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The approximation of parameterized curves by segments of parabolas that pass 
through the endpoints of each curve segment arises naturally in all quadratic iso- 
parametric transformations. While not as popular as cubics in curve design problems, 
the use of parabolas allows the introduction of a geometric measure of the discrepancy 
between given and approximating curves. The free parameters of the parabola may be 
used to optimize the fit, and constraints that prevent overspill and curve degeneracy 
are introduced. This leads to a constrained optimization problem in two variables 
that can be solved quickly and reliably by a simple method that takes advantage of the 
special structure of the problem. 

FORMULATION OF THE PROBLEM 

We assume that tessellation has been done in such a way that every curve segment 
lies to one side of the straight line segment that connects consecutive nodes, and 
that the approximating curve segment results from a quadratic isoparametric transfor- 
mation and is therefore parabolic C11 and has the nodes as endpoints. The free 
parameters of the transformation are the coordinates of that point (a,B) on the 
approximating parabola where the slope is identical to that of the node-connecting 
straight-line segment. We impose constraints that prevent image overspill (equiva- 
lently, vanishing of the transformation Jacobian over an associated triangular master 
element) and ensure limit stability as the curve degenerates to a straight line. We 
introduce coordinate axes in such a way that the nodes are at (-1,O) and (1,0), with 
the curve segment above the horizontal x-axis. The approximating parabolic segments 
can then be expressed in parameterized form as 

where the parameters a and f3 completely determine a particular member of the approxi- 
B mating set (1). The axis of the parabola has slope - .  The constraints associated 

with overspill have the form a 

where 1-11 and 1-12 are constants that are related to the transformation C21. We ensure 
limit stability by restricting the axial slope CII, namely 

where m is a positive stability safety factor. The constraints (2) and (3) define the 
feasible domain in which the point (a,B) may lie. 

The parameters a and B may be used to optimize the approximation of a given curve 



with 

once we have defined a discrepancy measure for (1) and (4). When the approximating 
curves are parabolas, a uniquely defined distance between any point on the given 
curve and a parabola can be measured in the direction of the axis of the parabola. 
This results, in effect, in a re-parameterization of the parabola with respect to the 
given curve parameter s. Integration of the squares of the distances for the relevant 
parameter interval - 1 I s I 1 yields the objective function 

where 

This paper is concerned with the optimization of (5) subject to the constraints of (2) 
and (3). 

THE OPTIMIZATION PROCEDURE 

a 
When the inverse of the axial slope is considered as a new variable y, (2), B 

(3) and (5) can be expressed in terms of 6 and y, and the equivalent constrained 
optimization problem can be formulated, namely, minimize 

where 
1 
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C2(y) = (I-t (s)) ds , C1(y) = - 2 1  B(s)(l-t (s))ds 
- 1 -1 

subject to 

The main advantage of the formulation (6) to (8) is that we can now use a separated 
optimization procedure C31 to find the best fit. We define the relevant objective 
function 

G(Y) = min G(B,Y) 
OIBSPmax 



where Bmax is a function of y, and B is restricted to the feasible domain by the 
1 

upper limit. The function c(y) is optimized with respect to y, for - ; l y r -  to 
m y  --- --- 

find the optimal value 7 .  The optimal B is obtained by introducing in (9) and 
optimizing with respect to B .  Justification of this procedure is presented in [41, 
and its implementation is described in C51. It is reliable, efficient and eminently 
suitable for use on smaller computers and in the absence of multi-purpose optimization 
so£ tware. 

DISCUSSION OF APPLICATIONS 

For applications in the field of computer-aided design, the given curves (4) are 
often cubic polynomials, and the coefficients (7) may be calculated in closed form in 
terms of the polynomial coefficients by using a symbolic machine language so that 
families of curves can be approximated with no further integration. For general 
curves, numerical quadrature may be used, as in the implementation [Slwhere the Ronberg 
quadrature is applied. The coefficient functions C1(y) and C2(y) are expanded as 

polynomials in y, so that for given A(s) and B(s) the integrations need only be done 
once. 

The method was used to find optimal constrained parabolic approximation to a wide 
variety of given curves. Some examples from [61 were included in the numerical tests. 
A comprehensive discussion of the experimental results is contained in C41. The 
method yielded satisfactory approximations to the given curves for all the examples 
considered. 
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