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ABSTRACT

The Circle Spline routine was developed by D. L. Jaeger and is currently being
used at the Los Alamos National Laboratory for generating both two- and three-
dimensional spline curves. It was developed for use in ESCHER, a mesh generating
routine written by W. R. Oakes, to provide a computationally simple and efficient
method for building meshes along curved surfaces. Circle Spline is a parametric
linear blending spline. Because many computerized machining operations involve
circular shapes, the Circle Spline is well suited for both the design and manu-
facturing processes and shows promise as an alternative to the spline methods
currently supported by the Initial Graphics Exchange Specification (IGES).

Circle Spline constructs a spline by generating a series of circular arcs, each
of which passes through three successive data points (Pi-1, Pi, Pi+l), where i =
2,...,n and n = the number of data points. Thus, for n data points, n-2 arcs are
constructed. These segmented arcs are then blended together, using a linear
blending function, to represent the desired curve. Circle Splines need only have
the data point coordinates specified. Because it is both a two~ and three-
dimensional routine, the three coordinates must always be specified, even for two-
dimensional applications, in which case the third coordinate is set to zero. The
spline passes through all the data points and these points do not need to be evenly
spaced. Circle Spline does not require first or second derivative continuity, but
instead has a different approach for determining aesthetic qualities such as
smoo thness and fairness.

The routine generates the spline by taking three successive data points (Pi-1,
Pi, Pi+l), calculating the parametric location of a circle center R, which passes
through the points, and constructing an arc, of radius R, through'zhese points.
With this information, the curved arc length between data points can be calculated.
The value of the curved arc length for each interval is then stored. The routine
then increments along the curve one data point and repeats the process for data
points (Pi, Pi+l, Pi+2). With the exception of the two end point pairs (Pi, Pi+l)
and (Pn-1, Pn), each pair of points (Pi, Pi+l) 1 = 2,...,n-2, will have two arcs
passing through it. This means that each interval (i, i+l), i = 2,...n-2, has two
values for the curved arc length (one for each arc that passes through it). The
routine determines which of these two curved arc lengths is larger and retains that
value.

Once all the arc lengths are calculated, the total arc length and parametric
position of each data point are calculated. The routine uses a rational parameteri-
zation. If the sum of the curved arc lengths is S, the parametric value of each
data point becomes the ratio of the spline length from the start of the curve to the

data point divided by S. The parameter "u" will then range from 0 <ufll.
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The use of the larger curved arc length within each interval was based on
Circle Splines implementation in ESCHER. Better mesh point spacing is achieved
using this scheme. A better parameterization may be achieved by using a function of
the two arc lengths. 1In any event, using the curved arc lengths to calculate the
total spline length no doubt leads to a better parameterization than the chordal arc
length method used by most spline routines.

The two arc segments passing through each pair of data points are blended into
a single curve. The user specifies the number of subpoints that will be used for
the blending operation. These subpoints are evenly spaced parametrically along the
curve, The code can also be used so that the subpoints are weighted, e.g., left,
right, or center weighted. An automatic scheme whereby the subpoints are clustered
in areas of varying curvature may produce a smoother blend.

The data points and the subpoints may be coalescent at points along the curve
without affecting the spline. Because the data points are allowed to be unevenly
spaced, the number of subpoints that fall within a data point interval may vary.
The number of subpoints within an interval represents the number available for a
particular blending operation.

Let arc-1i represent the arc passing through points (Pi-1, Pi, Pi+l), and
arc-i+l represent the arc passing through points (Pi, Pi+l, Pi+2). Both arcs will
pass through points Pi and Pi+l. For the purpose of example, suppose 10 subpoints
lie within this interval. These 10 points will be evenly spaced along the inter-
val. The routine will determine how far each subpoint is from points Pi and Pi+l
and based on this information will calculate the subpoints position relative to the
two arcs. The closer a subpoint is to Pi, the closer it will be positioned to
arc—-i. As the subpoint placement approaches Pi+l, their positions will move closer
to arc-i+l. At the start of an interval the blended curve is tangent to arc-i, at
the end of the interval it is tangent to arc-i+l, in the center of the interval each
arc will have an equal influence on the subpoint positioning, and the position of
the blended spline will be in the geometric center of the plane defined by the two
arcs.

If Pb equals the parametric value of a subpoint within the interval Pi < Pb £
Pi+l, its position will be determined using the following equations

Ratio = (Pb - Pi) / (Pi+l - Pi)

1 - Ratio

Ratml
The value of the X-coordinate is thus,

XX(i) = Ratml * X(i) + Ratio * X(i+l)
where X(i) is the X-coordinate of Pi and X(i+l) is the X-coordinate of Pi+l. YY(i)
and ZZ(i) arc calculated similarly. Using this scheme intuitively suggests that the
blended curve can have, at most, one inflection point per interval.

Spline smoothness can be measured by examining how well the circle centers

for each arc relate. Because curvature is the inverse of the radius, when the

curvature is zero, R will approach infinity. Thus, the Rs provide an excellent way
of monitoring the curvature. Many manufactured items contain circular shapes, for
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holes, rounded edges, etc.; thus, the Circle Spline is well suited for
Aided Manufacturing (CAM).

Circle Spline is computationally efficient and easy to understand. It was
compared to the Wilson-Fowler spline in two dimensions; it compared favor-
most applications, but as might be expected, pathological cases existed

where each routine produced better results. Circle Spline can be used in both two
and three dimensions and its applicability to the design and manufacturing process
makes its future use promising.
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