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ABSTRACT

A pole placement algorithm is proposed which uses constrained non-linear
optimization techniques on a finite dimensional model of a linear n degree of
freedom system. Low order feedback control is assumed where r poles may be
assigned; r being the rank of the sensor coefficient matrix. It is shown that by
combining feedback control theory methods with optimization techniques, one can
ensure the stability characteristics of a system, and can alter its transient
response.

INTRODUCTION

One common method of approaching the problems of controlling the vibration
cf a structure is ' employ eigenvalue (pole) placement methods. Such solutions
have attracted the attention of numerous authors over the past twenty-five years,
including W. M. Wonhem [6], E. J. Davison [3], S. Srinathkumar [5], A. ¥. Andry
et al [1], [2] and many others.

In exploring pole placement in dynamical systems, an inadequacy of stability
considerations in contemporary algorithms was noted and thus motivated this work.
It appears that the problem has not been solved or even addressed in many
approaches,

If a system is controllable, one has the ability to place a predetermined
number of poles. Thus, when pole placement techniques are employed, there is a
limit on the number of poles that may be assigned. As is well known, the rank of
the sensor coefficient matrix determines how many poles may be placed exactly.
These poles may be noted as the contrcllable eigenvalues of the system, while the
remaining may be labelisd uncontrollable.
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Thus, due to restrictions inherent to every system, every pole may not be
desirably placed. Therefore, one does not have control over the full order of
the system. Wnen moving the allowable eigenvalues, those which are not placed
will also be affected, with the possibility of generating an unstable state.

Since an unstable system is undesirable, the ability to place a pre-
determined number of poles, while forcing the system to remain stable would be
quite desirable to the designer. Many pole placement methods yield satisfac-
tory assignment of the desired modes, but unfortunately can drive the remaining
eigenvalues unstable., Thus, requiring iteration of the algorithms, compromising
the desired choice of eigenvalues or eigenvectors, until a stable response
results. With the large number of modes required in modelling flexible struc-
tures, these methods become costly and time consuming.

Hence, a pole placement method is proposed which constrains the unspecified
modes to be stable by taking advantage of constrained optimization techniques.
It appears that no previous work has guaranteed stable unplaced poles or has
assured the magnitude of relative stability.

Several numerical examples will be presented, and results will be compared
with those of Srinathkumar [5].

PROPOSED SOLUTION
The systems studied in this paper are of the mechanical type, which are
second order by nature, incorporating mass, stiffness and damping parameters,

vhere only the class of discrete systems shall be investigated.

Assuming small motions about the equillibrium point implies linearization
of the equations of motion, which become

[(M]d(t) + [D+clg(t) + [S+H]a(t) = F(t) (1)
The forcing function vector, Eﬁt), may then be desciibed as
E(t) = [Vlg(t) + [Plg(t),

where [V] and [P)] are the velocity and position feedback matrices, respectively.

q(t) is the conrdinate vector, while é(t) and i(t) are the first and second time
derivatives of this vector.

[M] is known as the mass or inertia matrix, [D] is called the damping matrix,
and [S] is the stiffness matrix. The matrix [G] may be referred to as the gyro-
scopic or Corioclos matrix, and [H] is the circulatory matrix.

The [M], [D], {S], [G] and [H] matrices are assumed to be time-invariant,
and therefore are represented by constant values, all be’ng of nth order, where
n represents the number of degrees of freedom of the system.

Using normal stuate space methods by letting
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the n-dimensional system becomes the following 2n~dimensional model:
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where [M] is assumed to Lave an inverse and l:
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] u(t) is a representatior of
the system's forcing functiorn, F(t).

" More simply, equation (2) may be expressed as follows:

x(t) = [a']x(t) + [Blu(t), x(0) = x,
x(t) = [clx(t)
vhere u(t) = [K]y(t)

y(t) is “he output vector, [C] Is a constent sensor coefficient matrix, and [K]
is the feedback gain matrix. [B" may now be described as the constant coeffi~
cient matrix of actuator dynamics, and u(t) is the control vector. The following
conditions hold:

i) £€R2n, ueR”, yeR®

ii) A', B, C are real, constant metrices of appropriate dimensions.
iii) rank B=m# 0, rank C=r ¢ 0

By block diagram representation, the system described by equation (3) may be
expressed as in Figurc 1.

u(t)
—$ B + > [ A

1%
‘x

C P—>yl(t)

FIGURE |



And a more revealing representation is shown in Figure 2.
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Equation (2) may be rewritten as follows:
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By comparison of equations (1) and (3), one may note that this implies:

thus
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(A]

LB2] - [0]9
ML (D+o) ! M (s+) lslxcl= B.KC
| x(t) + | 2272 | ()
I i 0 0 ! 0
x(t) = [c !Celg(t) (4)
~M'1(D+G) + R_KC i-M-l(Sﬂ{) + B_KC ‘l
17710 1772
; ! 5
| 1

n

40



and describe equation (4) as follows:

L
x
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Then, the set of equations must satisfy the eigenvelue problem, i.e.,

[A]zi =gy, (5)
2n
where {;l} = the 2n eigenvalues
i=1
2n
and {!i} = the corresponding eligenvectors.
i=1 .

. By substitution of equation (4) into equatiomn (5),

- H - [
7 (De) | M 1 (s+m) B KC, |BKC,
C-v- = = 'Y‘j_ + e S =———-- -'v1
i SO o ! o
1 |

Xi mey then be defined to correspond to the above partitioning as follows:

yielding
-1 o | B
z. M (D+G) | M (s+8) z B.KC. |B.KC z
51 :l = = -:i + ..'..L.__l =--—-g ——
W, I i 0 W, o | o W
ot 3 n -1 ]
which implies
L
substituting,
t;2w = -M"l(m); w, - M"l(s+H)w + B.KC.g,w "+ B.KC.w (6)
i~ i = 177174~ 172

If we define {2.} i =1,2,...,r a8 the r eigenvalues to be placed,
equation (6) may be expressed as
A2

WAS = -M-l(D+G)WA - M"l(s+u)w + B_KC.WA + B_KC.W

11 172
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= ! I 1
Where W— [y‘lz H‘Q{ -o.c-} _w_r]
and A= diag(kl,ke,...,kr)

By taking advan’age of the generalized left inverse theorem,
(K] = [BiBl]_l[Br.f][WA2+M_1(D+G)WA + M‘l(sm)w][clwmcgw]'l,

which is the equation describing the gain matrix needed to obtain those eigen-
values desired.

A single otjective function was then determined from the set of equations
described by equution (7), where the values of [K] were determined by minimi~ing
that objective function. The constraints impoged on the system were that the
real part of the eigenvalues of the closed loop system were all negative. These
constraints were also modified, as was desired, to inc: ease the stability .aargin.

NUMERICAL EXAMPLES

Exarple 1:
, 909 , 9292
) S s I
ﬁ I - 2 1
f—‘WVT m, e AAA my
4 d d
4 | 2
FIGURE 3
Specifications: 2y = m2 =1
5, = ¥
52 =1
dl = 2
d2 =1
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Eigenvalues of unforced system:

~1.666207
- .333783

(c]

[B]

Desired eigenvalues:

Resulting eigenvalues using the
relative stability:

-4,000006
-1.335420
- .249608
-2,000000

Resulting eigenvalues using the
stability:

-l . 000000
~2.999999
- 572543

1.413344
-.832651

00
J 0 0

1+ I+

OOHO

N + 0i

+ 01

proposed method with no additional factor for

+ 01
+ 0i
+ 0i
+ 01

proposed method witii added fector of relative
+ 01
+ Oi
t 0.743531

Resulting eigenvalues using Srinathkumar method:

9,1256 +
- .81k1 +
-4,0000 +
-3.0000 +

01
1034
01
01

Note that the method propcsed here yields the desired eigenvalues und that
the unspecified eigenvalues remain stable, wrereas .a the' Srinathkumar method
an unspecified eigenvalue is moved into the right half plsre,
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Example 2:
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FIGURE 4
Specifications: m = L
m, = m3 =m = 1
81=32=S3=Sh=1
d1 = d2 = ,5
Eigenvalues of unforced system:
-.004055 + 1.647953i
-.170649 *+ 1.131418i
-.062364 + .35567Li
-.075432 &+ ,730h4b1i
c]=[1 00002300
|0 0 01 0 0 00O
1 0 0]
0 1 0
0 0 1
[B] = 0 0 O
0 0 ¢
0 0 0
| 0 0 0]
Desired eigenvalues: X =-4 .5
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Resulting eigenvalues using the proposed methcd, where a factor for relative
stability was added:

-.289342 + 1.378583i
- 145453 + 1,1713454
-.400007 + .500003i
-.197840 * . 4259iki
Example 3:
) q'oq‘ 1 q .6_
> — e
ﬂ‘|‘-_A¢\Af- nnz
S 2
FIGURE 5
Specifications: oy = m2 =1
S1 =3
82 =1
Eigenvalues of unforced system:
+2.0743131

+ .835000i

[cl=[1 1 0 0]

[1
0
{B] = 0

Lo

Desired eigenvelue: .5 + 0i

COHO

Resulting « igenvalues using the proposed method, where factor for relative
stability was added:

- .170373 * 1.8090971
-1.81T7157 + 04
- .50000C + 01

CONCLUSION
A pole placement algorithm has been proposed which used constrained non-

linear programming techniques for a finite dimensional model of & linear n degree
of freedom system. It has been shcwn that by constraining the eigenvalues of the
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full order system while simultaneously placing those allowabie, one can encure
the stability characteristics of a system, and can alter its transient response.

Results of the Srinathkumar metnod were presented for Example 1, and showed
how this metnod yielded the desired eigenvalues guite accurately, yet unfortu-

nately forced the originally stable system unstable, therefore resulting in an
undesirable response.

No previous work has guaranteed stable unplaced poles or has assured the
magnitude of relative stability.
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