tency as well as reliably welded joints. This improvement. will continu= -s welding
becomes an even more significant part of future marufaciuring processes.

The purpose of the present investigation was to establish more precise design
formulas for single lap fillet welds subjected to tensile loading. The study has
revealed a complexity in what appears to be a relatively simply geometry (fig. 1). In
addition, it indicated that variations in the thicknesses of the welded plates have an
influence on such welds. Different plate thicknesses affect the geometry as well as
the load paths. The change in geometry is rather obvious, but the additional berding
load, which is a natural consequence of the change in geometry, has not been considered
in the conventional theory.

BASIC THEORY

Because the throat area of a weld as indicated by line BD in figure 1 is the mini-
mum area through which loads must be transferred, it is the most probable area of
faiiure. Leg BC is loaded predominantly in shear. whereas leg BE is primarily in ten-
sion. The throat must then be subjected to a combination of tension and shear.

Shigley and Mitchell (ref. 1) showed that the largest principal stress on a throat area
is defined as

o1 = 1.618(F/he) , m
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and the maximum shear stress as
Tmax = 1-118(F/ht) (2)

in which F is the applied load, £ the length of the weld in a direction normal to the
page, and h the leg length. These stresses are calculated as averages for thc entire
throat. Norris (ref. 2}, Salakian and Claussen (ref. 3), and Bagci (ref. 4) showed
that the stresses vary significantly along both legs and that the throat has a large
stress concentration at point B. Thus, although equations (1) and (2) are known to
give average results, Shigley and Mitchell (ref. 1) noted that for design purposes, it
is customary to base “he shear stress on the throat area and to neglect the normal
stress altogether. On this basis, the equation for average shear stress becomes

r = 1.414(F/ne) (3)

and 1t from equation (3) is 1.27 times greater than from equation (2). Obviously, an
unknown safety factor has been incorporated in equation {3).

The present study brought out the fact that there is a logical raticnale for a
multiplying factor somewhat different than the one used in - “ion (3). Because the
failure of mechanical components from either static or fat: loading was shown by
Shigley and Mitchell (ref. 1) to be related to the Von Mises-Hencky equivalent stress,
it is used extensively in the discussion which follows.

If it is assumed as in equation (3) that the throat is subjected to pure shear,
then the equivalent Von Mises stress can be shown to be

o = V3 1.414(F/ng) = 2.449(F/he). ()

In the present investigation, the finite elemer* method was used to determine the
actual distribution of tne Von Mises stresses along the throat for several weld con-
figurations. Averages of the results from elastic analyses were obtained, and these
were compared with the results from some plastic analyses.

MODELS

Models were prepared, and analyses were performed by senior mechanical engineering
3tudents at the University of Missouri-Rolla. The finite elemsnt method was used to
develop the models shown in figures 1 and 2. Several types and refinements of meshes
were used at various stages of the work. Four-node quadrilateral and three-node tri-
angular elements as well as eight-node quadrilateral and six-node triangular elements
were used in the models. In each model, elastic analyses were performed with the ele-
ment dimensions varying from 0.0635 (0.023) in most of the weld to 0.254 mm (0.010
in.) in the area of the most significant stress concentration (point B in fig. 1).

For the elastic analyses, the maximum number o. nodes was 2121, and the maximum number
of elements was 806. Ffor the plastic analyses, the maximum number of nodes was 411,
and the maximum number of elements was 160. The maximum computer time on an IBM 4341
for the elastic analyses was 92 min, and the maximum for the plastic analyses was 10
min. Plastic analyses feor which a refined mesh was used required almost four hours
and were deemed impractical for multiple analyscs.
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The grid size was selected so that after sufficient refinement in the area of
point B the nodal stresses from all e.ements surrounding a given node were the same
to at least one significant figure. Point B was an exception because of the steep
stress gradients.

EL"STIC ANALYSIS

Elastic studies were performed Cor plate thicknesses varying from 6.35 (0.25) to
22.22 mm (0.875 in.) in 3.18 mm (0.125 in.) increments. The weld leg length was kept
constant at 6.35 mm (0.25 in.) for all plate thicknesses. Only the data for models 1
(Green), 2 (Morlock), and 3 (O'Brian) as defined in figure 1 have been shown in subse-
quent figures. Similar results were obtained for the other models.

Three load and constraint configurations were selected. The first one, which is
shown in figure 2a (Case 1), was an attempt to subject the weld as nearly as possible
to a direct load without a moment. Complete elimination of any moment would have been
desirable but was impossible for the unsymmetrical geometry of the configuration. The
loading and restraining conditions for practical applications are shown in figures 2b
(Case 2) and 2¢ (Case 3). These are considered more realistic, because the loads in
most physical components would be uniformly transferred through the thickness.

Because the results in Case 3 for symmetric geometry and loading were not sig-
nificantly different from Case 1, they are not discussed in detail here.

Figure 3 shows a deformed plot ¢f a simplified version of Case 1. It illustrates
that although the loading and restraints were aligned, the unsymmetrical geometry
caused the weld to rotate somewhat.

Figcores YJa-dc show the general trends of the stress contours for maximum princi-
pal stress, xinimum principal 3tress and maximum shear stress for the same model and
load case as shown in figure 3. These are representative of the stress distribution
throughout the weld.

Figure 5 shows the distribution of the Von Mises equivalent stress along the weld
throat (BD in fig. 1) for Case 1. Figure 6 shows the same Von Mises equivalent stress
as figure 5. The large stress at point B has been omitted to show more clearly the
variations occasioned by the plate thicknesses in the various models.

Figure 7 shows the distribution of the Von Mises equivalent stress along the
throat for Case 2. Figure 8 shows the same Von Mises stress as figure 7, and, again,
the large stress at point B has been omitted to show the variations occasioned by the
plate thicknesses in the var.ous models.

Figures 5 and 7 are of different scales because of the large stresses at point B.
However, figures 6 and 8 are of the same scals and can be overlayed for the purpose of
comparing the effects of the loads of Cases 1 and 2.

PLASTIC ANALYSIS

Elastlc perfectly plastic analyses were conduzted for an AWS E80XX electrode with
a tensile strength of 552 MPa (80 kpsi), a yield strength of 462 MPa (67 kpsi) and an
assumed identical parent plate material. In general, the calculations were performed
with increasing load increments until the strength became unstable.
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The less refined models with nominal element dimensions of 0.635 mm (0.025 in.)
were used in the plastic studies. This was necessary, because the iterative solution
procedure was more demanding of computer resources. Figures 9, 10 and 11 show the
development of the plastic zones as the load on a weld of unit length was increased
to the point of instability. The results in figure 9 are for model 1 (Green) with
Case 2 loading. The results in figure 10 are for model 2 (Morlock) with Case 2
loading, whereas the results in figure 11 are fcr model 3 (0'Brian) with Lase 2
loading. Similar results were als3o obtained for the other models defined in figure 1.

DISCUSSION

The average elastic Von Mises stresses along the throat shown in figures 5
through 8 are suggested as being more indicative of failure than the traditional rela-
tionship given by equation (3). Failure in the static sense can be either the initia-
tion of yielding or the point of plastic instability where a weld has essentially
yielded along the entire length of its throat.

For the models defined in figure 1 in each of the elastic analyses, the load was
taken as 4.448 N (1.0 1b) acting on a weld of leg length 6.35 mm (0.25 in.) and length
25.4% mm (1.0 in.). For these conditions, the cunventional theory as expressed by
equation (4) indicates an average Von Mises stress of 67538 Pa (9.796 psi). Further.
more, the conventional theory does not include plate thickness as a variable.

With Case 1 (fig. 2) and 4.448 N (1.0 1b} loading, figures 5 2ad 6 show that the
stress does not vary significantly with plate thickness. The average stress was de-
termined to be 58086 Pa (8.425 psi). With Case 2 (fig. 2) and 4 448 N (1.0 1b)
loading, the average Von Mises stress was determined to be 105699 Pa (15.331 psi) for
model 1, 178470 Pa (25.886 psi) for model 2 and 248207 Pa (36.001 psi) for model 3.
Case 2 loading thus shows a definite deviation from conventional theory.

If it is assumed that the finite element results indicate a correct average Von
Mises stress, then the conventional equation should be multiplied by 58086/67538 =
0.86 for Case 1 type loading. If, instead of assuming pure shear as in the conven-
tional approach, it is assumed that the Von Mises stress corresponding to equations
(1) and (2) is appropriate, then a multiplier of 0.82 for equation (4) should be the
result. The most accurate conventional theory, therefore, deviates by only 4 percent
from the finite element method. However, by expressing equations (3) and (4) as they
should be applied for Case 1 (fig. 2) loading, one has

= 0.86(1.314)(F/he) = 1.22(F/he) (5)
and

o= 0.86(2.449)(F/he) = 2.11(F/he). (6)
Now the multipliers in equations (3) and (4) for Case 2 (fig. 2) loading should be
1.57 for model 1, 2.64 for model 2 and 3.68 for model 3. Thus, conventional theory is
inadequate when the plates are thicker and the load is distributed.

The compariscn given above in equations (5) and (6) shows what is necessary to

make the conventional formulas for the average shear stress on a plastic weld throat

and the corresponding Von Mises equivalent normal stress agree with more accurate
calculations of those stresses. However, the objective of the design engineer is to
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be able to predict not only the beginning of yielding but the fully plasiie instability
condition as well. Consequently, one must relate equations (5) and (6) to thesc vield
conditions.

Plastic analyses allow one to adjust the conventional formulas (egs. (3) through
(6)) so that either initial yielding or plastic instability can be predicted. To de-
termine the constant for the initiation of yielding, it is assumed that the load at
which yielding first occurs corresponds to the load when an element in the parent
material immed:iately to the left of the corner at point B (fig. 1) has experienced
general yielding, and the corner eiement in the weld has just started to yield. It
was noted during the numerical experiments that at this load the weld also begins to
yield in the region of point D. For each of the models, this load was divided by the
load at which plastic instability occurred. The average of these ratios was approxi-
mately 2/3 for all of the models for both Case 1 and Case 2 loading. None of the
models varied significantly from the 2/3 value. Thus, the ratio of the load for
initial yielding to the load for plastic instability is relatively ccnstant for the
models and for the material illustrated in figures 9 through 11 as well as for the
others noted in the tatle of figure 1 for both Case 1 and Case 2 loading.

It remains to show how the average elastic Von Mises equivalent stress relates to
either initial yielding or plastic instability. Figures 9 through 11 show the pro-
gression of the plastic deformation zones for three of the models. As noted earlier,
the parent material and weld were assumed to be identical with a yield strength or 462
MPa (67 kpsi). For this material and an elastic perfectly plastic assumption, the
various models became unstable at the next load increment. That is in figure 9 for
model 1, the instability is shown to have occurred between 17.8 (4.0) and 18.7 kN
(4.2 kips), and in figure 10 for model 2 the instability is shown to have occurred
between 10.7 (2.4) and 11.6 kN (2.6 kips), whereas in figure 11, the instability is
shown to have occurred between 8.0 (1.8) and 8.9 kN (2.0 kips). Furthermore, for
Case 1 loading, the instability is shown to have occurred at approximately the same
load for all rodels and was between 33.8 (7.6) and 35.5 kN (8.0 kips).

The loads at which the average elastic Von Mises stress equals the yield strength
of the material were determined. This was done on the presumption that general plas-
tic yielding and instability occur when the average elastic Von Mises equivalent
stress is equal to the yield strength of the material. To determine these loads, the
yield strength was divided by the arerage elastic Von Mises stresses as indicated in
figures S5 through 8. For Case Z loading for model 1, the racio is 19.4 kN (4.37 kips),
and for model 2, the ratio is 11.4 kN (2.59 kips), whereas for model 3, the ratio is
8.3 KN (1.86 kips). For Case 1 loading, the load when the average Von Mises stress
equaled the material yield strength was 35.4 kN (7.95 kips), and it was approximately
the same for all models. The loads are compared in Table 1 where it is evident that
the average elastic Von Mises stress along the throat i3 an excellent indicatcr of
plastic instability.

Because equation (6) permits a more accurate calculation of the average Von Mises
equivalent stress along the throat of the weld, it also nredicts the fully plastic in-
stability condition when the calculated Von Mises stress equals the yield strength of
the material. Furthermoie, equation (6) can be used to predict the onset of yielding
when the calculated stress equals 2/3 of the material yield strength.

To obtain a design equation for the onset of yielding, equation (6, can be multi-
plied by 3/2 as follows:

o = (3/2)(0.86)(2.449)(F/he) = 3.16(F/he). (7
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When the applied load F is such that o equals the material yield strength, then for
Case 1 loading, the weld will experience the initiation of yielding. For Case 2
loading, the 0.86 factor must be replaced by 1.57, 2.64, and 3.68 for models 1, 2,
and 3 respectively. All of the constants are listed in Table 2 The data for load
Case 2 from Table 2 are plotted in figure 12. Because the constants are related
linearly, one can write equation (7) as follows:

6 = f(F/he) (8)
in which
f = 3.88(A/h) + 1.90 (9)
for Case 2, and A/h, the plate thickness to weld leg length ratio, must be greater
than or equal tc one. Equations (7) and (8) orovide the basis for the design of
single lap [illet joints for the initiation of yielding of the weld throat. Equation

(6) allows for fully plastic design. However, the influsnce of strain hardening will
usually make equation (6) somewhat conservative.

346



REFERENCES

1. Shigley, J. E.; and Mitchell, L. D,: Mechanical Eng® -:ring Design. Fourth
Edition, McGraw Hill 1983, p. 417.

2. Norris, C. H.: Photoelastic Investigation of Stress Distribution in Transverse
Fillet Welds. Welding Journal, =ol. 24, 1945, p. 557.

3. Salakian, A. G.; and Claussen, G. E.: Stress Distribution in Fillet Welds; A
Review of the Literature. Welding Journal, vol. 16, May 1973, pp. 1-24.

4, Bagei, C.: Finite Stress Elements and Applications in Machine Design. OSU Applied
Mechanisms Confer=iice, Denver, October 1979.

347



LOAD CASE

TABLE 1.-RELATION OF AVERAGE ELASTIC VON MISES AND PLASTIC LOADS

PLATE THICKNESS

Load for Average
Jon Mises Stress
Equal to Material

Load Range for
Plastic Instability

mm (in.) Yield Strength kN (kips)
k! (kips)
All 35.4 (7.95) 33.8 (7.6) - 35.6 (8.0)
6.35 (0.25) 19.4 (4.37) 17.8 (4.0) - 18.7 (4.2)
12.70 (0.50) 11.5 {2.59) 10.7 (2.4) - 11.6 (2.6)
12,05 (0.75) 8.3 (1.86) 2.0 (1.8) - 8.9 (2.M)
TABLE 2.-CONSTANTS FOR EQUATION 7
PL.ATE THICKNESS CONSTANTS FOR
LOAD CASE mm (in.) EQUATION 7
1 All 3.16
2 6.35 (0.25) 5.76
2 12.7. (5.50) 9.70
2 19.05 (0.75) 13.52
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Development of Plastic Instability, Model 1, Case 2

Development of Plastic Tnstability, Model 2, Case 2

FIGURE 11. Development of Piastic Instability, Model 3, Case 2

FIGURE 12. Factor for Equatior 8
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FIGURE 4c¢ TYPICAL MAXIMUM SHEAR STRESS
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