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1. INTRODUCTION 

The spline-under-tension, developed by schweikert14 and cline2, 

introduces a parameter which gives some control on the shape of the spline 

curve. The tension spline involves the use of hyperbolic functions and 

can be considered within a general setting proposed by ~ruessl~, where 

other alternatives are discussed. In particular a rational spline due to 

sp$thl is considered. 

For parametric representations, ~ielsonll describes a polynomial 

alternative to the spline-under-tension. Here use is made of the additional 

freedom given by relaxing c2 parametric continuity to that of 'geometric' 
or 'visual' c2 continuity. This idea has more recently been taken up by 

Barsky and ~eatt~l. 

The specific problem of shape preserving interpolation has been con- 

sidered by a number of authors. Fritsch and carlson6 and Fritsch and 

~utland~iscuss the interpolation of monotonic data using c1 7iecewise 
cubic polynomials. McAllister, Passow and Roulierg and Passow and Roulier12 

consider the problem of interpolating monotonic and convex data. They 

make use of piecewise polynomial Bernstein-Bezier representations and 

introduce additional knots into their schemes. In particular McAllister 

and Roulierl O describe an algorithm for quadratic spline interpolation. 

In this paper we will discuss a rational spline solution to the problem 

of shape preserving interpolation based on references 3, 4, 7 and 8. The 

rational spline is represented in terms of first derivative values at the 

knots and provides an alternative to the spline-under-tension. The idea 

of making the shape control parameters dependent on the first derivative 

unknowns is then explored. We are then able to preserve the monotonic or 

convex shape of the interpolation data automatically through the solution 

of the resulting non-linear consistency equations of the spline. 



2 .  A RATIONAL ALTERNATIVE TO THE SPLINE-UNDER-TENSION 

Le t  ( x i , f i  = 1 ,. . . ,n, b e  a  given s e t  of r e a l  d a t a ,  where 

xl  < x2 < ... < xn and l e t  di, i = 1 ,  ..., n ,  denote f i r s t  d e r i v a t i v e  v a l u e s  

defined a t  t h e  knots  xi,  i = 1 . . . n .  A func t ion  s  E ~ ' [ x  ,xn] such t h a t  

(2.1) s(xi)  = f .  1 and s 1 x i  = d  , i = 1 , .  . . ,n 

i s  piecewise def ined  f o r  x  E [ X ~ , X ~ + ~  1, i = 1 , .  . . ,n-1 by s (x )  = s .  ( x ; r . )  , 
1 1 

where 

and 

The parameters r .  w i l l  be  used t o  con t ro l  t h e  shape of t h e  curve s .  The 
1 

case  r .  = 3 i s  t h a t  of piecewise cubic  Hermite i n t e r p o l a t i o n .  
1 

The c2 s p l i n e  c o n s t r a i n t s  

give t h e  cons is tency  equat ions  

where 

and we assume t h a t  dl and d a r e  given a s  end cond i t i ons .  The c a s e  
n  

r = 3 c o r r e s p o n d s t o t h a t  of cubic  s p l i n e  i n t e r p o l a t i o n .  i 



Assume t h a t  

Then t h e  l i n e a r  system (2.5) i s  s t r i c t l y  d iagonal ly  dominant and hence 

h a s  a  unique so lu t ion .  The s o l u t i o n  i s  a l s o  bounded wi th  r e s p e c t  t o  

t h e  ri s i n c e  

The r a t i o n a l  cubic  (2.2) can  be w r i t t e n  a s  

where Ri i s  t h e  l i n e a r  i n t e r p o l a n t  

and 

Thus, a s  t h e  parameters r; a r e  increased ,  i t  can be  shown t h a t  t h e  r a t i o n a l  
.L 

s p l i n e  s  converges uniformly t o  a  piecewise def ined  l i n e a r  i n t e r p o l a n t .  

An i d e n t i c a l  argument a p p l i e s  t o  t h e  r a t i o n a l  s p l i n e  r e p r e s e n t a t i o n  of 

parametr ic  curves .  

Suppose f .  = f (xi) and f i+ l  = f (xicl) ,  where f  E C' [ X ~ X ~ + ~ ] .  Then 
1 

an e r r o r  bound f o r  t h e  r a t i o n a l  cubic  on [ X ~ , X ~ + ~  1 i s  given by 

hi { (1) - 
(2.12) / £ ( X I  - s i ( x ; r . )  1 I 5 - max If. -d i l  , l f i+ l  4 ~  di+l I} 



where 

max 
c. 1 =min1(1+ri)/4 and IIf / I  = 

x E [ x ~ ' X ~ + ~  
] lf(x)l . 

This result will influence the choice of the parameters r. when the 
1 

interpolation data are monotonic or convex. In particular we wish to 

choose ri such that r - 3 =  hi), whilst maintaining monotonicity i 
or convexity of the interpolant. 

3. THE INTERPOLATION OF MONOTONIC DATA 

Suppose that 

(3.1) f, < f, < ... < fn (monotonic increasing data) 

and assume the derivative values d. satisfy the necessary monotonicity 
1 

conditions 

(3.2) di > 0 , i = 2, ..., n-I , 

where d l > O  and d > O  are given. Then 
n 

ensures that sii)(x;r.) > 0 on [x. ,x 1 and hence the rational cubic 
1 1 i+i 

is monotonic increasing. 

Substituting (3 -3) into the c2  consistency equations (2.5) gives 
the non-linear system 

where 



This system has a unique solution satisfying the monotonicity conditions 

(3.2) . The "Gauss-Seidel" iteration 

where 

provides a robust algorithm for solving (3.4), being globally convergent 

to the required positive solution. The method also provides an 0(h4) 

accurate solution with reference to the error bound (2.12). 

4. THE INTERPOLATION OF CONVEX DATA 

Let 

(4.1) Al < A 2  < . . . < An-l (convex data) , 

and assume the derivative values satisfy the necessary convexity conditions 

where dl < A1 and dn > An-1 are given. Then 

ensures that sj2)(x;ri) 1 > 0 on [x. ,x. 1 and hence the rational cubic 
1 1+1 

is convex. 

The c2 consistency equations are now 



giving a non-linear system with a unique solution satisfying the convexity 

conditions (4.2). This solution can be found using a "Gauss-Seidel" 

iteration as in ( 3 . 6 ) ,  where we now take 

and choose intial values d!'), i = 2,. . . ,n-I, for the iteration such that 
1 

the residuals alternate. Finally, the convex spline method like the 

monotonic spline is 0(h4) accurate. 
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