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ABSTRACT

Robustness properties are investigated for two types of controllers for
large flexible space structures, which use - collocated sensors amnd actuators.
The first type 18 an attitude controller which uses negative definite feedback
of measured attitude and rate, while the second type is a damping enhancement
controller which uses only velocity (rate) feedback. It is proved that collo-
cated attitude controllers preserve clogsed~loop global asywptotic stability
when linear actuator/sensor dynamics satisfying certain phase conditions are
present, or wonotonic increasing nonlinearities are present. For velocity
feedback controllers, the global asymptotic stability is proved under much
weaker conditions. In particular, they have 90° phase margin and can tolerate
nonlinearities belonging to the [0,») sector in the actuator/sensor character-
istics. The results significantly enhance the viability of both types of
collocated controllers, especially when the avagilable information about the
large space structure (LSS) parameters is inadequate or inaccurate.

INTRODUCTION

Large flexible space structures are infinite-dimensional systems with very
small inherent energy dissipation (damping). Because of practical limitationms,
only finite-dimensional controllers and point actuators and sensors must be
used for controlling large space structures (LSS). In addition, considerable
uncertainty exists in the knowledge of the parameters. For these reasons, the
design of a stable controller for a large space structure (LSS) 1s a
challenging problem.

A class of controllers, termed “collocated controllers” [1], represents an
attractive controller because of its guaranteed stability properties in the
presence of plant uncertainties. Collocated attitude (CA) controllers are
designed to control the rigid-body attitude as well as the structural wodes,
while collocated direct velocity feedback (CDVFB) controllers are designed only
for enhanceament of structural damping. Both types of collocated controllers
guarantee stability regardless of the number of wmodes in the LSS model and
uncertainties in the knowledge of the parameters {1}, [2]. A CA controller
basically consists of compatible sensor/actuator pairs placed st thc same
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locations, and utilizes negative definite feedback of position and velocity
(e.g:, LSS attitude and attitude rate). A CDVFB controller [3] is a special
case of the CA countroller where only rate feedback is used for damping
enhancesent without affecting the rigid-body modes. It has been proved in
references [1], [2], [3] that, the closed-loop system is always stable in the

sense of Lyapunov, and 1s also asymptotically stable (AS) under certain
additional counditions.

Although collocated controllers have attractive stability proper:ies with
perfect (i.e., linear, instantaneous) sensors and actuators, the seusurs and
actuators available in practice tend to have noniinearities and phase lags
associated with them. In order to be useful in practical applications, the
controller should be tolerant to nonlinearities (e.g., saturation, relays,
deadzones, etc.), and to phase shifts (e.g., actuator dyvamics and/or computa-
tional delays). Uncertainties usually exist in the knowledge of the nonlinear-
ities and the phase lags. For these reasons, this paper investigates tne
closed-loop stability of collocated controllers in the presence of unmodeled
sensor/actuator dynamics and nonlinearities. The situation is mathematically
described by including an operator ’( in the feedback path. The actual input
v’t) ‘s given by:

u(t) = Fuc(t) m

where u. is the ideal (desired) input, /€ is a nonanticipative, linear or
nonlinear, time-varying or invariant operator. FPor CA controllers, it 1is
proved that the closed-loop system is globally asymptotically stable if

1) k is linear, time-invariant (LTI) and stable with a rational transfer
matrix H(s) which satisfies certain frequency-domain conditions, or

2) If % consists of time-invariant, strictly wmonotonic increasing
nonlinearities belonging to the [0, *) sector. (A function #(0) 1isg said
to belong to the [k h) sector if $(0) = O and koZ < of(0) < ho? for all
o *0).

For CDVFB controllers, 1t is proved that global asymptotic stability is
preserved when

| ) k is a stable nonlinear dynamic operator and satisfies certain passivity
conditions, or

2) f(‘ is a stable LTI operator with phase within 190"
3) fe consists of aor .inear gains belonging to the [0,®) sector.

These analytical i _ults significantly ecnhance the stability and
robustness properties of collocated controllers, amd therefore increase their
practical applicability.
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PROBLEM FORMULATION

The linearized equations of motion of a large flexible space structure
(using torque actuators) are given by:

- . » T
Ax + Bx + Cx= ) T,u (2)
i=1 i1
where
T
X = (‘8' 98’ "8’ ql. qz' . e qnq) (3)
A= diag (18,. Inq x nq) (4)
B = diag (o3 x 3 D) (5)
C = diag (o3 <3 M (6)
Fy= 1y 430 8] (7)
T
u = (uxi’ L uzi) (8)
where ¢g, 6,, Vg denote the three rigid-body Euler angles, is the

number of structural modes, q; denotes the modal amplitude of ith structural
mode (1 = 1, 2, . . , ng), I; denotes the 3 x 3 moment of inertia watrix,
¢; is the 3 x mode-slope matrix at the ith (3-axis) actuator location.
It is assumed that m, 3-axis torque actuators are used. I, , ; denotes the ¢
x £ identity matrix, and diag( ) denotes a block-diagonal matrix. D i3 a
symmetric positive definite or semidefinite matrix which represents the
inherent structural damping. Since some damping, no matter how small, is
always present, we assume D > 0 throughout this peaper. A 1is am ngy X ng
diagonal matrix of squared structural frequencies

2 2 2
A = diag (wl, Wys o e s "'nq) 9)

Assuming that m, 3-axis attitude and rate sensors (e.g., star trackers and rate
gyros) are placed at the locations of the actuators, the wmeasured 3-axis
attitude Ygi and rate y,; at actuator location i (ignoring noise) are
given by: N

Yoy * l'ix (10)

Yoy * Pix (1)

denoting

T T T, T
us= [ul, Ups o o s u-] (12)
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rTo T T T

la 2: e * rn] (13)
T T T,T
ya [yali yazr A yan] (14)

T T T, T
yr [yrl) yrzl A Yrﬂ] (15)

where u, y;, yr are 3m x ] vectors, and I is a 3m x (n, + 3) matrix. The
control law for the collocated attitude controller is given by:

u, = u‘? +u, (16)
uCp = -pra (17)
Uep = —Gryt (18)

where u. represents the command input, u., and u., represent command
attitude and rate inputs, and Gp, Gy are 3m x Jm feedback gain matrices.

For CDVFB controllers, the rigid—-body rates are removed from the feedback
signal by subtracting attitude rates at two locations. Consequently, the model
used for damping enhancement has the form:

a+Da+Aq~$Tu (19)

where ¢ consists of appropriate differences between the mode-slopes. The
control law is given by:

u. = Gy, (20)

where

Y, = q (21)

The control laws given above for CA and CDVFB controllers have very
attractive robustness properties. It was showm in [1], [2] that, if D > O,
Gp = Gp'r > 0, and Gy = GtT > 0, then the closed-system is
asymptotically stable (AS)- The stability result holds regardless of the
number of modes in the model, and regardless of inaccuracy in the knowledge of
the parameters. In real life, however, nonlinearicies and phase lags exist in
the sensors and actuators, which invalidate these robust stability properties.
The real problem then is to investigate the closed-loop stability for the case
where the actual input is given by Eq. (1), where is a nomnarticipative,
linear or ronlinear, time-varying or invarisnt operator. The situation is
shown in Figure 1. Our approach is to make use of input~output stability
concepts and Lyapunov methods. We assume throughout the paper that the problem
is well-posed, and that a unique solution exists. We start by defining the
terminology and the concepts, which are adopted from [4].
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MATHEMATICAL PRELIMINARIES

Consider the linear vector space an of

real square-integrable
n-vector functions of time t, derined as:

12 - fg: w, g"lj: gT(t)g(t)de < =} (22)

where R is the linear space of ordered n-tuples of real numbers, and R,
denotes the interval 0 { t {( . The scalar product is defined as

* T
<g;» 8> = [ g (t)g,(t)de (23)
For gean, its norm is defined as

gl = <g,g>1/2 (24)

Define the truncation operator Py such that

A g(e) 0<t<T
g.(t) = P g(t) = (25)
T L 0 t> T

Define the extended space LneZ:

L2 = {g: (R, + & | g c12 Y13 0] (26)

Thus Lpe? is a linear vector space of functions of t whose truncations are
square-integrable on [0,T) for all T < =, Por g, 8 € Lnez’ define
the trunca%ed inner product

T 1
<8), 807 = &) & = [ B (£)8,(t)dt (27)

0 1/2
The truncated norm is defined by: Iglyp = <g,g>.r .

Consider an operator 16 :Lnez-'bl.nez. ;( is said to be strictly
passive if there exist finite constants B and § > O such that

<ﬂ(s.s>.r38+6lsl§ Vr?_o,’v‘geLn: ©(28)

;{ is passive if § = 0 in (28).
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ROBUSTNESS OF COLLOCATED ATTITUDE CONTROLLERS

Stability With Dynamic Operator in the Loop

We consider the case where the operator }e is linear and time-invariant
(LT1), and has a finite-dimensional state~space representation. We denote ﬂg

by Kz, 8) where z, is the initial state vector of # , and assume m = ]
for simplicity (i.e., one 3-axis actuator).

Theorem 1. Suppose % is a non-anticipative, strictly sgable, completely
observable, LTI operator whose transfer matrix is H(s) = cI+H(s), where € > 0
and H(s) is a proper, minimum-phase, rational matrix. Under these conditions,

the closed-loop system given by Eqs. (1), (2), (10), (11), (16)~(18) is
asymptotically stable (AS) if

~ -~
H(jw) (wcr - jcp) + (wcr+ jcp) H*(jw) > 0 for all real w. (29)
where * denotes the conjugate transpose.

Proof - Define the function

V(E) = xTCx + x'A x (30)

Since C > 0, A> 0, V(t) > 0 for all t > 0. Differentiating V with respect to
t, and using (1), (10), (11), (16)-(18),

V=—2xB; liC[z,ul (31)

where j( also depends on its initial state z,. Since ’( is linear,
Hiz; u) =0+ Hio; u] (32)

where hy(t) is the unforced response of k due to nonzero initial state.
Since f€ is strictly stable, 'hl, is finite for any finite z,.

Substituting (32) in (31) and integrating from 0 to T, since V(T) > O,

-1

0 < V(1) = v(0) - 2<x, BO, - 2 (ucr, . ho>‘1‘

R
- Kug, 6 Hudr (33)

where

K00, = 105 (6, + 66 uy) (36)
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In (34), "s” denotes the derivative Opetaior. (5” is technicaliy noncausal;
however, this difiiculty can be overcome QJy defining the derivative of & trun-

cation at T to be equal to that of the untruncated function.) Using Parseval's
theorem,

1 * -1 ,
<u s G pucp>,r- — I_., "ch (Jw) 6 " H(jw) [cp + Jug ) UcpT(ju.)dw

o G
-5 | ug G el uge 52

—00 ch

+ Gr] Ucr,r(j w)dw

- —2——‘ Iw v Gy 62 Bjw) (¢ % +6G)
n — ch r r

jw

cp . _1
+ ( + Gr) H (Juw) 6, ] U, (Juw)dw
T

_jw

The matrix in the brackets is positive (from Eq. 29), and we have

-1 2
er* p ;(pucp>'l'->- € tu 17 (35)

which yields (from (33)

-1

1} 3 2
0 £ V(o) -2 <q, Dq>T 2 € 'ucr.'r 2 <ucr’ Gr ho>T (36)

wherein we have used the fact that §T

Bx = a Da. Therefore,
2

).m(D) IqIT

2 -1
+ elucrng v(o)/2 + '“cr"rlcr lslhol (37)

where 1 [Ig denotes the spectral norm of a matrix, and A, denotes the
smallest eigenvalue. Eq. (37) can be written as

.2 2 |2 2
Am(D) lql.r + (cl'ucr"l‘ - -2—‘:-1— ) £ v(o)/2 + c2/l-.cl (38)

where ¢} = V€ and ¢y = Thyl Therefore, 11&@’1 (¢) = 0, and é‘-{a‘? Uor
(t) = 0. penocting the rigid~body attitude a = (¢g, 65‘ ¥e)T, this
implies that lim a (t) = 0. Taking the limit of the closed-loop equafion as

t
Cro,

- (39)
A; OT K u.
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zhere the overhead bar denotes the limit as t+*>. From (39), ﬂ“cp = 0 and
q = 0, which yields a = (. Since 4&:'18 observable and its output tends to

zero, its state vector tends to zero as t*o, and the 'system is asymptotically
stable.

The following corollary essentially states that, for di~zonal G, Gp»
and H, it is sufficient that the phase lag of ﬁ(jw) is less than the phase lead
introduced by the controller.

Corollary 1.1. Suppose Gp, Gy and H are diagonal and satisfy the
assumptions of Theorem 1|. Then the closed-loop system 1is globally
asymptotically stable if
-1 wcri - -1 w6
-tan  ——— < Arg {H;(jw)} < 180° -tan™ — for all real w (40)
pi pi

where Arg( ) denotes the phase angle of a complex variable.

For the case where Hj; (8) = kj/(s + ay), with ki, a; > 0,
condition (40) becomes

Gri

e 2 l/a, (41)
pi

Thus, for the case of first-order sensor/actuator dynamics, the system is
asymptotically stable 1if the ratio of rate~to-proportional gain is at least
equal to the magnitude of the actuator pole.

In Theorem 1 and Corollary !.1, the transfer function of,ﬂf was assumed to
be of the form: H(s) = €I + H(s), where € > 0. That is, a direct transmission
term, no matter how small, was present. From Theorem 1, the closed-loop system
is AS for any € > 0. Therefore, the closed-loop eigenvalues are all in the
open left half-plane (OLHP). Beecancz oI continuity, 1. is obvious that, when
€ = 0, the eigenvalves will not cross the imaginary axis. That 1is, the eigen-
values =iii be in the closed left half-plane (CLHP). Theorem 2 given below
considers the case when ¢ = 0, It essentjally shows that, if the closed-loop
system with no elastic modes is AS with in the loop, then so is éhe system
with elastic modes, provided that (29) is satisfied with H replacing H.

Theorem 2, Suppose /€ is a non-anticipative, strictly stable, completely
observable, LTI operator with rational transfer matrix H(s) which is proper and
minimum-phase. If the closed-loop system for the rizid body model alone (i.e.,

Eqs. ‘1), (2), (1¢), (11), (16)-(18) with mg = 0) 1s AS, then the entire
clos. loop system (i.e., with ng # 0) is AS provided that

H(jw) (wcr - jcp) + (wcr + ij) H* (Jw) > 0 for all real w (42)

Proof. Considering the rigid-body equationms,

Is; - ;(“c - %(“a + uq) (43)
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where g = =-Ga - Gr& and Y = -Gp0q—cr0i. Thus the. transfer
function from q to d is given by

M(s) = [I + H(s) {cp + cr-}l"l H(s) {cp + Gr‘} ®

Since the closed-loop rigid-body system is strictly stable by assumption, M(s)
iz strictly stable and finite-gain, which implies

lal, < vigl + th b, (44)

where Y is the gain of M and h, is its free response. Proceeding as in the
proof of Theorem 1, we can arrive at Eq. (37) wherein ¢ = 0 and n, 1is
replaced by h,. Since u,, = <G (a + #q), we have from (44),

fueely £ glaly + cfb ly (43)

vhere c) and c¢; are positive constants. Completing squares as in (38) and
noting that thy! is finite, it can be proved that 1qly 1s bounded for all
T > 0, and that lim g(t)=0. From (45), u,, also tends to zero as t+=, The
remainder of the proof is similar to that of Theorem 1. '

Corollary 2.2 With the same assumptions as in Theorem 2, if Gp, G, and B
are diagonal, then the closed-loop system is AS 1f (40) is satisfied with H
replacing H.

From Corollary 2.2, for the case where Hyj(s) = ki/(s + a;) with
ki, 8 > 0, the closed-loop asymptotic stability is assured if Gpt £
846Gy for 1 =1, 2, . ., n,

The significance of the results of this section is that the stability can
be assured by making the ratio of the rate-to-proportional gains sufficiently
large. One has to know only the sensor/actuator characteristics, and the
knowledge of the plant parameters is not required. This result is eoqictcly
consistent with the result obtained in [5 or single-impyt, single-output
systems, for emall Gp and G, using a root-locus argument.

The next section considers the case where nonlinearities are present in
the loop. :

Stability in the Presence of Nonlinearities

Suppose Eq. (1) is replaced by
u= ¥u c) (46)

where V is an wm-vector, one-to-oune, time-invariant function, y: RE+ER o
foilows:
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wo) = lwl(cl). ¢é(02). o oy wm(om)] (47)

For this case, the stability of the closed-loop system can be investigated
using Lyapunov methods. A function #(v): RI+Rl 18 said to belong to the
(0, ») sector if H(0) = O and vH(Vv) > O for v # 0. @ is said to belong to the
(0, =) sector if #(0) = O and v#(Vv) > O for v # 0. [Fig. 2] Many nonlineari-
ties encountered in practice, such as saturation, relay, dead-zones, belong to
the [0, =) sector. As in the previous section, we assume that the problem is
well-posed, and that a unique solution exists, and we consider the case with
one 3-axis actuator for simplicity.

Theorem 3. Consider the closed-loop system given by Eqs. (2), (10), (11),
(16)-(18), and (46), where G, and Gy are positive definite and diagonal,
and each ¥; is in the (0, =) sector and is strictly monotonic increasing for

i=1,2, ¢« ¢« ¢« , m. Then the closed-loop system is globally asymptotically
stable. )

Proof. Define

. T .T,* 2 -1 Vept
V(x, xX) = x Cx + X AX + 2 ) Gpi / P wi(v)dv (48)
o

i=]

where G,j and wu.,; denote the iith and ith elements of G and
ucp» respectively. This form 1is the well—k¥oqp "Lure'-type" anpunov
function {6). From Eqs. (4) and (6), xTcx + xIAx = O only when & = O,
q=q= 0. That is, this quantity can be zero when a # 0, However, when q =
0, Uep, = Gpi@, which 1is nonzero whem a # 0. Thus the third term on the
right haand sgde of (48) is positive (since y4; is8 in the (0, =) sector) for a
# 0. Therefore, V is positive definite. From (48), wusing (2), (46),
(16)-(18),

3
. I -1 -1 *
Ve -2xBx -2 ] u GobiCe o ug ) = Gpb (e du (49)
i=]
. -1
Since ucp1 GpiG {Yeri® “© have from (49):
. oT o 3 -l
V= -2xBx - Zﬁl“cri‘;u [byCuopy + ugpy) = ¥ylugyy)] (50)
Since Y4 is strictly monotonic increasing,
3 [ T .
V< -2q9°Dq (51)

V=0 only when 0 and uep; = 0, which implies & = 0. Considering the
closed-loop equation,

0 I

Aq - of W(ucp) (52)
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whicn yields y; (ucps) = 0 and q = 0. Since y;(v) = 0 only at v = 0,
this implies that @« = 0., Thus V = 0 only at the origin, and the system is
globally asymptotically stable.

Thus the collocated controller is guaranteed to be globally asymptotically
stable in the presence of wmonotonic increasing nonlinearities. This » - .-
of the nonlinearities is also called "incremental passivity.” As se’ n ti
previous section, if the nonlinearities are replaced by dynamic operat 3, mere
incremental passivity is not sufficient for stability.

ROBUSTNESS OF VELOCITY FEEDBACK CONTROLLERS

Stability with Dynamic Operator in the Loop

Consider the case where a nonlinear dynamic operator JQf(zo; v) is

present in the loop. Suppose is represented by the following state-space
model:
z= f(z, v, t), 20) = z_ (53)
w(t) = p(z, t) (54)

where v and w are 3m x ]l vectors which are the input and the output of,ﬁz'.
Define the operator

3;( (z; 8) = ff(zo; g) - ff(zo; 0) (55)

We define ,i%? to be internally stable if | ;‘2: (zo; 0)V is finite for any
finite z,.

Theorem 4. , Consider the system given by Eqs. (1), (19), (20) (21), where the
ogerator Jﬂf has the state-space representation given by ..3), (54). Suppose
d}%@ is pasgive and $¢ 1is uniformly observable, finite-gafn, internally
stable, continous operator. Then the closed-loop system is globally
asymptotically stable.

Proof. Defining

V(t) = q'Aq + q°4 (56)

v(t) > 0 for all t > 0. Differentiating V(t) with respect to t and using Eqs.

V= -ZaTDa - 20T 7t ;ﬂszo; u.) (57)

cr r

Integrating from 0 to T , eince V > O,
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. . -1
0 < V(D) = V(0) - Kq, D>y ~ Ku_, 6 z; u M. (58)
which yields (after manipulation)

° 2 . ~
2 2,(D) NqUp < V(0) - B + 21q1_ 191 1 /{(zo; o)t (59)

where B is a constant (see Eq. 28).

By using a procedure similar to that in the proof of Theorem 1, it can be

proved that Ial is bounded, and that the system is globally asymptotically
stable.

The following corollary is an immediate consequence of Theorem 3.

Corollary 4.1, If 34’13 a strictly stable, completely observable, LTI operator
with rational, mimimum-phase. transfer matrix H(s), the closed-loop system of
Eqs. (1), (19), (20), (21) is asymptotically stable provided that

*
H(jw)Gr + GrH (jw) > 0 for all real w (60)

Note that the above condition is equivalent to passivity of Gr‘IJQf .

Corollary 4.2. Under the assumptions as in Corollary 1.1, 1if G, and
are diagonal, the closed-loop system of Egs. (1), (19), (20), (21) is
asymptotically stable if

Re[Hi(jw)] > 0 for all real w

As a result of Corollary 4.2, CDVFB controllers can tolerate stable
first-order dynamics in the loop. 1If Hy(s) = e‘Jn;; we have
Re[Hi(jw)] > O for -90° < By < 90°; tnerefore, CDVFL controllers have 90°
phase margin.

Stability in the Presence of Nonlinearities

Suppose the operator f( in (1) 1is replaced by an w-vector nonlinear
function ¥ as in Eq. (47), except that ¥ is allowed to be time-varying. The
following theorem gives sufricient conditions for global asymptotic stability.

Theorem 5. Consider the closed-loop system given by Eqs. (i), (19), (20),
(21), where G, is diagonal and positive definite, and each y; belongs to
the [0, =) sector. Then the closed-loop system 1is globally asymptotically
stable.
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Proof. Starting with V as in Eq. (56),

2 L ] L ] 3‘ -
V= —ZqTDq - 21): ct;ucrivi("cri’ tJ (62)
=]

®
Thus V < 0, and Vo only if ('1 £ 0, which can happen (from the equations of
motion) only when q = 0. Therefore, the system is globally asymptotically
stable.

The next theorem considers a special case when nonlinearities and
first-order dynamics are simultaneously present in the loop, as shown in Fig.
3.

Theorem 6. Consider the closed-loop system ,given by Eqs. (1), (19), (20),
(21), where Gy > 0 is diagonal. Suppose fé- diag ( 1> ;Cz, « oo .
.., m), where

K= v (o (63)

where each y3: RI+Rl is a time-invariant, dJifferentiable function
belonging to the [0, =) sector, and there exists_a constant K < = guchk that
'\Pil < K over the interval (-«, =), Suppose { is an LTI operator whose
transfer function is: Gy(s) = aj(1 + pis)‘l, ag > 0, pj > 0 for 1 =
1, 2, « . ,m. Then the system is globally asymptotically stable.

Proof. Starting with V as in Eq. (56) and proceeding as in the proof of
Theorem 4, we have

3m
. . =1
0 < ¥(0) - 2<3, DP - 2121 6ot <u s ¥l G0 u )+ 8, by (64)

wherc 9,4 is the unforced response of ?1 due to nonzero initial state.
Using wean value theorem, Eq. (64) can be written as:

. . 3||l g
0 < V(0) - Kq, Do>y - 2121 oggr Yyl F1O05 u )Py
1" .
<o Vi(WE 2y (63)

where U lies in the interval bounded by .71(0; Ueps) and '?1(0; Uepy)
+ 8oi+ Noting that the operator ¥y { ?1(0; ucric) is passive [4), and
simplifying, we have

2 - .
A, (D)1l < V(0)/2 + 101 Kiql, ig | (65)
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where

3m
] I = ©
g, 121 tg 1 < (66)

The remainder of the proof is similar to that of Theorem 4.
CONCLUDING REMARKS

Robustness properties were investigated for tw. types of controllers for
large space structures, which use collocated sensors and actuators. The first
type is the collocated attitude (CA) controller, which controls the rigid-body
attitude and the elastic motion using negative definite feedback of measured-
attitude and rate. The second type of controller is t}: collocated direct
velocity feedback (CDVFB) controller for dsmping enhancement. Such controllers
are known to provide closed-loop asymptotic stability regardless of the number
of modes and parameter values, provided that the actuators and sensors are
perfect. This robust stability property was extended further in this paper by
proving that the global asymptotic stability 1s preserved even when seansors/
actuators are not perfect. The CA controller preserves global asymptotic
stablity when the sensors/actuators are represented by (1) lioear, time-
invariant dynamics which satisfy certain simple phase conditions, or (11)
time-invariant, monotonic increasisg nonlinearities belonging to the (0, =)
rector. The CDVFB controller preserves global asymptotic stability under much
weaker conditions. In particuiar, CIVFB controllers have 90° phase margin and
are tolerant to time-varying nonlinearities in the [0, =) sector. These giobal
asymptotic stability results are valid regardless of the number of wodes in tiwe
model and regardless of pesrameter values. Therefore, it can be concluded that
these controllers offer viable methods for robust artitude control or damping
enhancement, especially when the parameters are not accurately known. An
important application of the collocated atiitude controller would bhe during
deploymwent or assembly of a large space structure, when the dynamic character-
istics are changing, and during initial operating phase, when the dynamic
characteristics are not known accurately. A robust collocated controller can
provide stable interim control which can perhaps be replaced later by
high-periormance controller designed using parameters estimated on orbit.
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Figure 1. - Collocated Contoller
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Figure 2.~ Nonlinearity belomging to the [0,00) sector
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Figure 3.~ Linear dynam.-~s and nonlinearities simultaneously in the loops
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