# i N85-31197

## SENSOR/ACTUATOR SELECTION FOR THE CONSTRAINED VARIANCE CONTROL PROBLEM

#### M. L. DeLorenzo

Air Force Academy, Colorado Springs, CO 80901

**R. E. Skelton** School of Aeronautics and Astronautics Purdue University West Lafayette, IN 47907

#### APSTRACT

This paper considers the problem of designing a linear controlle for systens subject to inequality variance constraints. A quadratic penalty function approach is used to yield a linear controller. Both the weights in the quadratic penalty function and the locations of sensors and actuators are selected by successive approximations to obtain an optimal design which satisfies the input/ output variance constraints. The method is applied to MASA's 64 meter Hoop-Column Space Antenna for satellite communications. In addition the solution for the control law, the main feature of these results is the systematic determination of actuator design requirements which allow the given input/output performance constraints to be satisfied.

#### I. INTRODUCTION

Consider the task of controlling the linear, stochastic system

(1a) 
$$\dot{x} = Ax + B(u+w)$$
,  $x \in \mathbb{R}^n$ ,  $u \in \mathbb{R}^m$ ,  $y \in \mathbb{R}^k$ 

(1c) 
$$z = ix + v, z \in \mathbb{R}^{d}$$

$$E\begin{pmatrix} x(0) \\ w(t) \\ v(t) \end{pmatrix} = 0 , E\begin{pmatrix} x(0) \\ w(t) \\ v(t) \end{pmatrix} (x^{T}(0), w^{T}(\tau), v^{T}(\tau)) = \begin{bmatrix} x_{0} & 0 & 0 \\ W\delta(t-\tau) \\ 0 & 0 & V\delta(t-\tau) \end{bmatrix}$$

$$W = diag [... V_{ii} ...], V = diag [... V_{ii} ...],$$

such that these four control design goals are met:

(I) 
$$E_{\alpha \nu i}^{\nu} {}^{2}(t) \stackrel{\Delta}{=} \lim_{t \to \infty} E y_{i}^{2}(t) \leq \sigma_{i}^{2}, i = 1, ..., k$$
  
 $E_{\alpha \nu i}^{2}(t) \stackrel{\Delta}{=} \lim_{t \to \infty} E \dot{u}_{i}^{2}(t) \leq \mu_{i}^{2}, i = 1, ..., \bar{m}$ 

PRECEDING PAGE BLANK NOT FILMED

(II) Only  $\overline{i} < i$  sensors are used

(2) 
$$\bar{z} = \begin{pmatrix} z_1 \\ \vdots \\ z_{\bar{\ell}} \end{pmatrix} = \begin{pmatrix} m_1^T x + v_1 \\ \vdots \\ m_{\bar{\ell}}^T x + v_{\bar{\ell}} \end{pmatrix} = \bar{M}x + \bar{v}$$

from the admissible set of 1 sensors described from (1c)

(1c) 
$$z = \begin{pmatrix} z_1 \\ \vdots \\ z_k \end{pmatrix} = \begin{pmatrix} m_1^T x + v_1 \\ \vdots \\ m_k^T x + v_k \end{pmatrix} = Mx + v.$$

(III) Only  $\overline{m}$  < m actuators are used

(3) 
$$\overline{B}(\overline{u} + \overline{w}) = \sum_{i=1}^{m} b_i(u_i + w_i)$$

from the admissible set of m actuators described from (1a)

(4) 
$$B(u + w) = \sum_{j=1}^{m} b_j(u_j + w_j)$$

# (IV) The control $\bar{u}(t)$ is a linear function of the present and past measurements $\bar{z}(\tau)$ , $\tau \leq t$ .

Many engineering control design problems can be stated with performance constraints of the form (I). For example, large space telescopes are feasible only if the RIS pointing errors  $(E_{\omega}y_i^2)^{1/2}$  are within certain bounds  $(E_{\omega}y_i^2)^{1/2} \leq \sigma_i$ ) so as to achieve diffraction-limited performance  $(\sigma_i)$  of the optics. The designer may also have the freedom to choose from a number of different types of sensors and actuators at a number of different locations. The locations and the types of actuators (sensors) determine the vectors  $b_i(m_i)$  in (4) and (1c).

A straight-forward approach to accommodate the bounded input/output problem (I) yields nonlinear controllers [1-2], violating goal (IV). A straight-forward approach to accommodate gcals (IV) and (I) is to use a penalty function method [3-5], minimizing

(5) 
$$V = E_{\infty} \frac{1}{t} \int_{0}^{t} (||y||_{Q}^{2} + ||u||_{R}^{2}) d\tau$$
,  $||y||_{Q}^{2} = y^{T}Qy$ 

.

while adjusting Q and R until (I) is satisfied. These successive approximation schemes [3-5] presume a fixed measurement/control structure, and hence do not satisfy goals (II) and (III). It is important to unify the treatment of all four goals (I-IV) since it has been shown [6-7] they are inherently interdependent problems. In particular, for the *isolated* problems; [6] has shown the optimal sensor and actuator selection for LQG problems (5) with *fixed* (Q,R), and [3-5] have adjusted Q and R to satisfy the constrained-variance problem (I) with *fixed* sensors and actuators (i.e. fixed B, M).

Unfortunately, the optimal answer for the simultaneous solution of both problems turns out *not* to be the juxtaposition of results [6] and [3-5], due to the interdependence of the two problems.

The purpose of this paper is to present a unified treatment of the entire problem (I-IV), which we call the Constrained Variance Sensor/Actuator Selection (CVSAS) problem. Section II describes the approach. Section III gives the formulas for sensor and actuator effectiveness to deal with goals (II) and (III). Section IV presents the numerical algorithm for iteratively dealing with goal (I). Section V gives the algorithm for solving the entire problem (I-IV). Section VI illustrates the application to the Hoop-Column Antenna.

#### II. APPROACH

The solution of the problem with inequality constraints (I) is generally not unique. To be a bit more specific than statement (I) we define two variations of the problem. The first is called the "Constrained-Input Variance" option of the CVSAS. In this option the input constraints in (I) are *binding* and the output constraints in (I) are z = larged.

### CIVSAS: The Constrained-Input Variance, Sensor/Actuator Selection Problem

Satisfy (II), (III), and with all input-constraints binding,

(6) 
$$\mu_i^{-2} E_{\omega} u_i^2 = 1, \quad i = 1, \dots, \bar{m},$$

minimize (recall  $y_i = c_i^T x$ ),

(7a) 
$$V_{y} = \sum_{i}^{\infty} \sigma_{i}^{-2} E_{\omega} y_{i}^{2} \quad \forall i: \sigma_{i}^{-2} E_{\omega} y_{i}^{2} > 1$$
.

If however, there is no i for which  $\sigma_i^{-2} E_{\sigma} y_i^2 > 1$  then minimize

(7b) 
$$V_{y} = \sum_{i=1}^{k} \sigma_{i}^{-2} E_{\omega} y_{i}^{2}$$

with all input constraints binding (6).

**Definition:** The phrase "minimal achievable output performance" for the CIVSAS will mean the minimum constraint violation in the sense of the minimum value of  $V_v$  in (7) with input constraints binding (6).

The CIVSAS problem is useful when one wishes to determine the best performance achievable for a *given* power limitation on the input devices (actuators). That is, for a *given* set of  $\mu_i$  the CIVSAS *finds* the minimum achievable output performance.

The second variation of the CVSAS problem is called the Constrained Output Variance Sensor/Actuator Selection (COVSAS).

#### COVSAS: The Constrained-Output Variance, Sensor/Actuator Selection Problem

Satisfy (II), (III), and with all output constraints binding

(8) 
$$\sigma_i^{-2} E_{\omega} y_i^2 = 1$$
,  $i = 1, ..., k$ ,

minimize

(Sa) 
$$V_{u} = \sum_{i} \mu_{i}^{-2} E_{\omega} u_{i}^{2} \forall i: \mu_{i}^{-2} E_{\omega} u_{i}^{2} > 1.$$

If however, there is no i for which  $\mu_i^{-2} E_{\omega} u_i^2 > 1$  then minimize

(9b) 
$$V_{u} = \sum_{i=1}^{m} \mu_{i}^{-2} E_{\omega} u_{i}^{2}$$

with all output constraints binding, (8).

Definition 2: The phrase "minimum achievable input performance" for the COVSAS will mean the minimum constraint violation in the sense of (9), with all output constraints binding (8).

The COVSAS is useful when one wishes to determine the necessary capabilities (design requirements) of the actuators in order to achieve the *specified* output performance. That is, for a *given* set of  $\sigma_i$  the COVSAS *finds* the minimum achievable input performance.

#### III. SENSOR/ACTUATOR EFFECTIVENESS

In this Section we temporarily assume that Q and R in (5) are specified diagonal matrices Q = diag [...  $q_i$  ...], R = diag [...  $r_i$  ...], and we wish to determine a ranking of the effectiveness of the admissible set of sensors and actuators for the LQG problem described by (1) and (5). To help with this task a price or "cost" is assigned to each input and output by decomposing the total system cost function (5) into contributions from each input and output. This task is called "input or output cost analysis" and from [6] we have the results

(10) 
$$V = \sum_{i=1}^{m} V_{i}^{u} + \sum_{i=1}^{k} V_{i}^{y} = \sum_{i=1}^{m} V_{i}^{w} + \sum_{i=1}^{\ell} V_{i}^{v}$$

where  $V_i^u$ ,  $V_j^y$ ,  $V_i^w$ ,  $V_i^v$  is the contribution in V of, respectively, the i<sup>th</sup> control  $u_i$ , output  $y_i$ , noise  $w_i$ , or noise  $v_i$ , and

(11a) 
$$V_i^{\ u} = r_i ||g_i||_{\hat{X}}^2$$
  $i = 1, ..., m$ 

(11b) 
$$V_i^y = q_i ||c_i||_{p = \hat{\chi}}^2$$
  $i = 1, ..., k$ 

(11c) 
$$V_i^{W} = W_{ii} ||b_i||_{K+L}^2$$
  $i = 1, ..., m$ 

(11d) 
$$V_i^{v} = V_{ii} ||f_i||_L^2$$
  $i = 1, ..., \ell$ 

where P, K,  $\hat{X}$  and L satisfy

(12a) 
$$0 = PA^{T} + AP - PM^{T}V^{-1}MP + BWB^{T}, [f_{1}, ..., f_{k}] \stackrel{\Delta}{=} F = PM^{T}V^{-1}$$

(12b) 
$$0 = KA + A^{T}K - KBR^{-1}B^{T}K + C^{T}QC, [g_1, ..., g_m] = G^{T} = -KBR^{-1}$$

(12c) 
$$0 = \hat{X}(A + BG)^{T} + (A + BG)\hat{X} + FVF^{T}$$

(12d) 
$$U = L(A - Fhi) + (A - FM)^{T}L + G^{T}RG$$

The effectiveness of the i<sup>th</sup> sensor is measured by

(13) 
$$V_i^{\text{sens}} = V_i^{v}$$

and the effectiveness of the i<sup>th</sup> actuator is measured by

(14) 
$$V_i^{\text{act}} = V_i^{\text{u}} - V_i^{\text{w}}$$

These terms  $V_i^{\text{sens}}$  and  $V_i^{\text{act}}$  represent the particular combinations of the input/ output costs  $V_i^{u}$ ,  $V_i^{w}$ ,  $V_i^{v}$  which are involved in the performance of each sensor and actuator. (The distinction here is that the effect of the *input*  $w_i$  can be calculated by  $V_i^{w}$ , but the effect of an *actuator* involves both  $V_i^{u}$  and  $V_i^{w}$  since the actuator is noisy, and this dependence is accounted for in (14)). To see that  $V_i^{\text{sens}}$  and  $V_i^{\text{act}}$  gives the appropriate measure of the effect of *deleting* the i<sup>th</sup> sensor or the i<sup>th</sup> sensor or the i<sup>th</sup> sensor or the i<sup>th</sup> actuator, refer to the numerical work in [7].

Two results from [6] add insight into the use of (13), (14).

Theorem 1, [6,7]:

For a specified (Q,R), the optimal value of the LQG performance metric (5) cannot be reduced by the deletion of any of the admissible sensors  $z_1$ ,  $\overline{i} = 1, \ldots, l$ .

Theorem 2, [6,7]:

For a specified (0,R) the optimal value of the LQG performance metric (5) can possibly be reduced by the deletion of some of the admissible actuators  $u_{j}$ , i = 1, ..., m.

These theorems partially explain why the sensor effectiveness  $V_i^{\text{sens}}$  is a much simpler calculation than  $V_i^{\text{act}}$ . Since the magnitude of the gain on the i<sup>th</sup> sensor signal  $||f_i||^2 = ||m_i||_{pp}^2 V_{ij}^{-2} + 0$  as  $V_{ii} + \infty$ , an extremely noisy sensor simply will not affect the optimal LQG controller. Hence, the effectiveness of the i<sup>th</sup> sensor can be calculated by the input cost  $V_i^{V}$ . Section V will show how to use (13) and (14) in the solution of the COVSAS problem.

#### IV. THE COVLQG ALGORITHM

Now we cite an algorithm (COVLQG) to solve the COVSAS problem under the temporary assumption that  $\overline{i} = i$  and  $\overline{m} = m$ . That is, all admissible sensors and actuators are used (B = B and  $\overline{M} = M$ ). The COVLQG algorithm will first be stated and then its theoretical properties will be discussed.

The COVLQG algorithm (i.e. the COVSAS with 
$$\bar{\ell} = \ell$$
,  $\bar{m} = m$ ):

Step A: Compute P from (12a). If  $\sigma_i^{-2} ||c_i||_p^2 > 1$  STOP. No solution to the COVLQG problem exists. Otherwise initialize

$$q_{i}(0) = \sigma_{i}^{-2}$$
,  $r_{i}(0) = \mu_{i}^{-2}$ 

Discussion of Step A: The lower bound on  $E_{\omega}y_i^2$  in an LQG problem is  $E_{\omega}y_i^2 \ge ||c_i||_p^2$  (from the well known lower bound tr CPC<sup>T</sup> on V in (5)), and this result is independent of the choice of  $Q \ge 0$ , R > 0.

Step B: Compute

$$E_{\infty} v_i^2 = q_i^{-1} v_i^y \quad \forall i: q_i > 0$$
  
 $E_{\infty} u_i^2 = r_i^{-1} v_i^u$ 

using (11), (12). If  $\sigma_i^{-2} E_{\omega} y_i^2 = 1 \forall i: q_i > 0$  and if  $\mu_i^{-2} E_{\omega} \mu_i^2 \ge 1 \forall i = 1, \dots m$ , STOP. The COVLQG solution has been found.

Discussion of Step B: In the COVLQG option all necessary control effort is applied to force the constraints  $E_{\omega}y_i^2 \le \sigma_i^2$  to be binding. A formal proof that the stopping criterion of Step B indicates a solution of the COVLQG problem is given by Theorem 5 of [7].

Step C: Q and R update equations: Let the iteration index be j and set  

$$q_i(j+1) = [\sigma_i^{-2} E_{\omega} y_i^2] q_i(j), i = 1, ..., k$$
. If  $(\epsilon \sigma_i^2)^{-1} < q_i(j+1) < \epsilon \sigma_i^{-2}, (\epsilon < 0 small specified constant) then set  $q_i(j+1) = 0$ . If  
 $\sigma_i^{-2} E_{\omega} y_i^2 = 1 \forall i: q_i > 0, then set r_i(j+1) = [u_i^{-2} E_{\omega} u_i^2]^{1/2} r_i(j), \forall i: u_i^{-2} E_{\omega} u_i^2 < 1$ . For all other i, set  $r_i(j+1) = r_i(j)$ . Return to Step B.$ 

Discussion of Step C: The  $r_i(j+1)$  of Step C are clearly adjusted toward the stopping condition of Step B  $(\mu_i^{-2} E_{\omega} u_i^2 \ge 1)$ , since a reduction in  $r_i$  causes  $E_{\omega} u_i^2$  to increase. The justification for setting  $q_i = 0$  when *either*  $q_i(j+1) \ne 0$ 

or when  $q_i(j+1) \rightarrow \infty$  is as follows: The tendency of  $q_i$  toward zero indicates a lack of output controllability due to a degenerate rank of C (rank C < k). In this case, the algorithm ceases to attempt the impossible (i.e. to force two dependent outputs to arbitrary values) by removing this particular  $y_i$  (the least critical one as indicated by the smallest  $q_i \neq 0$ ) from the cost function by setting its coefficient  $q_i = 0$ . Now let rank C = k. The tendency of  $q_i$  toward  $\infty$  can result only when a stabilizable, detectable system is not output controllable, (even though C = k) and an uncontrollable output converges to a value which violates its constraint  $(E_{\omega}y_i^2 > \sigma_i^2)$ . The constraint is violated the smallest amount possible since in this case the corresponding  $q_i \neq \infty$  on successive iterations of the update equations. When this condition is determined, such  $y_i$ 's are removed from the cost function on future iterations (by setting  $q_i = 0$ ) since it now has been established that they cannot be brought within specification  $E_{\omega}y_i^2 \leq \sigma_i^2$ .

A similar algorithm exists for the Constrained Input Variance LQG problem (CIVLQG) and details are given in [7].

#### V. THE COVSAS ALGORITHM

The sensor/actuator effectiveness formulas (13), (14) derived in Section III and the COVLQG algorithm of Section IV are now integrated to solve the COVSAS problem posed in Section II.

#### COVSAS Algorithm:

- Step 1. Specify  $\{A,B,C,H,V,\overline{l},\overline{m},\sigma^2,\mu^2\}$ . Run COVLQG algorithm using l actuators, m sensors.
- Step 2. Compute V<sub>j</sub><sup>sens</sup>, V<sub>j</sub><sup>act</sup> from (13), (14) and rank sensors and actuators according to their effectiveness:

(15a) 
$$V_1^{\text{sens}} \ge V_2^{\text{sens}} \ge \dots \ge V_{\ell}^{\text{sens}}$$

(15b) 
$$V_1^{\text{act}} \ge V_2^{\text{act}} \ge \dots \ge V_m^{\text{act}}$$

Delete the sensor and actuator with the lowest effectiveness values  $V_{i}^{sens}$ ,  $V_{i}^{act}$ , provided such deletion does not cause loss of

controllability or observability.<sup>†</sup> Unless  $l < \bar{l} + 1$ , reset l to l-1. Inless  $m < \bar{m} + 1$ , reset m to m-1. If  $\sigma_i^{-2} E_{\omega} y_i^2 = 1$   $\forall i = 1, ..., k$ and  $\forall i: \mu_i^{-2} E_{\omega} u_i^2 > 1$ , if  $[\frac{1}{k} \sum_{j=1}^{\ell} \mu_i^{-2} E_{\omega} u_i^2](j+1)$  iteration  $< [\frac{1}{k} \sum_{j=1}^{\ell} \mu_i^{-2} E_{\omega} u_i^2](j+1)$  iteration return to Step 1. Otherwise STOP. A solution to the COVSAS has been found.

Piscussion of Step 2: Numerica, experience with this algorithm suggests that more than one sensor and more than one actuator may be deleted on each iteration. In fact, for many cases the same result can be obtained by reducing l to  $\overline{l}$  and m to  $\overline{m}$  on the *first* iteration. However, this *quicker* convergence can sometimes converge only to *suboptimal* answers, and the algorithm above is written in its most conservative form (deleting only one sensor and/or actuator per iteration) where convergence to optimal values is more reliable [7].

#### VI. CONTROL OF A SPACE ANTENNA

Fig. 1 depicts the Hoop-Column Antenna arrangement for a proposed NASA communications satellite. Stationed in a geosynchronous orbit, the objective of the antenna control system is to regulate the orientation and focus of the satellite antenna relative to its multiple feed horns (at node 10). Table 1 lists the 24 linear and angular displacements which make up the outputs  $y_i$ ,  $i = 1, \ldots, k$ , where k = 24. Table 2 lists the 39 admissible sensors and Table 3 lists the 12 admissible actuators. Note that ARX2 stands for angular rate about the x axis at node 2. AX2 stands for angular displacement between nodes 10 and 2 in the z direction. The specifications for the outputs are  $\sigma_i = 22.8$  are seconds for i = 1, ..., 6, and  $\sigma_i = .158$  mm for i = 7, ..., 24. The specifications for the inputs  $u_i$  are  $\mu_i = 10$  dn-cm,  $i = 1, \ldots, 12$ . The actuator noise is described by W = diag [...  $W_{ii}$  ...],  $W_{ii} = 7.615 \times 10^{-7}$  rad<sup>2</sup>, i = 1, 2, 3, 13, 14, 15,  $V_{ii} = 2.5 \times 10^{-7}$  m<sup>2</sup>,  $i = 4, \ldots, 12$ , 16, ..., 27,  $V_{ii} = 4.76 \times 10^{-5}$  (rad/sec)<sup>2</sup>, i = 28, ..., 39. It is desired to limit the number of actuators to  $6 = \overline{m}$  and the number of sensors to  $12 = \overline{2}$ . The dynamics of the antenna structure were described by 10 elastic modes and 3 rigid body modes. The square of the frequencies

<sup>&</sup>lt;sup>†</sup>Observability, controllability checks are particularly simple for flexible space structures using the tests in [8]. That is, rank tests of matrices [B; AB, ...  $A^{n-1}B$ ], [C<sup>T</sup>,  $A^{T}C^{T}$ , ...  $A^{Tn-1}C^{T}$ ] can be *avoided*.

 $\omega_i^2$ , i = 1, ..., 10 of the elastic modes are

$$(\omega_1^2, \omega_2^2, \ldots, \omega_{10}^2) = (.40579, 7.2090, 7.2362, 13.27/, 44.834, 132.14, 142.66, 445.01, 448.69, 775.86) (rad/sec)^2.$$

More complete information for the antenna model may be found in [7].

The results of the COVSAS algorithm applied to the Hoop-Column Antenna are summarized in Table 4. The 6 actuators deleted from the admissible set of Table 3 are (listed in order of deletion):  $_{12}$ ,  $_{9}$ ,  $_{6}$ ,  $_{10}$ ,  $_{10}$ ,  $_{7}$ ,  $_{4}$ . The 27 sensors deleted (in order of deletion) are:  $z_{15}$ ,  $z_3$ ,  $z_6$ ,  $z_{12}$ , z,  $z_{13}$ ,  $z_2$ ,  $z_1$ ,  $z_{24}$ ,  $z_{27}$ ,  $z_4$ ,  $z_5$ ,  $z_{18}$ ,  $z_{21}$ ,  $z_{30}$ ,  $z_{39}$ ,  $z_{33}$ ,  $z_7$ ,  $z_8$ ,  $z_{31}$ ,  $z_{23}$ ,  $z_{20}$ ,  $z_{35}$ ,  $z_{25}$ ,  $z_{22}$ ,  $z_{16}$ . Notice that even though the output constraints are still binding the total control effort is *less* using only 6 actuators, (6x5.021 = 30.12) than using 12 actuators (12x3.275 = 39.30 > 30.12). Thus, *better* performance is possible with fewer actuators, since for several actuators the noise effect  $V_i^{W}$  is greater than the signal effect  $V_i^{U}$  in (14) (note the negative values of  $V_i^{act}$  in Table 4).

Perhaps the most important information from the COURAS is the determination of the minimum achievable actuator specification from Table 5 that all of the 24 outputs are held within their design constraints ( $\sigma_i = 22.8$  are sets. for angles and  $\sigma_i = .158$  mm for rectilinear displacements) by actuators which must be design 1 for the capabilities of TABLE 5. That is, the given output specifications,  $\sigma_i^2$  are possible to meet if  $\mu_i$  is changed (=> actuators are redesigned) (from Table 5) to  $\mu_1 = 73$ ,  $\mu_2 = 26$ ,  $\mu_3 = 105$ ,  $\mu_4 = 26$ ,  $\mu_5 = 32$ ,  $\mu_5 = 39$ .

#### VII. CONCLUSIONS

Presented is an algorithm COVSAS which integrates the following tasks:

Selects sensors and actuators from an admissible set.

Designs a linear feedback controller which satisfies output variance constraints.

Determines *actuator design requirements* which allow the output variance constraints to be satisfied.

Numerical properties of the convergence of this algorithm are given for NASA's Hoop-Column Antenna. Additional theoretical properties of convergence of this algorithm are given in [7].

#### REFERENCES

- H. Toivonen, "Minimum Variance Control of First Order Systems with a Constraint on the Input Amplitude" <u>IEEE Trans. Auto. Control</u>, Vol. AC-26, No. 2, April 1981, pp. 556-558.
- [2] G.C. Goodwin, "Amplitude Constrained Minimum Variance Controller, Ei tron. Letters, Vol. 8, pp. 181-182, 1972.
- [3] P.M. Makila, T. Hesteriund, and H.T. Toivonen, "Constrained Linear Quadratic Gaussian Control," 21st IEEE CDC, Orlando, FL., Dec. 1982.
- [4] H. Toivonen, "Variance-Constrained Self-Tuning Control," <u>Automatica</u>, to appear.
- [5] R.E. Skeiton and M.L. DeLorenzo, "Weight Selection for Covariance Constrained LQG Regulators: Large Space Structure Application," <u>Automatica</u>, to appear.
- [6] R.E. Skelton and M.L. DeLorenzo, "Selection of Noisy Actuators and Sensors in Linear Stochastic Systems," J. Large Scale Systems, Theory and Applications, North-Holland publishing, to appear.
- [7] M.L. DeLorenzo, "Selection of Noisy Sensors and Actuators for Regulation of Linear Systems," Ph.D. Thesis, May 1983, School of Aeronautics and Astronautics, Purdue University, Vest Lafayette, IN. 47907.
- [8] P.C. Hughes and R.E. Skelton, "Control?ability and Observability of Linear atrix-Second-Order Systems," J. Applied Mechanics, Vol. 47, No. 2, June 1980, pp. 415-420.



Figure 1: Hoop Column Antenna

| Output # | Τуρε                          | Nodal Location | Direction |
|----------|-------------------------------|----------------|-----------|
| 1        | Inertial Angle                | 2              | X         |
| 2        | 11                            | 2              | Y         |
| 3        | 10                            | 2              | Z         |
| 4        | Relative Angle Between        | 10 and 2       | X         |
| 5        | 34                            | 84             | Y         |
| 6        | Inertial Angle                | 10             | Z         |
| 7        | Relative Linear Disp. Between | 6 and 2        | X         |
| 8        | n .                           | 84             | Y         |
| 9        | *                             | 9 and 2        | X         |
| 10       | 81                            | 84             | Y         |
| 11       | 68                            | 10 and 2       | X         |
| 12       | **                            | **             | Ŷ         |
| 13       | 11                            | 101 and 10     | X         |
| 14       | n                             | H              | Ŷ         |
| 15       | n                             | 41             | Ż         |
| 16       | 11                            | 107 and 10     | X         |
| 17       | н                             | n              | Ŷ         |
| 18       | u                             | 11             | Ž         |
| 19       | н                             | 113 and 10     | x         |
| 20       | н                             | 4              | Ŷ         |
| 21       | N                             | tt             | ż         |
| 22       | n                             | 119 and 10     | x         |
| 23       | N                             |                | Ŷ         |
| 24       | u                             | 11             | 2         |

## Table 1: Hoop Column Output Description

## Table 2: Hoop-Cclumn Sensor Labels

| Sensor |              | Sensor |          | Sensor         |          |  |
|--------|--------------|--------|----------|----------------|----------|--|
| Number | Label        | Number | Label    | Number         | Label    |  |
| 1      | AX2          | 14     | AY10     | 27             | Z119-Z10 |  |
| 2      | AY2          | 15     | AZ10     | 28             | ARX2     |  |
| 3      | AZ2          | 16     | X101-X10 | 29             | ARY2     |  |
| 4      | X6-X2        | 17     | Y101-Y10 | 30             | ARZ2     |  |
| 5      | Y6-Y2        | 18     | Z101-Z10 | 31             | ARX6     |  |
| 6      | Z6-Z2        | 19     | X107-X10 | 32             | ARY6     |  |
| 7      | X9-X2        | 20     | Y107-Y10 | 33 .           | ARZ6     |  |
| 8      | Y9-Y2        | 21     | Z107-Z10 | 34 ·           | ARX9     |  |
| 9      | <u>79-72</u> | 22     | X113-X10 | 35             | ARY9     |  |
| 10     | X10-X2       | 23     | Y113-Y10 | 36             | ARZ9     |  |
| 11     | Y10-Y2       | 24     | Z113-Z10 | 37             | ARX10    |  |
| 12     | Z10-Z2       | 25     | X119-X10 | 38             | ARY10    |  |
| 13     | AX10         | 26     | Y119-Y10 | 3 <del>9</del> | ARZ10    |  |

## Table 3: Hoop Column Actuator Description

| Actuator        |   |   |   | t<br>No | toro<br>ax<br>ode | ue<br>is<br>loc | abo<br>at<br>ati | n t |
|-----------------|---|---|---|---------|-------------------|-----------------|------------------|-----|
| ul              | = | T | X | 2       |                   |                 |                  |     |
| <sup>u</sup> 2  | = | T | Y | 2       |                   |                 |                  |     |
| u <sub>3</sub>  | = | T | Z | 2       |                   |                 |                  |     |
| <sup>u</sup> 4  | = | T | X | 6       |                   |                 |                  |     |
| <sup>u</sup> 5  | = | T | Y | 6       |                   |                 |                  |     |
| <sup>u</sup> 6  | = | т | Z | 6       |                   |                 |                  |     |
| <sup>u</sup> 7  | = | T | X | 9       |                   |                 |                  |     |
| <sup>u</sup> 8  | = | T | Y | 9       |                   |                 |                  |     |
| u <sub>9</sub>  | = | T | Z | 9       |                   |                 |                  |     |
| <sup>u</sup> 10 | = | T | X | 10      |                   |                 |                  |     |
| <b>u</b> 11     | = | T | Y | 10      |                   |                 |                  |     |
| <sup>U</sup> 12 | = | T | Z | 10      |                   |                 |                  |     |

## Table 4: Hoop Column Output Constrained COVSAS Results

| Iteration<br>Number | Identified<br>Sensors (V <sup>sen</sup> )                                                             | Identified<br>Actuators<br>(V <sup>act</sup> ) | Ave Input<br>Value<br>(7.6) | Number of<br>Sensors/Actuators |
|---------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|--------------------------------|
| 1                   | AZ10(.0004116)<br>AZ2(.000397)<br>Z6-Z2(0)<br>Z9-Z2(0)<br>Z10-Z2(0)                                   | TZ10(-1.362)<br>TZ9(-1.369)                    | 3.275                       | 39/12                          |
| 2                   | AY1(.0C3362)<br>AX10(.003358)<br>AY2(.00226)<br>AX2(.00226)<br>Z113-Z10(.001942)<br>Z119-Z10(.001884) | TZ6(-2.1405)                                   | 3.592                       | 34/10                          |
| 3                   | X6-X2(.01457)<br>Y6-Y2(.01455)<br>Z101-Z10(.0110)<br>Z1C7-Z10(.0108)                                  | TX10(-1.2055)                                  | 3.699                       | 28/9                           |
| 4                   | ARZ2(.028 <b>44</b><br>ARZ10(.02232)<br>ARZ6(.02238)                                                  | TX9(-1.2917)                                   | 3.997                       | 24/8                           |
| 5                   | X9-X2(.0986)<br>Y9-Y2(.0839)                                                                          | TX6(-1.4793)                                   | 4.377                       | 21/7                           |
| 6                   | ARX6(.07648)<br>ARX2(.07648)                                                                          |                                                | <b>0.829</b>                | 19/6                           |
| 7                   | Y107-Y10(.13395)<br>XRY9(.1098)                                                                       |                                                | 4.857                       | 17/6                           |
| 8                   | X119-X10(.1557)<br>X113-X10(.1555)<br>X101-X10(.1551)                                                 |                                                | 4.905                       | 15/6                           |
| 9                   |                                                                                                       |                                                | 5.021                       | 12/6                           |

| Table 5: Output-constrained Specification |
|-------------------------------------------|
|-------------------------------------------|

|              | 2                                          |            | <sub>€∞</sub> u <sub>i</sub> 2 |
|--------------|--------------------------------------------|------------|--------------------------------|
| Output #     | E <sub>z</sub> v <sub>i</sub> <sup>2</sup> | Actuator # | (minimum achievable)           |
| 1(AX2)       | .015 sec                                   | 1 TX2      | 72.91 dn-cm                    |
| 2(AY2)       | .015 sec                                   | 2 TY2      | 26.145 dn-cm                   |
| 3(AZ2)       | 11.588 sec                                 | 3 TZ2      | 105.47 dn-cm                   |
| 4(AX10-AX2)  | .001 sec                                   | 4 TY6      | 26.138 dn-cm                   |
| 5(AY10-AY2)  | .001 sec                                   | 5 TY9      | 31.750 dn-cm                   |
| 6(AZ10)      | 12.000 sec                                 | 6 TY10     | 38.812 dn-cm                   |
| 7(X6-X2)     | .010 mm                                    |            |                                |
| 8(Y6-Y2)     | .010 mm                                    |            |                                |
| 9(X9-X2)     | .068 mm                                    |            |                                |
| 10(Y9-Y2)    | .068 mm                                    |            |                                |
| 11(X10-X2)   | .158 mm                                    |            |                                |
| 12(Y10-Y2)   | <b>.158 mm</b>                             |            |                                |
| 13(X101-X10) | .104 mm                                    |            |                                |
| 14(Y101-Y10) | .158 mm                                    |            |                                |
| 15(Z101-Z10) | .007 mm                                    |            |                                |
| 16(X107-X10) | .158 mm                                    |            |                                |
| 17(Y107-Y10) | .156 mm                                    |            |                                |
| 18(Z107-Z10) | .008 mm                                    |            |                                |
| 19(X113-X10) | .122 mm                                    |            |                                |
| 20(Y113-Y10) | .158 mm                                    |            |                                |
| 21(Z113-Z10) | .001 mm                                    |            |                                |
| 22(X119-X10) | .158 mm                                    |            |                                |
| 23(Y119-Y10) | .091 mm                                    |            |                                |
| 24(Z119-Z10) | .001 mm                                    |            |                                |