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ABSTRACT

The application of wmatrix transfer function design techniques to the
prchlem of disturbance rejection on a8 flexible space structure is demonstrated.
The design approach is based on parameterizing a class of stabilizing
compensators for the plaat and formulating the design specifications as a
constrained minimization problem in terms of these parameters. The solution
yields a matrix transfer function represeatation of the compensator. A state
space realization of the compensator is constructed to investigate performance
and stability on the nominal and perturbed models. The application is wmade to

the ACOSS (Active Control of Space Strucztures) optical structure.
I. INTRODUCTION

The problem of flexible space structure control has motivated a great
deal of research for theoreticians and practitioners of multivariable control
design. In spite of the efforts directed ia this area there still remains a
significant gap between the multivariable theory and the control design
implementation. This gap stems from two sources. The first difficulty is one
of problem specification. Translation of complex system requirements and
constraints into the specific mathematical cost functionals required by wmost
design methods may be impossible in many cases. Free parameters in the chosen

design methodology may not be traceable to the parameters which describe the
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system in terms of desired performance, plant uncertainty, hardware
limitations, etc. A second roadblock to the implementation of modern control
design techniques is the lack of reliable algorithms and software to perform
the sophisticated mathematical manipulations required by these techniques.

Recent vears have shown very considerable advances in this field (see [1]) but

much remains to be domne.

Most of the MIMO (multi~input/multi-output) compensators which have
actually ief. the textbook and been calculated in computers are based on state
space methods, and, in particular, LQG (Linear-Quadratic—Guassian) design
theory. This is due in part to the long history of development of these
design techniques as well as the availability of reliabie algorithms to solve
matrix Riccati equations and the ease of performing most state space
manipulations. Frequency dowmain techniques for calculating MIMO feedback
systems have been avoided. The exteunsions of classical frequency domain
concepts to MIMO systems have not been totally satisfying and calculations
involving matrices of transfer functions present an entirely new set of
problems. Nonetheless, frequency domain design is still appealing and certain

feedback notions cannot be adequately expressed without reference to transfer

functioas.

We have carried through a compensator design for a flexible structure
based on transfer function parameterization techniques. General theories of
feedback control system parameterization have been developed by several
authors ([2}, [3], and [4}). The goal of a parametric approach is tne
selection of a set of numerical quantities, along with an acceptable range of
values, which span a class of possibly acceptable compensators and, wi -
which, one is able to adequately express the system requirements in terms of
costs and constraints. A particularly simple parameterization for stable
plants was introduced by Zames, [4], and exploited for the unity feedback
configuration of Figure 1 bv Desoer and Chen [5]. This is the
parameterization we will implement here. The details are in section IV.

Previous examples of this design approach can be found in (6] and [7].
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II. ACCSS STRUCTURE

The ACOSS optical structure was developed by the Charles Stark Draper
Laboratcries as a control design test specimen to evaluate the design
approaches devaloped for the DARPA ACOSS program, {8]). It was designed to
exhibit the closely spaced, low frequency mode distribution expected on some
future space systems. The structure is provided as a finite element model
having 84 dynamic degrees of freedom (see Figure 2). In addition to the
nominal structure, two perturbed structures were defined to represent plant
uncertainty. The perturbed models represent mass and stiffness variations of
approximately 10Z. The nominal model 1is denofed PO, the perturbed wodels are
P2 and P4.

The performance goal is expresszed in terms of a line of sight error on a
focal plane on the lower section of the truss as shown in Figure 2. The error
has two angular components and a defocus component resulting from deviations
in the optical path due to structural vibrations. Three rigid mirrors
determine the optical path. Theae are asesumed to be rigidly mounted to the
structure. Two disturbances are defined ou “he structure as shown in the
figure. For our design problem we are only considering the disturbance
propagating from the equipment panel snd we assume it has a flat PSD out to
5 Hz. The equipment panel 1s isolated from the structure by a spring-damper
system. The residual disturbance propagation through this isolation system
into the line of aight is still unacceptably high. The control problem is to

further reduce this residual with active siructural control.

III. MODEL SELECTION AND ACTUATOR PLACEMENT

Far the current design problem we chose a 5 mode model of the structure,
selecting those modes having most significant influence between disturbance
and line of sight. The modal influence was determined based on ideas from

internally balanced coordinates. For a description of internally balanced
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coordinates see [9] and for an application to modal coordinates see [10].

Glven a second order model description,

ai + 2 ;iwiai + wizqi = g} w , i=141,...,n (1)
n
y = 1 h.a, (2)
i=t "t *t

¥g%h natural damping { , frequency W , inputs w, and outputs y, an index
i i
ranking the modes can be calculated as the approximate "second

ovder modes,” ([10]) by

Y
2 (g;gy)(hh;)

0.° = (3)
i 4 Cimi

Using the modal disturbance influence matrix for the gi's and the line
of sight measurement matrix for the hi's the 5 highest rank modes are
tabulated in Table 1. Agreeing with our intuition, these turn out to be two
isolator rotations, two isolator translations, and the first bending mode of

the upper truss. A description of the modes of the structure can be fouad in

[8].

Mode 7 8 12 13 21

Frequency (Hz) | .15 .26 .58 .58 2.3

Table 1. Design Modes

The line of sight measurement matrix is a function of 21 nodal degrees
of freedom. Ffrom among these 21 degrees of freedom we chose to locate three
force actuators (assumed to be of the momentum exchange or proof mass type) to
control the three line of sight measurements. To make this selection an

appeal is again made to the approximate second order modes of equation (3).
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If the forcing function on the right of (1) is PR where 83 is the
influence of the jth actuator, j =® l,...,21 on the ith mode, 1 = l,...,5,

then we denote the corresponding second order mode by oij and define

(4)

P
"
~—

N

Here, aj is a measure of the influence of the jth actuator on the
line of sight for the selected 5 mode model. We chose three actuators whose
force directions span the three spatial directions and have large aj with
respect to the total 21 possible actuators.- Two of the actuators selected are
located on the corners of the primary mirror and the third is on the lower

truss.

To complete the description of the design plant we assumed the
availability of direct measurements of the line of sight. No other sensors
were used for the control design. We now have a stste space description of

the design plant in modal coordinates,
x = Fx + Gu + Dd (5)
y = Hx (6)

wvhece a 1z ke actuator command and d is the disturbance input.

Fcr calculation of the compensator we need a transfer function
representa .ion of the design plant. The convenient representation for
constructiig state space realizations of the compensator is a polynomial

1 where N and D are

matrix coprime factorization [11,12', that is, P = ND
coprime polynomial matrices. An algorithm to construct a coprime

factorization from a state space description can be found in [13].
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IV. DESIGN PROBLEM

The feedhack configuration used for the design is shown in Figure 1.
The closed loop system is referred to as 44. P is the open loop design
plant, a 3x3 transfer function given from the state space equations by
H(sI—F)-lc. The inputs are u, and u, with the reference input, Uy,
identically zero. The outputs are A and Y, with the line of sight
represented by ¥ye The disturbance propagates into the line of sight
through the transfer function P = H(aI-F)-ID and may thus be represented as

an additive disturbance, 33, at the plant output.

The closed loop system transfer function is defined to be

u y.\
H . 1 > 1 . (7)
Y Y2 Y2

Stability of Hyu can be taken to be closed loop stability. Hyu may be

expressed in a simple parameterized form as

Q -QP
H = (8)
yu
PQ P(I-QP)
where Q is referred to as the Zames parameterization, [4], with
-1
Q = c(I +pPC) " . (9)

We state here the fundamental result from {5] which is the basis of this design

approach.

Fact: For P exponentially stable and strictly proper, Q is exponentially

stable and proper if and only if
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(i) C is proper and

(ii) Hyu is exponentially stable and proper.

When this is the case the compensator is given by
-1
c =Q(I - PQ) (10)

In other words designing stabilizing compensators for,gd is equivalent to

specifying exponentially stable, proper Q.

From (8) we sce that the I/0 map, that is, the transfer function from
u) toy, is

H=H = PQ (1)

Given an invertible plant transfer function, P, one can see from the
relation (11) that a parametrization of the closed locop aystem by Q is
equivalent to a parameterization by H. Moreover, for P exponentially stable,
Q exponentially stable implies the same for H. But since

Q=p (12)

it becomes clear that exponential stability of H only implies exponential
stability of Q when P has no u~stable zeros. However, by imposing an
additional condition on H, namely that H has the same right haif plane zero
structure as P, then parameterization by such H is equivalent to parameteriza-
tion by exponentially stable Q. If a proper compensator is desired the
additional constraint of properness of Q is required agd_will result in an

excess pole over zero constraint on H which depends on P.

Parameterization by the I/0 map, !, may simplify the dewsign problem and
allow the designer to more directly specify his design objective. For
example, for a disturbance attenuation problem, the closed loop disturbance to
output map, or sensitivity map, is simply given as (I - H). In addition, in

some applications, a decoupled I/0 map is desirable and one is directly able

53



tc parameterize a viagonal H. This is the approach we take for this design.
Calculating the transmission zeros of cur design nlant using the QZ algorithm
[14) we find that there are no zeros in the right half plane so we may freely
specify H as diag(hi, i=1,2,3) with each hi of the fcrm

g p“(s)
)
by () by (2) (13)
1 2
where g is a gain and
2 2
p(s) =8 +2Luws+w (14)
n nn n
p, (8) = 32 +20. 0, 8+ W 2 (15)
d. d. d. d.
] ] ]

This parameterization has 21 parameters consisting of the gains, and

second order damping and frequency terms.

We set for ourselves a design goal of minimizing closed loop response to
the disturbance over a low frequency band of 5 Hz. To achieve this we define

a constrained optimiz.tion problem as follows:

Minimize

J = (1 -~ H(jw)) P(jm)ll2 . W= 107 (16)
subject to
0.01 < Cn' Cd. :Stability
]
< : i
0.04 < wn. wd. wb :%andwidth
]
hi(O) = ] :Low frequency rcise rejection
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The matrix under the norm of J is diagonal so we simp'v take the
Euclidean vector norm of the diagonal. The minimization 5. .ae cost at 5 Hz
and the DC unity gain constraint will result in disturbance rejection across
the 5 Hz band. The P term in the cost veights the diagonal terms in (I - H)

according to the way the disturbance propagates through the structure.

In general (I - H) is the ratio of the relative uncertsinty in the 1/0

map to the relative uncertainty in the open loop plant. More nreciselv

(At = (r-mae)pt (17)

whgre |
& =3 -p {18,
M=H-~-H (19)

for a "perturbed" plant P uhich results in a perturbed I/0 wap H. In effect,
minimization of J reduces the impact of plant uncertainties on closed loop

system performance.

Having specified the opiimization problem one can use numerical or
analytical means to solve it., Omitting the details, we calculated a local
miniaum to this problem analvtically. The achievable performance is clearly
dependent on the bandwidth, w, ., For a given u5 the local minimum

b
satisfies

wd‘ =, (20)
J
p, (s) = p, (8) (21)
4y d,
2 w
_.-E - .——!l- (ZL)
L4, Wy
J ]
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Given this solution we can adjust the bandwid.h of cach of the three
loops to achieve a desired performance level. To achieve 0.04 reduction in

each channel we have the following parameter values:

“h. cd. wn Cn g
i j
h, | 300 1.5 10* | 100 | a1
S—
h, | 600 8 | axi0*| w07 | 81
hy | 300 5 %103 | 290 | 25

V. COMPENSALOR REALIZATICN

Having arrived at parameter values we have specified tae desired 1/0

map, H. The compensator which will produce this I/0 ma> is
-1
C = Q(1I - PQ) (24)
1

ap lyr -l (25)

Since the I/0 map is given by diag(hi ) with each hi of the form

> (26)
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the compensator hecomes

-1 i
C =P diag (d.- n.) . (27)
i i

We have already expressed P as a polynomial matrix coprime factorization,
P = ND-I. Thus (27) becomes

-1 oy
C =DN diag i—a ) (28)
1 i

Since the degree of cli - o, is 4, we can factor this polynomial into two

quadratics as

d, ~n. =4d. d. , i=1,2,3. (29)
Heance (29) can be rewritten as

- o,
C =D { diag(d. N y! diag(al—) . (30)
! i,

By inspection, diag(di IN is column-reduced [12], and has column c2grees
1 -~
equ ..ing those of D. Consequently D {diag(di N} 1 is proper and has a state
1 ~
space realization [12, Sec. 6.4]. Now, since diag(ni/di ) also has a state

?

space realization, the twc realizations can be cascaded to yield a realization

for .
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VI. RESULTS

Having computed a state space description of th. compensator we are now
able to determine closed loop stability for various versions of the plant
simply by extracting the eigenvalues from the closed loop state equations
derived from Figure 1. We find that for 21l three versions of the plant (PO,

P2, and P4) the five mode description remains stable under feedback by our

compensator.

To investigate the robustness of the desﬁgn with respect to unmodeled
dynamics we appended additional modes to the plant model and found that the
closed loop system became unstable in almost all cases. Upon investigation of
this problem we discovered that though the 5 mode design plant was minimum
phase, the addition of almost any other mode or set of modes resulted in a
nonminimum phase plant. Information about these uns*3ble zeros was not
available in the design plant so the resulting compensato- tended to place
closed loop pcles at these zeros. Thus the stability problem experienced is
one of modeling or model reduction. In general, any control design approach

must have information about the righ. h=lf plane zeros of the plant.

The performance of the closed loop system remained very consistent with
the predictions made during the design stage. The steady state RSS response
at 5 hz of the two anguler components of the line of sight is given as a

fraction of open loop response for the three models by:

PO P2 P4

4.3 X 107 5.1 X 102 4.6 X 1072

The broadbaad disturbance attenuation is illustrated on the Bode plots
of Figures 3 and 4 which compare open and closed loop response. Across a
significant portion of th 5 Hz band the performance improvement is 3 to &

orders of magnitude.
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VII. CONCLUSIONE

We have demonstrated the applicability of a transfer function parameteri-
zation design approachk for problems of broadband disturbance attenuation on
flexible space structures. This methodology provides the control designer
with a great deal of flexibility to meet system requirements by the choice of
parameter set and selection of cost function and constraints. Although the
implementation of this technique requires difficult numerical calculations
involving matrix transfer functions, algorithms and software for these types
of problems are aiready emerging. The success of this approach is dependent
on an appropriate parameter selection in which to express the problem
specifications. This suggests research, probably application specific, which

addresses the issues of problem description and requiremeants interpretation in

the control design process.
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