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Introduction

Remote sensing studies devoted to the develop-
ment of spacecraft sensors have need of a representa-
tive selection of spectral reflectances of natural tar-
gets in order to determine the optimum number and
location of spectral bands and sensitivity require-
ments. For example, Schappell et al. (1976) uti-
lized reflectances of ground features in the design
of a video guidance, landing, and imaging system
for space missions; Begni (1982) selected the spec-
tral bands for the SPOT satellite by taking into ac-
count both the spectral signatures of ground objects
and the modifications introduced by the atmosphere;
and Huck et al. (1984) studied spacecraft sensor re-
sponses and data processing algorithms for identify-
ing Earth features by using a selection of spectral
reflectances taken from the literature. Although sev-
eral excellent sources of reflectance data are avail-
able, such as the agricultural data base from Pur-
due University Laboratory for Applications of Re-
mote Sensing (Biehl et al. 1982) and the geologic data
base from the Jet Propulsion Laboratory (Kahle et
al. 1981), these data bases are limited in target se-
lection and are usually available only in computer
compatible format. Thus there is a need for a set
of reflectance data that is representative of natural
targets. The purpose of this report is to present a
collection of uniformly digitized spectral reflectances
of natural targets in a common format.

The spectral reflectance data were taken from the
literature and include laboratory, field, and aircraft
measurements. Since the reflectance of most natu-
ral targets may be influenced by the measurement
technique, the techniques for the measurement of re-
flectance are discussed with emphasis on their major
differences and sources of error. Most of the data
have been derived from laboratory or field measure-
ments. There is much interest, however, in the re-
mote sensing of natural targets from both airborne
and spaceborne platforms. Therefore, the appendix
discusses the changes in apparent reflectance when a
target is viewed through the atmosphere.

The target reflectances have been divided into six
categories: agriculture; trees; shrubs and grasses;
rocks and soils; water, snow, and clouds; and mis-
cellaneous. The 156 reflectance curves included are a
representation of what is available in the literature;
they are not necessarily the most preferred sets of
data for a listing of this kind. There is a similarity
among reflectances of many of the targets, and thus
a representative reflectance curve for each of the ma-
jor types is presented along with a discussion of its
salient features.

All the data were digitized from copies of doc-

uments and archived on magnetic tape for further
processing. Each reflectance curve presented repre-
sents the data originally shown by the author. A test
of the data transcription method indicated an error
of less than 1 percent in the digitization process.

Symbols and Units

E4 diffuse component of irradiance at the
Earth’s surface, watts-m ™2

E, solar irradiance at the top of the atmo-
sphere, watts-m ™2

Eos direct solar component of irradiance at
the Earth’s surface, watts-m~2

E, irradiance at the Earth’s surface, watts-
m—2

FOV  field-of-view, deg

H sensor altitude, km

IFOV instantaneous field-of-view, deg

Lpg beam radiance component of Lr, watts-
m~ 2.1

Lp path radiance component of Ly, watts-
m~2-sr1

Lg surface radiance, watts-m™2-sr—1

L total radiance measured at the instru-

ment, watts-m~2-sr—1

R bidirectional reflectance factor

R, bidirectional reflectance factor of
reference

Ry bidirectional reflectance factor of target

T transmittance of atmosphere along

target-to-sensor path

TOA  top of atmosphere

| % atmospheric visual range, km

Vr instrument response when viewing
reference

Vi instrument response when viewing target

0; irradiance zenith angle, deg

0, reflected beam zenith angle, deg

A wavelength, um

p total reflectance; used in the appendix to

represent reflectance measurement of the
Earth’s surface



PA apparent reflectance of a surface feature
when viewed from aloft through the
atmosphere

Ob reflectance of background

ot reflectance of target

TA optical depth

Y relative azimuth angle, deg

&; irradiance azimuth angle, deg

br reflected beam azimuth angle, deg

Wo single-scattering albedo

Measurement of Reflectance

Reflectance of a target can be measured in three
ways: in the laboratory, in the field, or from an el-
evated platform such as an aircraft. These three
approaches provide different results for several rea-
sons. Illumination conditions are more easily con-
trolled in the laboratory, but then the content of
the field-of-view changes from laboratory to field to
aircraft (or spacecraft). In studying vegetation, for
example, a single leaf may be analyzed in the lab-
oratory, whereas in the field the footprint usually
becomes larger with altitude. Thus, depending on
its altitude, a narrow-field-of-view instrument may
“see” anything from several leaves to a field sev-
eral hundred meters in diameter. As the footprint
becomes larger, the target becomes a composite of
leaves, stalks, soil, grasses, weeds, etc., and its re-
flectance properties are influenced by such factors as
wind condition, row geometry, solar zenith, target
slope, etc. Also, as altitude increases, atmospheric
effects become more important, and scattering and
absorption effects on radiance are enhanced. Target
radiance is also influenced by scattered radiance from
outside the instrument field-of-view. (These two ef-
fects are discussed in the appendix.)

Although the three measurement techniques yield
different results, each has its place in remote sensing
research. When modeling a vegetation canopy, the
reflectance of the individual leaves is a required in-
put. The laboratory data in this report do not ade-
quately support canopy modeling; however, they do
show spectral variations important in remote sens-
ing. When combining various ratios of vegetation
and bare soil to obtain an integrated reflectance, field
measurements are required. And lastly, when at-
tempting to correlate target reflectance with satel-
lite measurements, a field measurement with a large
footprint is desirable. Since target reflectance is in-
fluenced by the manner in which the measurement is

2

made, each of the three techniques will be discussed
separately.

Laboratory Measurements

Total reflectance p is the ratio of the reflected ra-
diant flux to the incident flux (Judd 1967). For a
given target this quantity can be determined in sev-
eral ways, but in the laboratory a small sample of
the target is usually analyzed using a spectropho-
tometer with an integrating sphere attachment. Two
methods of measuring reflectance with an integrat-
ing sphere are possible. In the substitution method,
sample and reference (an ideal Lambertian surface)
are placed in turn at the sample aperture and the
ratio of respective photocell readings is determined.
This technique has introduced systematic error of
up to 12 percent in the determination of reflectance
(Jacquez and Kuppenheim 1955). In the comparison
method, both sample and reference are placed in sep-
arate apertures, the illuminating beam is switched
from one to the other, and the ratio of the respective
photocell readings is determined (Vlcek 1972). For a
perfect sphere, the error is zero; with a flat sample,
the error is about 1 percent. Most of the laboratory
data included in the appendix were generated with
spectrophotometers that use the comparison method.

Because of the transmittance of leaves, any re-
flectance measurement of a single leaf is influenced
by the background on which the sample is supported
(Lillesaeter 1982). When leaves are stacked, it has
been found that no further change in reflectance
at near-infrared wavelengths occurs beyond a depth
of eight leaf layers or more (Allen and Richardson
1968). When comparing laboratory with field mea-
surements, Knipling (1970) found that the visible and
near-infrared reflectances from a nearly continuous
broad leaf canopy were typically about 40 and 70 per-
cent, respectively, of the laboratory reflectance of a
single leaf.

Field Measurements

Spectral reflectance of natural surfaces can be
measured in the field by using a radiometer fitted
with an integrating sphere as the primary radiation
receiver. The aperture of the sphere is pointed at
zenith to measure irradiance and then rotated 180°
to nadir to measure the target radiance. Since the
nadir field-of-view is nearly 180°, a correction is usu-
ally applied to compensate for shading by the instru-
ment itself (Coulson and Reynolds 1971). When the
integrating sphere technique was used for measuring
hemispheric reflectance, Coulson and Reynolds found
that the time-varying irradiance field, particularly on
hazy days, was responsible for appreciable scatter in




the reflectance determinations because of the sequen-
tial nature of the measurements. Duggin and Cunia
(1983) compared simultaneous measurements of irra-
diance and target radiance with sequential measure-
ments and showed that the simultaneous approach
dramatically reduced the variation of the reflectance
measurements. Large cumulus clouds near the solar
disk and thin cirrus clouds are two major causes of
varying irradiance (Robinson and Biehl 1979).

A cosine receptor, which usually employs a diffus-
ing optics element or an immersion lens for improved
performance, is often used to measure irradiance over
a 27 steradian field-of-view. The target radiance
measurement at nadir is frequently restricted to a
smaller field-of-view, referred to as an “apertured”
reflectance measurement (Graetz and Gentle 1982).
The more commonly measured parameter, however,
is the bidirectional reflectance factor, which requires
a reference standard for the irradiance determina-
tion. A bidirectional reflectance factor R is defined
as the ratio of the radiant flux reflected by the target
to that reflected into the same beam geometry by a
perfectly reflecting diffuser (Lambertian) identically
irradiated (Judd 1967).

The bidirectional nature of R(6;, ¢;;0r, ¢¢) is il-
lustrated in figure 1 for incident and reflected beams
where (6;, ¢;) and (6,, ¢) are the zenith and azimuth
angles of the incident and reflected beams. In the
field, R can be approximated by taking the ratio of
the instrument response when viewing the target V;
to the instrument response when viewing a level ref-
erence surface V, such that

Re(0s, 95300, 67) = TR0, 850n87) (1)

where R,(0;, #;;0r, ¢;) is the bidirectional reflectance
factor of the reference surface; this term corrects for
the nonideal reflectance properties of the reference
surface. This relation assumes that (1) the instru-
ment response is linear to entrant flux, (2) the dif-
fuse component of irradiance is negligible, (3) the ref-
erence surface is irradiated and viewed in the same
manner as the target, and (4) the aperture is suffi-
ciently distant from the target.

An attempt to correct for the diffuse skylight com-
ponent in the irradiance field by subtracting the spec-
tral responses of the shadowed target and shadowed
reference introduces an uncertainty in the reflectance
determination that is greater than the diffuse sky-
light effect itself (Bauer et al. 1977). A simulation
study on the influence of sky radiance has found the
error induced in the estimation of bidirectional re-
flectance factors to be less than 5 percent for zenith
view and Sun zenith angles less than 55° (Kirchner et

Zenith

Irradiance

Radiapce

180

90

Figure 1. Viewing geometry for bidirectional reflectance
factor measurements.

al. 1982). As long as the field-of-view is no greater
than 15° to 20°, the term bidirectional reflectance
factor is considered to describe the measurements ad-
equately (Bauer et al. 1979).

When field illumination conditions are too vari-
able or the sky is frequently overcast, measurements
can be made using an artificial light source (De Boer
et al. 1974). In this procedure the target is covered
to block out natural light. The technique can also
be extended to the laboratory, though it is the usual
practice to view potted field plants and not individ-
ual leaves (McClellan et al. 1963).

Aircraft Measurements

The measurement of reflectance has thus far in-
volved only a ratio of two instrument readings and a
calibrated reference surface (when the reflectance fac-
tor is measured). With aircraft measurements, there
is the additional complication of atmospheric scatter-
ing and absorption effects. Atmospheric scattering is
apparent to anyone who has viewed the ground from
an aircraft on a hazy day; the scattering produces a
bluish turbidity superimposed over the background
scene. If a suitable reference surface is available or if
the spectral reflectance of selected targets has been
established as references using field or helicopter (i.e.,
low altitude) equipment, aircraft data can also be
calibrated (Bauer et al. 1979). The wide scan angle
of most aircraft instruments is an additional prob-
lem, since the atmospheric path is variable across
the scan. Either additional calibrations should be
made at selected off-nadir scan angles or the targets
of interest should be restricted to nadir viewing.

Surface reflectances can be estimated fairly well
without ground support, however, provided that
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absolute radiance measurements are obtained and a
suitable radiative transfer program is used to correct
for atmospheric effects (Bowker et al. 1983). Because
of the interest in airborne and spaceborne remote
sensing systems, the influence of the atmosphere on
radiance measurements from elevated platforms is
discussed in the appendix. Two of the reflectance
curves presented in this report have been corrected
for atmospheric effects using the technique given in
the appendix.

General Features of Reflectance Curves

Many natural targets have common features in
their spectral reflectance curves, which make the tar-
gets difficult to identify or separate. All vegetation,
for instance, has a similar reflectance profile, whether
it be agricultural crops, trees, shrubs, or grasses.
In addition to the subtle differences in reflectances,
the reflectances vary with time, at least for vegeta-
tion; this often leads to an identification or separa-
tion of targets. Several of the major categories of
reflectances will be discussed in some detail in this
section to show the commonality of features and the
manner in which remote sensing may take advantage
of minor differences to separate targets. Vane et al.
(1982) have summarized the spectral bands useful for
remote sensing applications.

Vegetation

Figure 2 is a typical reflectance curve for photo-
synthetically active vegetation. The spectrum can
be broken into three regions according to the ma-
jor factor responsible for the curve behavior. Below
0.7 pm, absorption is dominated by carotenoid pig-
ments (centered at 0.48 ym) and chlorophylls (cen-
tered at 0.68 ym). The green peak (centered at ap-
proximately 0.56 um) is the region of the visible spec-
trum corresponding to weak absorption. The sharp
rise around 0.7 um, (called the red edge) marks the
change from chlorophyll absorption to cellular re-
flectance. The near-infrared reflectance from 0.7 to
1.3 pm is dominated by the cell-wall/airspace inter-
face and, to a lesser extent, by refractive index dis-
continuities of cellular constituents (Gausman 1974).
Beyond 1.3 um, reflectance is primarily controlled
by leaf water content. The suggested spectral bands
given in figure 2 have been successfully used by the
researchers; they mostly represent bands that were
available on various sensors and are not necessar-
ily optimum-with respect to bandwidth or central
wavelength.

During the growth cycle of vegetation the re-
flectance decreases in the visible wavelength and in-
creases in the near-infrared wavelengths until max-
imum canopy development is reached. Then, with
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senescence, the visible reflectance increases while
the near-infrared reflectance decreases, although rel-
atively less than the visible increases. Thus, veg-
etation reflectance usually progresses from a back-
ground, such as soil, to full greenness and then re-
turns to the background again.

By analyzing the reflectance spectrum of vege-
tation in discrete narrow bands, Verhoef and Bun-
nik (1974) identified about 12 spectral bands rele-
vant for assessing special features of crops. The se-
lection of a few bands and/or wide bands does not
give optimum results (Beers 1975). Generally, the se-
lected bands should have low correlation. Using the
Landsat MSS bands, Kauth and Thomas (1976) de-
veloped a linear transformation (called the “tasseled
cap”) that defines two orthogonal components called
“brightness” and “greenness.” The brightness estab-
lishes the data space of soils, and the greenness is a
measure of green vegetation. The temporal behavior
of the greenness can be used to separate some crops
(Badhwar et al. 1982). Idso et al. (1980) used a re-
flectance ratio involving Landsat MSS bands 5 (0.6-
0.7um) and 6 (0.7-0.8 um) to estimate grain yields
by remote sensing of crop senescence rates. Crops
that are stressed for water, which have lowest grain
yields, had a longer period of senescence. -

The broad absorption areas mear 1.4 and 1.95
pm are also atmospheric water vapor bands and
should be avoided in remote sensing. However, the
1.6 and 2.2 um regions are useful for distinguishing
succulent (average leaf water content of 92 percent)
from nonsucculent (average leaf water content of
71 percent) plants (Gausman et al. 1978).

According to Collins (1978) the sharp spectral
reflectance rise between the chlorophyll absorption
maximum and the cellular reflectance maximum, the
red edge, can be very useful in detecting pheno-
logic changes and geochemical stress. In a study
of maturation changes of crop plants such as corn,
wheat, and sorghum, Collins detected a red-shift
(of 0.007 to 0.010 um) of the red edge to longer
wavelengths (0.690 to 0.700 um) associated with the
conversion from vegetative growth to reproductive
growth (heading and flowering). The red-shift was
useful in separating some crop types, particularly the
non-grain from the grain crops (the shift is not as
pronounced in the non-grain crops).

When plants become stressed, a decrease in
chlorophyll productivity causes a shift of the red edge
toward shorter wavelengths. This kind of blue-shift
has been detected in the reflectance spectrum from
a forest canopy growing over copper-lead-zinc sulfide
mineralization (Collins et al. 1977).

Just as the detection of the shift in the red
edge requires spectral measurements of 0.010-um




resolution, other regions within the reflectance curve
of vegetation may also demand such resolution (Mack
et al. 1984). There is an emphasis toward more
bands with higher spectral resolution; however, Mack
advises using only those bands with an established
relevant biophysical and agronomic basis. Knowl-
edge of these spectral characteristics is essential for
minimizing data processing costs and time.

Soil

Figure 3 displays five representative spectral re-
flectance curves for soils. Condit (1970) has clas-
sified 160 soil samples from 36 states into three
general types according to the shape of their re-
flectance curves within the 0.4 to 1.0 um region of
the spectrum. Type 1 curves have rather low re-
flectances with slightly increasing slope, which gives
them their characteristic concave form from 0.32 to
about 1.0 pm. Type 2 curves are characterized by
generally decreasing slope to about 0.6 um followed
by a slight dip from 0.6 to 0.7 um, with continued
decreasing slope beyond 0.75 um. This results in
a typical convex shape from the visible to beyond
1.0 um. Type 2 soils are better drained and lower
In organic matter than type 1 soils. Type 3 curves
have a slightly decreasing steep slope to about 0.6 ym
followed by a slight dip from 0.62 to 0.74 um, with
slope decreasing to near zero or becoming negative
from 0.76 to 0.88 um. Beyond 0.88 um (to 1.0 pum)
the slope increases with wavelength. Type 3 soils
have moderately high iron content. Condit was able

to reproduce these curves (160 in all) with a high de-

gree of accuracy from measurements at five narrow
bandwidths (0.02 um) centered at 0.40, 0.54, 0.64,
0.74, and 0.92 um; these wavelengths may not relate
to specific physical phenomena. Stoner and Baum-
gardner (1980) established two more types of soil re-
flectance curves, similar to type 3, by extending the
data out to 1.3 um. The type 4 reflectance behavior
from.0.88 to 1.3 um was caused by high iron content
and organic material. In type 5, the negative slope
from 0.75 to 1.3 um resulted from very high iron
and low organic concentrations. This was the only
type that did not show a strong absorption (water)
at 1.45 um.

Although reflectances in all spectral regions are
negatively correlated with organics, the region
around 0.57 pm (the green peak) is particularly use-
ful for monitoring organic matter in bare soils since
it is free of other major disturbances. Stoner and
Baumgardner considered measurements at 0.7, 0.9,
and 1.0 um to be essential for thorough classification
of background soil reflectance. Absorptions at 0.7
and 0.9 pym are produced by ferric iron compounds,

while that at 1.0 um is caused by ferrous iron com-
pounds.

The 0.4 to 1.0 pm region is not useful for moni-
toring soil moisture content (Reginato et al. 1977),
although the entire reflectance curve is generally sup-
pressed with increased moisture. The region cen-
tered at 2.2 um has the highest correlation with soil
moisture; this region was similarly important with
vegetation.

The two regions of highest soil reflectance, cen-
tered at approximately 1.27 and 1.65 um, correlate
with many soil properties (Stoner and Baumgardner
1980). With sandy textured soils, a decrease in parti-
cle size increased reflectance. However, with medium
to fine textured soils, a decrease in particle size de-
creased reflectance.

Rocks and Minerals

Figure 4 shows spectral reflectance curves for
shale and andesite. Rocks are similar to soils in
reflectance, which is not surprising since soils are
derived from weathered rocks. One major difference
between the two is the organic matter present in soils,
which tends to decrease reflectance.

With transparent rock particles, reflectance in-
creases with a decrease in particle size, but just the
opposite is the case with opaque particles (Salisbury
and Hunt 1968). This may explain the behavior of
the fine grain soils discussed in the previous section.

The iron absorption bands are very prominent in
basic rocks (i.e., igneous rocks with minerals rich in

- metallic bases). These absorption bands are even

prominent in red-stained beach sands.

The strong fundamental OH vibration at 2.74 ym
characterizes the behavior of hydroxyl-bearing min-
erals. Clays (hydrous aluminum silicates), in par-
ticular, show decreasing spectral reflectance beyond
1.6 pm, and this broadband behavior can be used to
identify clay-rich areas associated with hydrothermal
alteration zones (Podwysocki et al. 1983). The ab-
sorption peaks at 2.17 and 2.20 um can be used to
identify clay minerals (Goetz and Rowan 1981). The
reflectance spectrum of unaltered material is not as
complex, particularly in the 2.0 to 2.4 um region, as
in altered rocks. )

The spectral absorption features at 1.4 and
1.9 pm, as well as at 2.2 uym, indicate hydration,
but these two regions are subject to atmospheric
interference.

The detection of vegetation cover and the anal-
ysis of the spectral properties of plants to identify
conditions present in the soil are also an important
area in geologic remote sensing. This subject was
mentioned in the vegetation section. A discussion of
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(1984).



the topic has been presented by Goetz et al. (1983).
A 10-percent grass cover masks beyond recognition
spectral characteristics of such rocks as andesite and
limestone that have low reflectances; dry vegetation,
on the other hand, has a minimal effect (Siegal and
Goetz 1977). Beyond 1.4 ym, the reflectance of rock
tends to become more dominant.

Water, Snow, and Clouds

In the absence of glitter effects, water is easily dis-
tinguished from other targets by its low reflectance,
particularly in the near-infrared portion of the spec-
trum. However, high concentrations of suspended
sediment, which often occur in shallow reservoirs,
can increase reflectance. Surface algal blooms can
also change the reflectance properties of water; these
are distinguished from high sediment loads by the
characteristic chlorophyll absorption in the red area
of the spectrum. Monitoring chlorophyll in ocean
waters, where reflectance is less than 0.02, has been
discussed by Gower et al. (1984). ,

In figure 5, both snow and clouds are seen to hav:
high reflectance in the visible portion of the spec-
trum. Clouds are still highly reflective in the near-
infrared wavelengths, while snow becomes relatively
nonreflective beyond 1.4 um, particularly in the 1.5
to 1.6 pum region (Crane and Anderson 1984).

Selection and Formatting of the Spectral
Reflectance Data

A literature search for spectral reflectance data
retrieved about 300 spectral curves. From these,
156 were selected based on the following criteria:
(1) the importance of the target, (2) the data collec-
tion mode, and (3) the quality of the data. Priorities
for the remote sensing of agricultural crops have been
established by Bowker (1985). For the other areas,
however, selection was guided by availability and the
desire to present a variety of targets. Field measure-
ments made with a high-resolution scanning spec-
trophotometer were preferred. This type of data was
limited, so that laboratory spectral measurements of-
ten had to be selected. It is important to note that
laboratory measurements are sometimes required be-
cause of vegetation cover of natural targets in the
field, for example, soils. Of the 156 data sets, 59 rep-
resent laboratory measurements. Most of ‘these oc-
cur in either the tree or the rocks and soils category.
(As previously mentioned, the laboratory and field
data are not compatible since they represent entirely
different environments.) Finally, the quality of the
reflectance data, which was judged somewhat arbi-
trarily, was used to eliminate some of the data. The
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preferred data were well documented with a discus-
sion of error sources.

The targets were grouped into six major cate-
gories: agriculture; trees; shrubs and grasses; rocks
and soils; water, snow, and clouds; and miscellaneous
targets. Each reflectance curve was presented by its
author as being representative of a given target; this
report has simply standardized all of the data to a
common format.

This standardization involved digitizing the
curves from the published documents and interpo-
lating to obtain the desired format. The digitiza-
tion was performed in the following manner. First,
a photocopy was made of each spectral reflectance
curve chosen for inclusion in the data set. Then,
an X-Y digitizer was used to digitize the data from
each profile. Each record was archived on magnetic
tape. In final processing the data were retrieved, the
reflectance curve was machine plotted, and a second-
order interpolation was performed to give the uni-
form spectral intervals and format shown; having a
common wavelength interval for each profile helps in-
tercomparison of the data.

Digitizing the data has, of course, introduced
some error. All of the data were taken from copies of
the original documents. Fortunately, one of the re-
ports (Gausman et al. 1973) contained both graphi-
cal and tabular data. This set of data represents the
worst case in digitizing since the original figures were
only approximately 20 by 45 mm in size. Compari-
son of reflectance values at 38 coincident wavelengths
(taken from two figures in the Gausman report) gave
an average error of only 0.0073 units of reflectance.
This is an excellent agreement, and the data pre-
sented in this report may, therefore, be taken as re-
liably reporting the original sources.

Spectral reflectances for the 156 selected targets
are presented in the common format in the back of
this report. The reflectance data for each target are
presented in two formats: (1) graphical, with a wave-
length interval from 0.3 to 1.2 pym or from 0.3 to
2.5 pm, and (2) tabular, with a spectral resolution of
0.01 ym (0.3 to 1.2 um) or 0.02 ym (0.3 to 2.5 ym ).
The ordinate of the reflectance curves is labeled “re-
flectance” with a range from 0 to 1. Bidirectional re-
flectance factor would have been a more appropriate
term for most of the field data, but it was not always
clear that the assumptions required by equation (1)
were valid (see Robinson and Biehl 1979). In several
instances data have been included where the ordinate
was labeled “relative reflectance” or “albedo.” The
magnitudes of most target reflectances are known to
vary over wide limits, even when the target descrip-
tions are identical. What is most important is the
variation of reflectance with wavelength.



Concluding Remarks

A collection of spectral reflectances for 156 natu-
ral targets has been presented in a uniform format.
Each target is described by both graphical and tab-
ular data. The collection was chosen with some con-
sideration of the relative importance of the targets,
and the data presented are representative of what is
available in the literature. While the data set was de-
veloped to support simulation studies in the develop-
ment of remote sensing instruments, it may find ap-
plication in other areas of remote sensing, such as al-
gorithm development and radiative transfer studies.

The data are presented here with a uniform 0.01-
or 0.02-um spacing, even though the spectral reso-
lution of the source data varied widely. Therefore
these data are intended for the broad class of appli-
cations requiring moderate spectral resolution, and
not for those requiring high spectral resolution, such
as the detection of the vegetative red-shift; for these
high-resolution tasks, other data must be used.

NASA Langley Research Center
Hampton, VA 23665
February 20, 1985



Appendix

Atmospheric Effects on Reflectance Profiles

In the spectral region of interest for this report,
0.3 to 2.5 um, the sensed energy is almost entirely
derived from solar radiation which transits the atmo-
sphere, is reflected by the surface, and is then trans-
mitted to the semsor aloft. In this spectral region,
the thermal radiation from the atmosphere itself is

negligible in comparison with the solar component,

so it will be ignored here. The solar irradiance £, on
top of the atmosphere is shown in figure Al. After
passing through the atmosphere, the irradiance im-
pinging on the surface has been attenuated as shown
by the lower curve. Both curves here pertain to the
Sun at zenith. The atmospheric absorption features
shaded on the curve are due to ozone, oxygen, water
vapor, and carbon dioxide, as indicated.

The solar irradiance at the surface is composed
of both a direct and a diffuse component, as shown
in figure A2. For the example shown, the diffuse
component amounts to more than 30 percent of the
total at the shortest wavelengths. (Slater (1980)
states that a diffuse component of 10 to 20 percent
is typical for the visual to near-infrared spectral
range.) The conditions assumed for figure A2 are an
atmospheric visual range of 31.4 km and a surface
reflectance of 0.4 at all wavelengths. (For this, and
subsequent curves in this appendix, the solar zenith
angle 6; is 20°; all figures here cover the wavelength
range from 0.4 to 1.2 yum.) As will be seen later,
varying the visibility and surface reflectance affects
the magnitude of the diffuse irradiance.

From the foregoing, it can be seen that the spec-
tral content of the solar irradiance has been modified
greatly by the atmosphere even before any reflection
takes place. The irradiance at the surface E; is made
up of a direct solar component E,s and a diffuse com-
ponent Eg, so

Es=FEo+ Ey (A1)

Upon reflection by the ground, a surface radiance L,
results which is a function of E5 and p, the surface
reflectance. If Lambertian (isotropic) reflectance can
be assumed (this assumption may not always be
justified; see Smith et al. 1980), then

L, = ZeP (A2)

w

All quantities have a spectral dependence, which has
been omitted here for clarity of notation. The surface
radiance L, is that radiance which would be mea-
sured by an observer at the surface. When the target
is viewed from aloft, the total radiance measured at
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the instrument L is composed of a beam radiance
Lp and a path radiance Lp. Thus,

Lr=Lg+Lp (A3)

The beam radiance L is that component of radiance
arising from radiation reflected from the surface and
transmitted directly to the sensor without scattering,
ie., Lg = L,;T. The path radiance Lp is scattered
radiation which enters the path between target and
sensor. In terms of the surface radiance Ly,

Lr=LsT+Lp (A4)

where T is the transmittance of the atmosphere
along the target-to-sensor path. Since the surface
reflectance is defined as

_wLg

then the apparent reflectance aloft is
L
=L =S (LT+Lp)  (A6)

which differs from the true reflectance p according to
the magnitudes of T and Lp for the altitude of the
sensor. Depending on their magnitudes, p4 can be
either larger or smaller than the true value p.
Figure A3 shows the apparent reflectances of tar-
gets with true reflectances of 0.1, 0.4, and 0.7 when
the targets are viewed from altitudes of 0.6 km,
3.0 km, and the top of the atmosphere (TOA). In
general, viewing through the atmosphere increases
the apparent reflectance for low-reflectance objects
(e.g., p = 0.1) and decreases the apparent reflectance
for high-reflectance objects (e.g., p = 0.7). For ob-
jects of intermediate reflectance (e.g., p = 0.4), the
effect is minimal and depends on wavelength; p4 can
be either larger or smaller than the true reflectance

This distortion in p4 is not surprising because
only photons in Lg carry information purely concern-
ing the target. Most photons making up L p have had
no interaction with the target. Some of them are
derived from multiple-scattered radiation which has
never reached the surface. Others are derived from
radiation which has been reflected from the surface
outside the target area and then, after one or more
atmospheric scatterings, has found its way into the
field-of-view of the sensor. A small number of pho-
tons in Lp have been reflected by the target, but
scattered at least once on their way to the sensor
(and, thus, are not strictly part of the beam radi-
ance). As the path radiance increases relative to the
beam radiance, less information about the target is
included in the radiance signal.
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Figure Al. Solar spectral irradiance outside the atmosphere and at the surface, for solar zenith angle of 0°. Features due to
principal absorbers are identified.
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Figure A2. An example of the direct and indirect (diffuse) components of irradiance on a surface with reflectance of 0.4.
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Figure A4. Beam radiance and total radiance at 0.6 km and TOA.
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Figure A4 shows the relative strengths of Lp
and Lp for reflectances of 0.1 and 0.7, at altitudes
of 0.6 km and TOA. Thus, this figure shows the
radiance components for the p4 plots in figure A3.
Note that the absorption features in the radiance
curves have been omitted, for clarity. The path
radiance is the difference between L7 and Lpg. For
reflectance of 0.1, the 0.6-km curves lie between
the TOA curves. Then, for reflectance of 0.7, the
0.6-km curves lie at or above both TOA curves. This
behavior shows that for p = 0.1, total radiance
increases with altitude, but for p = 0.7, it decreases
with altitude. For p = 0.4 (not shown), the total
radiance is nearly constant. Turner (1975) describes
in more detail the relative magnitudes of Ly, Lp,
and Lp under a variety of conditions.

Factors Affecting Apparent Reflectance
Determination

Some introductory examples have just been given
of the influence of altitude and surface reflectance
on the derived reflectance. In the present section,
all the parameters affecting the determination of ap-
parent reflectance will be identified, and their effects
described. The parameters are shown on figure A5;
they may be grouped as follows:

Sun!

Atmospheric optical parameters

Visual range, V
Aerosol type (phase function)
Single-scattering albedo

i~ Y

Background
reflectance, pb

Target reflecta nce, pt

Viewing geometry:
Solar zenith angle, 6,
Viewing angle, 8,
Azimuthal angle, ¢; or ¢,
Relative azimuthal angle, ¢,
where ¢ = ¢ — ¢; + 180
Altitude of sensor, H

Meteorological parameters:
Relative humidity
Cloud cover
Surface pressure

Atmospheric optical parameters:
Optical thickness, 74
or
Atmospheric visual range, V
Aerosol type (phase function)
Single-scattering albedo, w,

Target and background parameters:
Target size
Target reflectance, p;
Background reflectance, pp
Instantaneous field-of-view, IFOV

The effect of variation in each of these parameters is
now discussed.

Viewing Geometry. As 0, increases, less solar irra-
diance is incident on the surface, and less is reflected

.'.'.'.'- . ’" e
<7/ Satellite, at altitude H

Meteorological parameters

Cloud cover
Surface pressure
Relative humidity

< P Sensor IFOV

Figure A5. Parameters affecting apparent reflectance.
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to the observer. Therefore, failure to account for an
increase in 8; would result in an underestimate of re-
flectance. (As noted earlier, 8; should be kept below
55°.) Also, as 6, increases, there is a higher propor-
tion of multiple scattering in the incident radiation.

Similar effects are noted for 8,; as @, increases, the
path component of radiance increases, and the beam
component of radiance passes through a longer at-
mospheric path and suffers more attenuation through
absorption and scattering. Therefore, as 8, increases,
the total radiance depends more heavily on atmo-
spheric influences and less on target characteristics.
Thus, target contrast and modulation become re-
duced with increasing #,. In addition to the atmo-
spheric effects, most targets have bidirectional re-
flectance characteristics that are not isotropic (see,
e.g., Smith and Ranson 1979 and Kimes 1983). This
behavior needs to be considered in addition to the ef-
fects of changing @; and 6, (Holben and Fraser 1984
and Barnsley 1984). A feature’s reflectance may be
considered to be isotropic only for small instanta-
neous fields-of-view (IFOV) and over ranges of 8;
and @, each smaller than a few degrees (Slater 1980).
However, isotropic surface reflectance is assumed in
all cases here. : oo

Solar radiation is scattered by both the molecular
and the aerosol component of the atmosphere. The
molecular component (mostly nitrogen) scatters in a
Rayleigh-like fashion with equal amounts of forward-
and back-scattering, and smaller amounts at right
angles to the incident beam. In a very clear atmo-
sphere, the scattering of radiation approaches this
condition. In an aerosol atmosphere, however, scat-
tering is much more anisotropic, with the prepon-
derance of radiation scattered in the forward direc-
tion. In most conditions, the scattering phase func-
tion shape is a blend of the Rayleigh and aerosol
phase function shapes, with considerable departure
from anisotropy. For this reason, the magnitude of
the radiance reaching the detector depends highly
on 1 except when 6, is zero (i.e., the nadir is being
viewed). For molecular scattering, the radiation is
scattered approximately as the inverse fourth power
of the wavelength. (This accounts for the predomi-
nantly blue color of the sky.) For aerosol scattering,
the result is less marked, the exponent being on the
order of —1.3 (Kiang 1982). Thus, aerosol scatter-
ing results in a blue-white “milkiness,” rather than
a blue coloration. For both of these reasons, the ef-
fect of a change in % is, again, always most marked
at the shortest wavelengths. Figure A6 shows the
effect of changing 9 with 8; = 20° when a surface
with reflectance of 0.1 is viewed from satellite alti-
tude for 8, = 5°. For example, at A = 0.4 um, p4
increases by 0.030 for observations in the direction
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of the Sun (relative azimuth angle ¥ = 0°) and de-
creases by 0.014 for observations in the direction op-
posite the Sun (¢ = 180°), compared with the nadir-
looking case, which is denoted by X’s on the graph.
At X = 0.7 pm, the increase and decrease are both
approximately equal to 0.002.

3r
Conditions :

9i=20°' Br=5‘,’ p=0.1,
H= TOA, 0= 0.9

W\ ¢=0° V=3l4km
2 _\\'\ X - Points denote
R ¥ =90° nadir view (6, = 07
\

R
A, um
Fiiguirre" A6. Effect on appareflt reflectance of changing
relative azimuthal angle when viewing a surface with
reflectance of 0.1 at 5° from nadir, from satellite altitude.

Meteorological parameters. Implicit in the forego-
ing discussion was the assumption of a cloud-free at-
mosphere and a nominal water vapor profile. Clouds
can drastically modulate the amount of energy reach-
ing the surface; they are not modeled here. (For a
good discussion of cloud effects, see Duggin et al.
1984.) Changes in the humidity profile change the
depth of the water vapor absorption features. A
higher level of relative humidity also affects the type
of aerosol present, by favoring larger aerosol particles
(Shettle and Fenn 1979).

Surface pressure and terrain altitude variability
have similar effects on the radiance level. The three-
sigma surface pressure variability worldwide is esti-
mated to be equivalent to a surface elevation range
from —0.73 to +0.78 km (Bowker et al. 1983). Either
a pressure or a surface elevation change modifies the
amount of molecular scattering. For most cases, this
effect is small.

Atmospheric optical parameters. The amount of
aerosol in the atmosphere is usually parameterized
by the aerosol optical thickness 74 where

Ty = exp(—74) (A7)

is the aerosol transmissivity in a vertical path. The
value of 74 can be determined for a locality by view-
ing the Sun with a photometer over a range of solar



elevation angles (Flowers et al. 1969 and Peterson
et al. 1981). The total attenuation is measured and,
then, because the molecular scattering and ozone op-
tical thicknesses are known and can be subtracted,
the aerosol optical thickness can be determined. The
aerosol optical thickness is sometimes expressed as
a turbidity, often taken at or near 0.55 um wave-
length. The optical thickness (or turbidity) at one
wavelength can be related to the optical thickness
at other wavelengths statistically (Fraser 1975 and
Kaufman and Fraser 1983) or analytically (Nicholls
1984).

Another way of quantifying aerosol amount is
through visual range in the horizontal at the sur-
face (Elterman 1970). The lower the visual range,
the more turbid the atmosphere. This approach has
appeal because visibility (which is proportional to vi-
sual range (Kneizys et al. 1980)) is a parameter mea-
sured at all weather stations, whereas optical thick-
ness is measured at comparatively few sites. The
correspondence between optical thickness and visual
range is only a rough proportionality, however, be-
cause it is possible to have thick layers of aerosol ex-
isting aloft with a very clear atmosphere at the sur-
face, as indicated by a surface visibility measurement.
For this reason, particularly in remote sensing mea-
surements, for which a target is viewed downward
through the atmosphere rather than along a near-
surface path, turbidity is a more reliable measure.

In summary, a decrease in visual range, or an
increase in optical thickness, increases the amount
of aerosol scattering. Figure A7 shows the effect
on apparent reflectance of changing the atmospheric
visual range from a very hazy condition (V = 10.5
km) through an average condition (V = 31.4 km)
to a rather clear condition (V' = 62.8 km). The
solar zenith angle is 20°, and the nadir is viewed.
Three different surface reflectances are simulated.
For the low reflectance (p = 0.1), the effect is an
increase in apparent reflectance at all wavelengths,
particularly at short wavelengths. Even for the
very clear atmosphere (V' = 62.8 km), the apparent
reflectance at A = 0.4 pym for p = 0.1 is around
0.24. At A = 0.7 pym, the increase in reflectance
is only approximately 0.02, even for a very hazy
atmosphere. For p = 0.4, the effect of the atmosphere
can be either to decrease or to increase the apparent
reflectance, depending on the wavelength and visual
range. There is an increase only at wavelengths
smaller than 0.6 pm; at longer wavelengths, the
apparent reflectance decreases, by up to 0.04 for a
hazy atmosphere. For p = 0.7, the effect is a decrease
in apparent reflectance for all wavelengths and visual
ranges. A more detailed discussion of the effects of

8r
J
=07
6 Conditions : P
6i = 20°, 6r =(°,
S w, = 0.95, H=TOA
4\\\\\; —— e e —
pA ) &————-..___ ____________
p=0.4
3-
Visual range:
10.5 km
2 ———— 3L4km
— - — 62.8km
A
p=0.1
I I i I | |

8 9 10 11 1.2
A,pm
Figure A7. Effect of atmospheric visual range on apparent
reflectance, for three surface reflectances.

visual range at solar zenith angles other than 20°
may be found in Bowker et al. (1983).

The type of aerosol affects the shape of the single-
scattering phase function. Also, the more absorptive
the aerosol, the more isotropic the scattering. The
single-scattering albedo w, determines the amount
of radiation scattered, rather than absorbed, at each
scattering. A higher w, means a higher total radi-
ance level. Remember that the shape of the actual
phase function varies with wavelength and is a blend
of the Rayleigh and aerosol phase function shapes.
Figure A8 shows the effect on p4 of changes in the
aerosol single-scattering albedo w, assumed in the
calculations; the effect is shown for three surface re-

flectances. The apparent reflectance is always highest

for the highest value of w, and lowest for the lowest
value. The effect of a change in w, is roughly propor-
tional to the surface reflectance. For darkest scenes,
the effect is minimal; for the brightest scene simu-
lated (p = 0.7), the effect on p,4 is as much as 0.04
at A =0.4 pym.

Target and background parameters. If the re-
flectance of the adjacent surface area differs from
that of the target, then light scattered from this sur-
rounding background has a different spectral content
from that of the target, and the perceived target re-
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Figure A8. Effect of aerosol single-scattering albedo on

apparent reflectance, for three surface reflectances.

flectance will be in error. Figure A9 shows the effect
of viewing a target surrounded by a uniform, slightly
more reflective background. The figure shows cases
with target/background reflectance combinations of
0.1/0.2, 0.4/0.5, and 0.7/0.8. A comparison of these
results with those for the uniform-scene reflectances
of 0.1, 0.4, and 0.7 in figure A7 shows that in each
case the apparent reflectance is higher than that of
the target alone, because of additional photons scat-
tered into the path from the background. Even for
the slight reflectance differences (0.1) simulated here,
the effect is appreciable. Thus, background effects
need to be taken carefully into account.

The research area of modeling such “adjacency
effects” continues to be an active one. Some recent
references are those of Dave (1980), Kaufman and
Joseph (1982), Dana (1982), and Kaufman (1984). A
good introductory discussion may be found in Slater
(1980).

Correction for Atmospheric Effects

Because the factors named above all affect the
perceived reflectances of substances, it is of interest
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Figure A9. Effect of background radiance on apparent

reflectance, when background reflectance is 0.1 higher
than target reflectance, for three target reflectances and
atmospheric visual ranges.

to ask whether such influences can be estimated well
enough to remove their effects and allow the true
reflectance profiles to be estimated. Bowker et al.
(1983) directly attacked this problem. In that re-
port, the effects of imprecision in the knowledge of
each of the quantities noted earlier on derived re-
flectance are discussed, and the results plotted. Also,
a method was developed for estimating spectral re-
flectance from total radiance values. Figure A10
(from Bowker et al. 1983) shows an example of an al-
falfa radiance profile converted to obtain a reflectance
profile. When the sky is free of clouds and relatively
stable atmospheric conditions prevail, it should be
possible to determine reflectance to an accuracy of
10 percent or better, by using local meteorological
data. It should be noted, however, that only 2 of the
156 reflectance curves presented in this report have
been corrected for atmospheric effects in this manner.
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Figure A10. Example of alfalfa field radiance profile that has been converted to spectral reflectance.
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Spectral Reflectance Data

Spectral reflectance data are presented for 156
targets. The targets are grouped into six major cat-
egories: agriculture; trees; shrubs and grasses; rocks
and soils; water, snow, and clouds; and miscella-
neous. Within each category the targets are arranged
alphabetically with appropriate adjectives that help
to describe the state of the target. Of the 156 data
sets, 59 represent laboratory measurements. Most of
these occur in either the tree or the rocks and soils
category. The laboratory data are identified by the
words sample, leaf, or needles. As previously men-
tioned, laboratory and field data are not compatible,
since they represent entirely different environments.

The reflectance data for each target are presented
in both a graphical and a tabular format. On each
graph the source reference number is given along
with the date of measurement and target location,
where available, and any other pertinent information
concerning the target condition or viewing geometry.
The supporting information provided here has been
limited to the more commonly measured items, and
the reader may refer to the original source when more
specific data are needed. Each reflectance curve was
presented by its author as being representative of a
given target; this report has simply standardized all
of the data to a common format.

An index of targets and a numbered list of refer-
ence sources precede the spectral reflectance data.

Index of Spectral Reflectance Targets

Agriculture
No. Target Ref.
1 Alfalfa . . . . . . . . . . . ... 9
2 Mature Alfalfa . . . . . . . . . .. 6
3 Dry AlfalfaHay . . . . . . . . . . 37
4 Barley . . . .. e e e e e . 38
5 Barley e e e e e e e . . 50
6 Stem Extension Barley ....... 3
7 RipeBarley . . . . . . . .. ... 6
8 RipeBarley . . . . . . . .. ... 3
9 Bean Leaf e e e e e .. . 26
10 Dehydrated Bean Leaf . . . . . . . 26
11 Beans . . . . . . . . e e e e e 50
12 Beets . . . . . . . . . .. .. ... 46
13 Cabbage e e e e e e e 46
14 Cantaloupe Leaf . . . . . . . . ... 20
15 Tall Green Corn . . . . . . . . .27
16 SilageCorn . . . . . . . . . . . . 27
17 Yellow Corn . . . . . . Y
18 Cotton Leaf . . . . . . . . . ... 15

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

No.

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

Dehydrated Cotton Leaf
Fallow Field
Flax
Oats
Oats
Oats
Peanuts
Potatoes
Potatoes
Rapeseed
Sorghum
Soybeans
Soybeans
Sugar Beets
Sugar Beets
Sugarcane Leaf
Sugarcane Leaf
Sugarcane
Sunflower
Tobacco
Tomatoes
Tomatoes
Watermelon Leaf . . .
Wheat . .
Seedling Wheat
Young Wheat
Booted Wheat
Mature Wheat
Mature Wheat
Wheat Stubble . .

.............
--------------
............
............
-------
.......
..........
.............
...........
.....

Trees

Target

Trembling Aspen
Birch Leaves
Redblush Citrus
American Elm Leaf
Balsam Fir . . . .
Silver Maple Leaf .
Sugar Maple Leaf
Burr Qak Leaf
Live Oak
Orange Leaf
Peach Leaf
Dead Ponderosa Pine Needles
Ponderosa Pine Needles
Ponderosa Pine Needles
Red Pine Needles
White Pine
Red Spruce
Sycamore Leaf ..
Dehydrated Sycamore Leaf
Tulip Tree Leaf

......

------------

.........

..........



No.

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

No.

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

22

Shrubs and Grasses

Target Ref.
Cenizo . . . « « « o s e v e 39
Average Desert Leaves . . . . . . . 4
Grass . « « v o+ v e e e e e 40
GIasS . + « v ¢ « v e v v e e e e 44
Kentucky Blue Grass . . . . . . . . 50
Red Fescue Grass . . . . . . . . . 50
Blue Grama Grass . . . . . . . . . 48
Perennial Rye Grass . . . . . . . . 50
Dry Lichen Sample . . . . . . . . . 13
LichenMat . . . . . . . . . . .. 12
Manzanita . . . . . . . . . . 44
Mesquite . . . . . . . oo 39
Honey Mesquite . . . . . . . . . . 16
Prickly Pear . . . . . . . . . . .. 19
DrySage . . . . . . .. . ... 44
Average Subalpine Slope Leaves . . . 4
Silverleaf Sunflower . . . . . . . . . 39
Burned Forest Surface . . . . . . . 12
Rocks and Soils
Target Ref.
Arkose . . . . . o o o o e 21
Basalt Sample . . . . . . . . . .. 41
Red Cinder Basalt Sample . . . . . . 1
Gray Basalt Sample . . . . . . . . 1
Breccia . . . . . . . o o o .. 32
Dry Red Clay Sample . . . . . . . . 47
Wet Red Clay Sample . . . . . . . 47
Quartz Diorite . . . . . . . . . .. 5
Granite . . .« .« v 0 e e e 54
Granite . . . . . . . ... 5
Biotite Granite Sample . . . . . . . 41
Gravel . . . . . . . .. 40
Glaciofluvial Sand and Gravel . . . . 45
Limestone . . . . . . « . .« .« . - . 21
Limestone Sample . . . . . . . . . 47
Monzonite . . . . . . . . ... 5
Quartz Monzonite . . . . . . . . . 5
Obsidian Sample . . . . . . . . . . 1
Unaltered Rocks . . . . . . . . . . 42
Altered Rocks . . . . . . . . . . . 42
Rhyolite Sample . ., . . . . . . . . 41
Beach Sand Sample . . . . . . . . . 25

Carbonate Beach Sand Sample . . . . 10

Quartz Beach Sand Sample . . . . . 10
Quartz Beach Sand Sample . . . . . 10
DrySand . . . . . . . . ... .. 8
Gypsum Sand Sample . . . . . . . . 25
Silica Sand Sample . . . . . . . . . 25

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

No.

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

No.

152
153
154
155
156

Shale
Dry Silt Sample
Wet Silt Sample
Dry Silt
Dry Lacustrine Silt and Clay
Soil Sample
Soil Sample
Soil Sample
Disked Bare Soil
Dry Pedocal-Type Soil
Dry Chernozem-Type Soil
Dry Laterite-Type Soil
Dry Clay Soil Sample
Wet Clay Soil Sample
Dry Lake Soil Sample
Chilean Nitrate Soil Sample
Salt Pool Soil Sample
Dry Sandy Soil Sample
Wet Sandy Soil Sample
Syenite
Dry Glacial Till
Rhyolite Tuff Sample

...............
..........

..............

............
............
............
..........
-------
.......
........
........
........
.....
........
.......
.......
..............
..........

Water, Snow, and Clouds

Té,rget

Altocumulus Clouds
Stratus Clouds
Cirrostratus Clouds
Middle Layer Clouds
Dense Ice Cloud Sample
Hoarfrost Sample
Snow Sample
Typical Snow Sample
Fresh Snow Sample
Two Day Old Snow Sample
Dry Fresh Snow
Wet Snow
Water
Clear Lake Water
Turbid River Water

...........
.........

........
.......
..........
...........

........
.........
.....
..........

.............
..............
.........

Miscellaneous

Target

Asphalt
Blacktop
Concrete
Shingles
Artificial Turf

..............

.............

..............

...........
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NO.o4 - SILVER MAPLE LEAF
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NO.55 - SUGAR MAPLE LERF

Ann Arbor, Ml
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NO.56 - BURR ORK LERF
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NO.57 - LIVE ORK
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NO.58 - ORANGE LERF
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NO.60 - DEAD PONDEROSA PINE NFEDLES

Black Hills, SD
Aug. 1964
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Black Hills, SD
Aug. 1364

Ref. 22

NO.61 - PONDEROSA PINE NEEDLES
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Angeles National Forest, CA

June 1968

Ref. 55
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NO.63 - RED PINE NEEDLES
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NO.o4 - WHITE PINE
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NO.bo - RED SPRUCE
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NO.66 - SYCAMORE LEAF
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NO.67 - DEHYDRATED SYCAMORE LEAF
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Reflectance
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NO.68 - TULIP TREE LEAF
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NO.63 - CENIZO
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- HAVERAGE DESERT LEAVES
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NO.71 - GRASS
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NO.73 - KENTUCKY BLUE GRASS

Ref. 50
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NO.74 - RED FESCUE GRASS




NO.75 - BLUE GRAMA GRASS

Fort Collins, CO
June 1972
Ref. 48
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NO.77 - DRY LICHEN SAMPLE
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NO.78 - LICHEN MAT

Saskatchewan, Canada
Spruce Woodland

Ref. 12
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Reflectance

NO.79 - MANZANITH

Ref. 44
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NO.80 - MESQUITE

Weslaco, TX
1976
Ref. 38
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- HONEY MESQUITE

NO .81
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NO.83 - DRY SAGE
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Western Great Basin, NV
Sept. 1949

Ref. 4
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NO.85 - SILVERLEAF SUNFLOWER

-8 Weslaco, TX
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Ref. 39
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NO.86 - BURNED FOREST SURFACE
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NO .88 - BASALT SAMPLE
fine powder.

Oregon
Crushed,
Ref. 41
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NO.89 - RED CINDER BASALT SAMPLE
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NO.30 - GRAY BASALT SAMPLE

Ref. 1
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NO.31 - BRECCIA
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NO.32 - DRY RED CLAY SAMPLE
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NO.93 - WET RED CLAY SAMPLE
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Reflectance

NO.34% - QUARTZ DIORITE

San Gabriel, Inyo and Argus Mts., CA
Ref. 5
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NO.95 - GRANITE

Ref. 54

/

| |

/

‘llll‘llll‘lllll

1.0
Wavelength, um

1‘1llL

s

w -

| mocouﬁwmzmm

oV

0

2.0

2.0

1.5

.3

o]

OO OO OO
\A_ OOttt CUCUCUCUOU NN 0NN Mo

----------------------

lllllllllllllllllllll

nnnnnnnnnnnnnnnnnnn

nnnnnnnnnnnnnnnnnnnnnn

----------------------

----------------------

o (W Tp Wp'Tallalnnvalep oV~ pfelapvalia e pan ey

.................

----------------------

120



Reflectance
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NO.36 - GRANITE

San Gabriel Mts., CA
Ref. 5
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NO.97 - BIOTITE GRANITE SAMPLE

Rhode Island
Crushed,
Ref. 41
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NO.38 - GRAVEL
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NO.99 - GLACIOFLUVIAL SAND AND GRAVEL

-8 Onondaga County, NY

Ref. 45

Reflectance
|

124



NO.100 - LIMESTONE
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NO.101 - LIMESTONE SAMPLE

Weathered Harrodsburg Formation.

Ref. 47
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NO.102 - MONZONITE

Panamint Mts., CA

Ref. 5
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NO.103 - QUARTZ MONZONITE
San Gabriel, Argus, Panamint and Inyo Mts., CA
Ref. S
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Reflectance

NO.104 - OBSIDIAN SAMPLE

Ref. 1
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NO.105 - UNALTERED ROCKS

Goldfield, NV
Sulfide orebody.
Ref. 42
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NO.106 - ALTERED ROCKS

Pyrite enriched sulfide orebody.

Goldfield, NV
Ref. 42
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NO.107 - RHYOLITE SAMPLE
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NO.108 - BEACH SAND SAMPLE

81 Atlantic City, NJ
Ref. 25
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NO.109 - CARBONATE BEACH SAND SAMPLE
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Reflectance
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NO.110 - QUARTZ BEACH SAND SAMPLE

B[

Gulf of Mexico
25% water, non-iron stained.
Ref. 10
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NO.111 - QUARTZ BEACH SAND SAMPLE

B[

Lake Michigan Coastline
30% water, iron stained.
Ref. 10
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NO.112 - DRY SAND

ument Valley, UT
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NO.113 - GYPSUM SAND SAMPLE

-8 White Sands National Monument, NM

Ref. 25

Reflectance
|

OL|IlllJllllllIl|lLllJ
.3 .5 1.0 1.5 2.0 2.5

Wavelength, um

%
1

[>
|=o
>

TGN NIRINON NI OGO
BREELR 1=

PIODOI=AICICOTH-NICIDTHIHNIOOTHH-NIO
RIS IR

— (OO0~
DO CO0 W=NIOCORNIOCOT=

CONINON 2+
—

" 4 @ 4 &a % & % %W 8 4 4 a & &« @ B 4 @ A
Yoo [ e anll aul ] el D et il il 1osttl sl ull Al wtl vl wnfll el o

Q=
[0) % e =

|
%

138



NO.11% - SILICA SAND SAMPLE

-8 Ref. 25

Reflectance
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NO.115 - SHALE

Ref. 21
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NO-116 - DRY SILT SAMPLE

Indiana




NO.117 — WET SILT SAMPLE

Indiana
1967

20% water.
Ref. 47
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Reflectance

B8

NO.118 - DRY SILT

Hot Springs, AR
Pedalfer-type silt.
Ref. 8
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NO.119 - DRY LACUSTRINE SILT AND CLAY

Onondaga County, NY

Ref. 45
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Reflectance
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NO.120 - SOIL SAMPLE

Whitley County, IN
June 1973
Martinsville soil.
Ref. 43
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NO.121 - SOIL SAMPLE
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Reflectance

B[

NO.122 - SOIL SAMPLE

Pawnee Grassland,

Ref. 25

CO

OIJIIIJJJJIIIIIIIJJJJIJ

-3

=

-5 1.0

1.5

2.0 2.5

Wavelength, um

R

0

[>

g":
?553

R A R

147



NO.123 - DISKED BARE SOIL

-8 Weslaco, TX

Oct. 1375
Ref. 18
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NO.124% - DRY PEDOCAL-TYPE SOIL

Phillipsburg, MO
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Lincoln, NE
Ref. 8

NO.125 - DRY CHERNOZEM-TYPE S0IL
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NO.126 - DRY LATERITE-TYPE SOIL
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NO.127 - DRY CLAY SOIL SAMPLE
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NO.128 - WET CLAY SOIL SAMPLE
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Reflectance

NO.129 - DRY LAKE SOIL SAMPLE

Rosamond Dry Lake, CA
Ref. 25
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NO.130 - CHILEAN NITRATE SOIL SAMPLE

B[

Reflectance
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Pampa Nebraska, Chile
Ref. 25
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Reflectance

NO.131 - SALT POOL SOIL SAMPLE

Death Valley, C
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NO.132 - DRY SANDY SOIL SAMPLE
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22-32% moisture content.

Ref. 24

NO.133 - WET SANDY SOIL SAMPLE
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NO.134 - SYENITE

abriel Mts., CA

/\

QUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUICUAICCIO
Q
oy x| FTLRR0 Q
m PR Y N
OO OO OO OO
J uw ~<| 88577778888888%800
FaVaVaY
0 5
e Oy P
— ] LD OOD0 OO0
n Tttt et Tt e
e llllll L]
O OO
OGO ODO
> ~| OIAINMMMOM ST I HBLOOLOLXD
O O
-
C~ OO~ LT LI =MLNOIN~ONLA~ O+
o NN CUCIAIAICUCIA NN+

----------------------

Ol]lllllllll]llll]lllll

| |

3
p
§
|
|

--------------

-+ AJ

.@QCwamcmm ......................

159



NO.135 - DRY GLACIAL TILL

Onondaga County, NY

Ref. U5
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- RAYOLITE TUFF SAMPLE

NO.136
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NO.137 - ALTOCUMULUS CLOUDS

Black Sea, Russia
Apr 1971

Ref. 28
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NO.138 - STRATUS CLOUDS

Black Sea, Russia

1371
Ref. 28
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NO.133 - CIRROSTRATUS CLOUBS
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NO.140 - MIDDLE LAYER CLOUDS

Ref. 34
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NO.141 - DENSE ICE CLOUD SAMPLE

Ref. 58

| |

|

|

2.0

lllllllllilllllllllll

-5

O -

| @ocoﬁ.v@cmm

d

0

2.0

1.5

1.0

-3

Wavelength, um

o 00OEMME=OWOAIOT-MNCICICOC- OO
| SOOI MNOO=HOI0ONOWOLILOLN

o OO\ L HO—INCAN T — O~
| LAXO0OO~(OT Yt LD 0 IOT IO
R e e e Tp= o '10'sp sp aV AV al op og 48 =

----------------------

o T~ OLNO =T~ —TDOMOO0 IO~ O~
1 OO AUC—0 IO 00— IO
R S e e e it {e e 00 1a Te Ta, uulne iy Sy ey Ty

----------------------

x| OOt

166



3 mm thick
Ref. 58

NO.142 - HOARFROST SAMPLE

-------------
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NO. 144 - TYPICAL SNOW SAMPLE




NO.145 - FRESH SNOW SAMPLE




NO.146 - TWO DAY OLD SNOW SAMPLE




NO.147 - DRY FRESH SNOW
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NO.148 - WET SNOW
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NO.149 - WATER

Denver, CO
Ref. 40
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NO.150 - CLEAR LAKE WATER
10 mg/! suspended solids.

June 10, 1973
Ref. 2

Lake Monroe, IN
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NO.151 - TURBID RIVER WATER
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NO.152 - ASPHALT

Denver, CO
Ref. 40
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NO.153 - BLACKTOP

30° sol. elev.

Davis, CA
Ref. 9
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NO.154% - CONCRETE

Denver, CO
Ref. 40
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NO.155 - SHINGLES
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NO.156 - ARTIFICIAL TURF
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