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ABSTRACT 

The theory of multivariate splines was developed in the early 1980s, and 
since then has generated increasing interest. Researchers in computer-aided 
geometric design (CAGD) hoped to get a new, useful tool for the representation 
and handling of surfaces. This interest in multivariate splines is based on 
three fruitful ideas: 

Schoenberg's geometric definition of splines (Schoenberg, 1966) 

Geometric recursion and subdivision 

The Bernstein-B6zier representation 

Multivariate splines are easily developed from the geometric definition 
of splines, given by Schoenberg in 1966: A polyhedron P that spans is 
aff inely mapped into RS, s 6 me A l l  points p E P that are mapped onto a 
single point x E RS from an m-s dimensional polyhedron Q(x). The volume V(x) 
of Q is called a spline function. It is a piecewise polynomial of order m-s 
and "smooth". Note that one can easily find different polyhedra defining the 
same spline. 

The image of a vertex of P will be called a knot, while the image of an 
edge of P will be called a knot line, connecting two knots. These knot lines 
correspond to the segment boundaries. 

Two special polyhedra present themselves for the definition of B-splines: 
a simplex S and a box or parallelepiped B, where the edges of S project into 
an irregular grid, while the edges of B project into the edges of a regular 
grid, as shown in figure 1. More general splines may be found by forming linear 
combinations of these B-splines, where the three-dimensional coefficients are 
called the spline "control points". 

Note that univariate splines are simplex splines, where s = 1, whereas 
splines over a regular triangular grid are box splines, where s = 2. 

Two simple facts render the development of the construction of B-splines: 

Any "face" of a simplex or a box is again a simplex or box but of 
lower dimension. 



Any simplex or box can be easily subdivided into smaller simplices 
or boxes. 

.The first fact gives a geometric approach to Mansfield-like recursion 
formulas that express a B-spline in B-splines of lower order, where the 
coefficients depend on x. By repeated recursion, the B-spline will be 
expressed as B-splines of order 1; i.e. piecewise constants. Considering the 
corresponding "nets" of control points, one gets de Boor - like algorithms for 
the calculation of a given linear combination of B-splines at x. 

In the case of a simplex spline, the second fact gives a so-called 
"insertion algorithm" that constructs the new control points if an additional 
knot is inserted. In the case of a box spline, this fact gives the so called 
"subdivision" algorithm, which constructs a "refinement" of the control net 
(see figure 2). 

If more than one vertex of a simplex is mapped into one knot, the 
corresponding spline function will be degenerate.. In particular, if the knots 
form a simplex of Rs, the spline will be a "truncated Bernstein polynomial". 
In this case the Mansfield-like recursion formula for simplex splines degener- 
ates to the well-known recursion formula for Bernstein polynomials, while the 
de Boor - like algorithm degenerates to the algorithm of de Casteljau, where 
the control points are called ~6zier points. Clearly, the Bernstein expansion 
of a B-spline corresponds to a suitable simplicia1 decomposition of the 
simplex or box, such that the Bernstein representation of a B-spline can 
easily be constructed (see figure 3). Furthermore, especially if the B-spline 
is a truncated Bernstein polynomial, one gets the subdivision algorithm for 
Bernstein polynomials as well as a refinement of the B6zier net. 

Fortunately, two of the above algorithms seem to fall in the class of 
non-tensor-product box splines: 

The approximation of the spline by a repeated refinement for global 
representation 

The construction of the Bgzier net for application of the full Bernstein- 
B6zier method for local representation 

It should be mentioned that both algorithms start from the control net 
and use - in the known cases - repeated "filling and/or averaging" procedures, 
as shown in figure 4 for the case of a triangular grid: 

A rhombic scheme is filled with data from the previous step, 

A new scheme is formed by line averaging these data. 
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