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ABSTRACT 

Robustness properties are investigated For tuo types of controllers for 
large flexible space structures, which use-collocated sensors d actuators. 
The first type Is s ~ l  attitude controller which uses negative definite feedback 
of .easured attitude and rate, uhlle the second type I s  a &ping enhancement 
controller which uses only velocity (rate) feedback. It is proved that collo- 
cated attitude controllers preserve closed-loop global asymptotic stability 
when linear actuator/sensor dynamics satisfyiqg certain phase conditiom are 
present, or monotonic increasing nonlinearities are present. For velocity 
feedback controllers, the global asyrptotic stability is proved under much 
weaker conditions. In particular, they have 90. phase margin and can tolerate 
nonlinearities belongiqg to the lo,-) sector in tbe actuator/sensor character- 
istics. The results significantly enhance the viability of both types of 
collocated controllers, especially when the available infomatlcm about the 
large space structure parameters is inadequate or inaccurate. 

INTROWCTION 

Large flexible space structures are Infinite-dimensional systems wlth very 
8-11 inherent energy dissipatim (damping). Becam of practical limitatlone, 
only finite-dlm!nsional controllers and point actuators and sensor8 m s t  be 
used for controlling large spa= structures (LSS) . In addition, coneIder8ble 
uncertainty exists in the knowledge of the parameters. For these reaaons, the 
design of a stable controller for a large space structure (LSS) is a 
challenging problem. 

A class of controllers, terwd "collocated controllers" [ l ] ,  represents an 
attractive controller because of ita guaranteed stabil'ity properties In the 
presence of plant uncertaiatier. Collocated attitude (a) controllers are 
designed to control the rigid-body attitcde ae well as the structural d e s ,  
while collocated direct velocity feedback (CDVPB) controllers are designed only 
for enhancerent of structural damping. Both types of collocated controllers 
guarantee stability regardless of the number of -des in the LSS rodel and 
uncertainties in the knowledge of tk parameters [ I ] ,  [Z]. A CA controller 
basieally consists of compatible oensor/actuator pairs placed at tlic same 
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loca t ions ,  and u t i l i z e s  negative d e f i n i t e  feedback of posi t ion and ve loc i ty  
(e.g., LSS a t t i t u d e  and attitude! rate). A CWW con t ro l l e r  131 is a special 
case of the CA con t ro l l e r  *re only rate feedback is used f o r  damping 
enhancement without affectiw tbe rigid-body modes. It has been proved i n  
references [ I ] ,  121, (31 t h a t ,  the closed-loop system is a lways  s t ab le  in the 
sense of Lyapunov, and is a l so  asymptotically s t ab le  (AS) under c e r t a i n  
addi t iona l  conditions. 

Although col located con t ro l l e r s  have a t t r a c t i v e  s t a b i l i t y  proper:ies with 
perfect  (i.e., l i nea r ,  instantaneous) sensors and actuators, the sebsurs and 
ac tua tors  ava i lab le  in prac t ice  tend to  have non i inea r i t i e s  and phase lags 
associated with them. In order t o  be useful  i n  p rac t i ca l  appl icat ions,  the 
c o n t r o l l e r  should be t o l e ran t  to non l inea r i t i e s  (e.g., sa tura t ion ,  re lays ,  
deadtones, etc.), and to phase shifts (e.g., actuator dpaarics and/or corputa- 
t i ona l  delays). Uncertaint ies  usually exist i n  the Lnowledge of the nonlinear- 
ities a d  the phase lags. For these reasons, this paper inves t iga tes  tire 
closed-loop s t a b i l i t y  of col located con t ro l l e r s  In the presence of d e l e d  
sensor/actuator  dynamics and noal iooar i t ics .  f& siturtioa ia matheaatically 
described by including an operator in the feedback path. The actual input 
c ' t )  *.s given by: 

where % is the idea l  (desired) input, A? is a mmmtic ipa t ive ,  l i n e a r  or 
nonlinear,  tire-varying or invar ian t  operator. For CA cont ro l le rs ,  it is 
proved tha t  t he  closed-loop system ie global ly  asymptotically s t a b l e  i f  

1) 2 is l i nea r ,  time-invariant (LTI)  and s t ab le  with a rational t r ans fe r  

2 )  If Pe cons ia t s  of t i m e i n v a r i a n t ,  s t r i c t l y  monotonic increasing 
nonl inear i t ies  belonging to the ( 0 ,  0 )  sector.  (A funct ian Mu) is sa id  
t o  belong t o  the [k.h)  sector i f  MO) = 0 and ku2 M u )  < hu2 for  al l  
0 * 0 ) .  

matrix H ( s )  which satisfies ce r t a in  freqwncy-dorain conditions,  or 

For CDVPB cont ro l le rs ,  it is proved that global asymptotic s t a b i l i t y  is 
preserved when 

11 is a s t ab le  nonlinear dynaric operator and s a t i s f i e s  certaln pass iv i ty  
conditions,  o r  

2) $f( is a stable L X  operator with phase within 290' 

3) $4 cons is t s  of mr h e a r  gains belonging t o  the [O,-) sector.  

These ana ly t i ca l  1' .ults s ign i f i can t ly  enhance the s t a b i l i t y  and 
robustness propertice of collocated cont ro l le rs ,  and therefore increase t h e i r  
p rac t i ca l  ayp l l cab i l i  cy. 
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PROBLEM PORMJIATION 

T h  linearized equations of motiaa of a large flexible space structure 
(using torque actuators) are given by: 

.. 0 T 1 
A X + B X + ~ =  1 riUi 

I= 1 
where 

(2) 

(3) 

where Os, $s denote t h  three rigid-body Buler angles, % is tbe 
n u b e r  of structural d e s ,  q1 denotes tbe modal aplitude of itb structural 

1, Is denotes the 3 x 3 ament of Inertia mtrix, mode (i = 1, 2, 
d e - s  ope mtrix at the lth ( 3 - u i s )  actuator location. 

It is uaumed tha m, 3 - d ~  torque actuators are used. It 11 denotes the I 
x 0 identity mmtrix, d diag( ) denotes a block-di.gona1 matrix. D la a 
symetric positive definite or 8ddefInIte matrix wbich represents the 
inherent structural damping. Since - damping, 1y) mtter haw mall, is 
always present, e IUIUDE D > 0 throughout this paper. A I s  m % x % 
diagonal ratrix of squared structural frequencies 

" ' 7  7 Qi is the 3 x 

2 2  2 
*nq' A = diag (*,, w2, . . ( 9 )  

Assrning that I, Saxis attitude md rate 8ensots (e.g., star trackers a d  rate 
gyros) are placed at tht locatiomm of tht actuators, t k  meuured 3-axis 
attitude Jai and rate yri at actuator location 1 (ignoring noise) are 
given by: 

0 

= r x  y r i  i (11) 

denoting 
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0 T T  T T  
Ya [Yaln Y a y  - , Y,l 

Yr  = [ Y r l ,  T T  Yr2' B Y,l T T  

(14) 

(15) 

where u, ya, yr are 3m x 1 v e c t o r s ,  and I' is a 3m x (nq + 3) matrix. The 
c o n t r o l  l a w  f o r  the  co l loca ted  a t t i t u d e  c o n t r o l l e r  is given by: 

u =  c ucp + Ucr 

u C P  = S P Y a  

"cr = X r y r  

(16) 

(17) 

(18) 

where uc r e p r e s e n t s  t h e  c-nd input ,  ucp and uer represent  comand 
a t t i t u d e  and rate inputs ,  and Gp, G r  are 3a x 3m feedback g a i n  matrices. 

For CDVFB c o n t r o l l e r s ,  the rigid-body rates are removed from the feedback 
s i g n a l  by s u b t r a c t i n g  a t t i t u d e  rates at two locat ions.  Consequently, t h e  model 
used for damping enhancement has the form: 

(19) 
q + $ + A q = # u  'T 

where 7 c o n s i s t s  of appropr ia te  d i f f e r e n c e s  between the mode-slopes. The 
c o n t r o l  law is given by: 

u C = ' G r Y r  

where 

(20) 

The c o n t r o l  laws given above f o r  CA and CDVFB c o n t r o l l e r s  have very 
a t t r a c t i v e  robustness  proper t ies .  It was shown i n  [ l ] ,  [2 )  t h a t ,  i f  D > 0, 
Gp = GpT > 0, and G r  = GrT > 0, then t h e  closed-system is  
asymptot ica l ly  s t a b l e  (AS) .  The s t a b i l i t y  r e s u l t  holds r e g a r d l e s s  of the  
number of modes i n  the model, and regard less  of inaccuracy in the knowledge of 
t h e  parameters. I n  real l i f e ,  however, n o n l i n e a r i r i e s  and phase lags exist i n  
the sensors and a c t u a t o r s ,  which i n v a l i d a t e  these  robust s t a b i l i t y  proper t ies .  
The real problem then is t o  i n v e s t i g a t e  t h e  closed-loo s t a b i l i t y  for the case 
where the a c t u a l  input  is given by Eq. (11, where is a nonac t ic ipa t ive ,  
l i n e a r  or conl inear ,  time-varying or i n v a r i a n t  operator.  The s i t u a t i o n  is 
shown i n  Figure 1. Our approach is t o  make use of input-output s t a b i l i t y  
concepts and Lyapunov methods. We assume throughout the paper t h a t  the problem 
is well-posed, and t h a t  a unique s o l u t i o n  e x i s t s .  We s t a r t  by def in ing  the  
terminology and the concepts,  which are adopted from [4] .  
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MTHWTICAL PBELIHINARIES 

Consider the  linear vector  space h2 of real square-integrable 
n-vector funct ions of time t, defined as: 

where Rn is the l i nea r  space of ordered n-tuples of real numbers, and It+ 
denotes the in t e rva l  0 < t < -. The 6calar product is defined ae - 

For gEh2,  its norm is defined as 

Define the truncation operator PT such that 

g ( t )  0 L t - < T A 
B T W  = P # t )  = 

I o  t > T  

Def l ne  the extended space &e2: 

(25) 

Thus he2 Is a l inea r  vector spce of functions of t vhose truncations are 
square-integrable m (0.1) f o r  a l l  T < me For g l ,  g2 € b2, define 
the truncated Inner product 

Consider an operator $f :be2+be2. 2 fr oafd t o  be s t r i c t l y  
passive i f  there e x i s t  f i n i t e  constants  B and 6 > 0 such that 

(28)  2 < $?e, ioT 3 + a w z ,  v T 0, t f g  Lne 

f l  is passive i f  6 - 0 in (28). 
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ROBUSTNESS OF COLLOCATED ATTITUDE CONTROLLERS 

S t a b i l i t y  With Dynamlc Operator i n  t h e  Loop 

We consider  the case where the opera tor  is l i n e a r  and t ime-invariant  
Ue denote $! g 

g(z , ;  g) where zo is the  i n i t i a l  state vec tor  of x ,  and assume m = 1 
(LTI), and has a f ini te-dimensional  s ta te-space representa t ion .  
by 
f o r  s i m p l i c i t y  (i .e. , one 3-axis a c t u a t o r ) .  

Theorem 1. Suppose Is a non-ant ic ipat ive,  s t r i c t l y  s l a b l e ,  completely 
o b s e p a b l e ,  LTI opera tor  whose t r a n s f e r  matrix is H ( s )  = cI+H(a), where E > 0 
and H(s) is a proper,  minimum-phase, rational mtrix. Under these condi t ions,  
the closed-loop system given by Eqs. ( l ) ,  (2), ( l o ) ,  ( l l ) ,  (16)-(18) is 
asymptot ica l ly  s t a b l e  (AS) i f  

where * denotes  the  conjugate transpose.  

Proof - Define the funct ion - 

Since C > 0 ,  A > 0, V ( t )  
t ,  and G i n g  (11, ( l o ) ,  (11)b (1614181, 

0 f o r  a l l  t 2. 0 .  D i f f e r e n t i a t i n g  V with respect to  

.T T -1 v = -  2x Bx - 2ucr Gr x[zo; ucl 

where $? also depends on its i n i t i a l  state zoo Since k! is l i n e a r ,  

where h,(t) is the  unforced response of &? due 
Since & I s  s t r i c t l y  s t a b l e ,  Ihl,  is f i n i t e  f o r  any 

S u b s t i t u t i n g  (32) i n  (31)  and i n t e g r a t i n g  f r m  

to nonzero i n i t i a l  
f i n i t e  zo. 

0 t o  T, s i n c e  V(T) 2 

where 

(31) 

(32) 

state. 

0 ,  



C 8  
. 

I n  ( 3 4 ) .  8 denotes the  de r iva t ive  operator. (?is" is technical;? noncausal; 
however, t h i s  d i f f i c u l t y  can be overcome & defining the de r iva t ive  of 8 trun- 
ca t ion  at  T t o  be equal t o  tha t  of the  -truncated function.) Using Parseval ' s  
theorem, 

The matrix i n  the brackets is pos i t i ve  (from Eq. 29), and we have 

-1  2 
< U  cr' G r  R p ~ c p > T  2 IUcrIT 

which y i e lds  (from (33) 

-1 2 0 V ( 0 )  -2 <;, &>T -2 E l u  cr I T -2 <uCr, Gr ho>T 

(35) 

(36) 

D T D  
wherein we have used the f a c t  t ha t  x Bx - q Dq. Therefore, 

where I Ig denotes the spectral nom of a matrix,  and X, denotes the  
smal les t  eigenvalue. Eq. (37) can be wri t ten  as 

where c1 = d< and c2 = Ihol Therefore, l i m  ( t)  = 0 ,  and t& ucr 
i t )  - 0. Wnoting the rigid-body att1tudet* a = (os, Be, $ )T, t h i s  
i m p l i e s  t ha t  l i m  a ( t )  = 0.  
t-, 

Taking the  l i m i t  of the closed-loop equation as 
t- 

(39) 
- 
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where the overhead bar denotes the l i m i t  as t+=. From (391, flucp = 0 and 
Since fz  is observable and i t s  output tends t o  

zero, i ts s t a t e  vector  tends to  zero as t-, and the Bystem is asymptotically 
s tab le .  

= 0, which y i e lds  = 0. 

The followirig co ro l l a ry  e s s e n t i a l l y  states tha t  , for  d i q o n a l  Gp, Gr, 
and H, i t  is s u f f i c i e n t  t h a t  the phase lag of & j w )  is less than the phase lead 
introduced by the cont ro l le r .  

Corollary - 1. I .  Suppose Gp, G r  and H are diagonal and s a t i s f y  the 
assumptions of Theorem 1 . Then the  closed-loop system is g loba l ly  
asymptotically s t ab le  i f  

-1 WGri -tan - < Arg 
G -  

P i  

where Arg( ) denotes 

For the case 

-1 Oeri 

. P i  
{ai(j")} 180' -tan - fo r  a l l  real w G (40) 

condi t ion (40) becomes 

Gr i 
G -  - > l /ai  

P i  

Thus, fo r  t h e  case of f i r s t -o rde r  sensor/actuator  

(41) 

dynamics, the system is 
asymptotically s t ab le  i f  the r a t i o  of rate-to-proportional gain is at least 
equal t o  the magnitude of the ac tua tor  pole. 

I n  Theorem 1 and Corolla y 1.1, the  t r ans fe r  funct ion of ,@ was assumed t o  
be of the form: H ( s )  = tI + k s ) ,  where E > 0. That I s ,  a d i r e c t  transmission 
term, no matter how small, was present. Prom Theorem 1, the closed-loop system 
is AS fo r  any E. > 0. Therefore, the closed-loop eigenvalues are all in the 
open l e f t  half-plane (OLHP). Beca?lsc CIL~ cont inui ty ,  ii is obvious that, when 
E = 0, the eigenva1':nz rill not cross  the imaginary axio.  That is, the elgen- 
value# Z2ii be i n  the closed l e f t  half-plane (CLIIP). Theorem 2 given below 
considers the case when E - 0. It essent  l l y  ohowe tha t ,  i f  the closed-loop 
system with no elastic modes is AS with 

Theorem 2. Suppose 2 is a non-anticipative,  s t r i c t l y  s t ab le ,  completely 
observable,  LTI operator with r a t iona l  t r ans fe r  matrix H(a) which is proper and 
minimum-phase. If the closed-loop system for the r i z i d  body model alone ( i .e . ,  
Eqs. ' I ) ,  ( 2 ) ,  (10). ( I l ) ,  (16)-(18) with nq = 0) is AS, then the e n t i r e  
clos,  

# i n  the loop, then so is 
with e l a s t i c  modes, provided tha t  ( 2 9 )  is s a t i a f i e d  with H replacing 

Loop system (i .e. ,  with nq f 0) is AS provlded tha t  

H(jw) ("Gr - jG ) + ("GI + 

Proof . Considering the rigid-body 

P 

- 

* 
jGp) H ( j w )  2 0 fo r  a l l  r e a l  w ( 4 2 )  

equations,  

90 

( 4 3 )  



where uq = -G  a - GrG and uq = -Gp#q-Gr4i. 
function from 4 to a i a  given by P. Thur the .  t ranr fer  

# 

Since the clo6ed-loop rigid-body 8yrtem ir r e r i c t l y  s tab le  by u m a p t i o n ,  H(8) 
is r t r i c t l p  s tab le  a d  finite-gain, which irplier 

. . 

where y i r  the gain of H md i r  
proof of Theorem 1, = can a r r ive  
replaced by b. Since %r - Sr (a + 

. 
lu I < cllqlr  + c21hmIT cr T - ( 4 5 )  

where c1 and c2 are porit ive constantr. Completing squarer aa in (38) and 
noting tha t  is. f i n i t e ,  it can be proved that 4 4 1 ~  is bounded for a l l  

remainder of the proof is similar t o  that of Theorem 1. 
T > 0 ,  a d  tha t  lw(t)=O. Rm ( 4 5 ) ,  +r a l e 0  tend8 to zero a8 two T b  

Corollary - 2.2 With the same asrumptiom as i n  Theorem 2, i f  Gp, +, and E 
are diago 1, then the closed-loop spotem tr AS i f  (40)  i r  uat i r f ied  with E' 
replacing T. 

Prom Corollary 2.2, for the caie here Hii(r) $/(r + 3) with 
ki, ai > 0 ,  the clored-loop aaymptotic e t a b i l i t y  i o  aarured i f  Gpi 5 
aiGri for i = 1, 2, . . , 8 0  

The significance of the r e ru l t r  of t h i e  rectim i o  that the s t a b i l i t y  can 
be assured by -king the r a t i o  of the rate-to-proportional gain+ m f f i c l e n t l y  
large. One has to know only the renror/rctuatot ch.r.cterietice. .ad the 
knowledge of the plant parameters ir not required. Thim mmlt  i. c#pletely 
consistent with the rerult obtained in 151 for ein&e-input, single-output 
system, for mall Gp and +, wing a root-locur argument. 

the, loop. 

, 

Thl next rcctioa considerr the cam where ncral1neariti.r are prerent i n  

Stab i l i t y  in the Prerence of Nonlinearltiem 

Suppose Eq. (1) ir replaced by 

u - Muc) ( 4 6 )  

where I, i o  an t v e c t o r ,  one-to-oni, t i r - i n v a r i a n t  function, $: en", as 
f OllOW8: 

91 



For t h i s  case, the s t a b i l i t y  of the closed-loop system can be inves t iga ted  
using Lyapunov methods. A funct ion d(v): R1+R1 i s  said t o  belong to  the 
( 0 ,  -1 sec to r  if d(0) = 0 and vb(v) > 0 for v # 0. d is , s a id  t o  belong t o  the 
[ O s  -) sec to r  i f  d(0) - 0 and VMU) 0 f o r  v f 0 .  [Pig. 21 Many nonlineari-  
ties encountered i n  prac t ice ,  such as sa tura t ion ,  re lay ,  dead-tones, belong to 
the [ O s  -1 sec tor .  As i n  the previous sect ion,  we assum tha t  the problem is 
well-posed, and tha t  a unique so lu t ion  exists, and we consider the case with 
one 3-axis ac tua tor  for  s implici ty .  

Theorem 3. Consider the closed-loop system given by Eqs. (2 ) ,  ( l . O ) ,  ( l l ) ,  
(16)-(18), and (46), where Gp and G r  are pos i t i ve  d e f i n i t e  and diagonal, 
and each $i is i n  the (0, -1 sector and is s t r i c t l y  monotonic Increasing fo r  
i = 1, 3, . , m. Then the closed-loop system is global ly  asymptotically 
s tab le .  

Proof. Define - 
U 

-1 $i( v)dv 
i= 1 

denote the  i i t h  and i t h  elements of Gp and 
ucp respect ively.  This form is the  w e l l - l m o ~  "Lure'-type" Lyapunov 
functfon ( 6 ) .  From Eqs. (4) and (61, xTCx + :TAX - 0 anly when a - 0, 
q - q - 0. That is, t h i s  quant i ty  can be zero when a 0 0. However, when q = 
0 ,  Ucp* - G a, which is nonzero when a f 0. Thus the th i rd  tela 011 the 
r igh t  hand sfb, of (48) is pos i t ive  ( s ince  $1 is i n  the (0, -) sec tor )  f o r  a 
f 0. Therefore,  V is pos i t ive  de f in i t e .  From (481, using (21, (461, 
( 1614 18) , 

where G p i  and %pi 

Since u 'cpi = GpiC;:Ucri* we have from (49): 

Since $1 I s  s t r i c t l y  monotonic increasing,  

* T o  i -2q Dq (51) 
0 
V-0 only when GO and ucri = 0, which i m p l i e s  - 0. Considering t h e  
closed-loop equation, 
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which yields $i (ucpi) 0 and. q = 0. Since $i(J) = 0 only at v - 0, 
this implies that a - 0. Thus V 5 0 only at the origin, and the system is 
globally asymptotically stable. 

Thus the collocated controller is guaranteed to be globally asymptotically 
stable in the presence of monotonic increasing nonlinearities. This p .._ .. 
of the nonifnearities is also called "incremental passivity." As se' n t.1 

previous section, if the nonlinearities are replaced by dynamic operat 8 ,  mere 
incremental passivity is not sufficient for stability. 

ROBUSTNESS OF VELO$ITY FEEDBACK CONTROLLERS 

Stability with Dynamic Operator in the Loop 

Consider the case where a nonlinear dynamic operator p ( z o ;  v) is & is represented by the following state-space present in the loop. 
model : 

Suppose 

w(t) = p(z, t) (54) 

where v and w are 3m x 1 vectors which are the input and the output of . 
Define the operator 

We define 
finite zO. 

Theorem 4. Consider the system given by Eqs. ( l ) ,  (191, (20 )  (211, where the 
o erator 2 has the state-space representatlon given by ;L3), (54). Suppose 
G&R is passive and ,g i s  uniformly observable, finite-ga! n, internally 
stable, continous operator. Then the closed-loop system is globally 
asymptotically stable. 

to be internally stable If I f l  (to; 0) I is finite for any 

Proof. Defining - 
V(t) - qTAq + iTi ( 5 6 )  

V ( t )  > 0 for all t 0. Differentiating V(t) with reapect to t and uslng Eqs.  
(19),720), (21) and (11% 

= -2q .T Dq . - 2uT G-l R(z0; UCr) 
cr r ( 5 7 )  

Integrating from 0 to T , elnce V 0, 
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which y i e l d s  ( a f t e r  manipulation) 

where B is a cons t an t  (see Eq. 28).  

By using 2 procedure similar t o  t h a t  i n  the proof of Theorem 1, it can be 
proved t h a t  Wql is bounded, and t h a t  t he  system is g l o b a l l y  a sympto t l ca l ly  
s t a b l e .  

The following c o r o l l a r y  is an i m e d i a t e  consequence of Theorem 3. 

Coro l l a ry  4.1 I f  & is a s t r i c t l y  s t a b l e ,  completely observable ,  LTI o p e r a t o r  
with r a t i o n a l ,  mimimum-phasr: t r a n s f e r  matrix H( e),  the closed-loop system of 
Eqs. ( l ) ,  (191, (201, (21) is asympto t i ca l ly  s t a b l e  provided t h a t  

* 
t i ( j w ) G r  + GrH ( j w )  - > 0 f o r  a l l  real w ( 6 0 )  

Note t h a t  the above cond i t ion  is equ iva len t  to p a s s i v i t y  of Gr-',# . 
Coro l l a ry  4.2. Under the  assumptions as i n  Coro l l a ry  l .ly i f  G r  and 
are diagonal ,  t h e  closed-loop system of Eqs. (11, (191, (20),  (21) is 
asympto t i ca l ly  s t a b l e  i f  

Re[Hi(jw)] > 0 f o r  a l l  real w - 
As a resu l t  of Corol lary 4.2, CDVFB c o n t r o l l e r s  can tolerate e t a b l e  

f i r s t - o r d e r  dynamics i n  t h e   loo^. I f  R i ( 8 )  - e'JCi, we have 
He[Hi(jw)] > 0 for -90" bi - < 90'; t h e r e f o r e ,  CDVFL c o n t r o l l e r s  have 90' 
phase margi;: 

S t a b i l i t y  i n  t h e  Presence of N o n l i n e a r i t i e s  

Suppose the ope ra to r  f l  i n  (1) is replaced by an m-vector non l inea r  
func t ion  J, as i n  Eq. (471, except t h a t  J, I s  s l o w e d  t o  be time-varying. The 
following theorem g ives  e u f i i c i e n t  condi t ione f o r  g loba l  asymptotic s t a b i l i t y .  

Theorsm 5 .  Consider the closed-loop system given by Ego. ( i ) ,  (191, (201,  
(21) ,  where Gr is diagonal  and p o s i t i v e  d e f i n i t e ,  and each $i belongs t o  
t h e  [0, -) s e c t o r .  Then the  closed-loop system is g l o b a l l y  neymptotically 
s t a b l e .  
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Proof. S t a r t i n g  with V aa i n  Eq. (561, - 

Thus f < 0, and f f 0 only i f  6 E 0, which can happen (from t h e  equat ions of 
motion) only when q E 0. Therefore,  the system Is g l o b a l l y  asymptot ica l ly  
s t a b l e .  

The next theorem cons iders  a d p e c i s l  case when n o n l l n e a r i t i e a  and 
f i r s t - o r d e r  dynamics a r e  simultaneously present  In  the loop, as sho-a i n  Fig. 
3. 

Theorem 6. Consider t h e  closed-loop system iven by Eqs. (11, (191, (201, 
(21) ,  where Gr > 0 is diagonal.  Suppose $! - diag  ( #I ,  Rz, . . . . . where 

where each $1: R1+R1 is a t ime-invariant ,  d l f f e r e n t i a b l e  func t ion  
belonging to the (0, =) s e c t o r ,  and t h e r e  e x i s t s  a cans tan t  K < such t h a t  lJ l [ l  < K over the  i n t e r v a l  (--, O D ) .  Suppose qi is an LTI operator whose 
t r a n s f e r  func t ion  is: G i ( s !  = ai(1 + pis)- l ,  ai 3 0 ,  p i  > o f o r  i = 
1, 2 ,  . ,m. Then the  system is g l o b a l l y  asymptot ical ly  stable. 

- Proof. S t a r t i n g  with V 88 i n  Eq. (56) and proceeding a8 In the  proof of 
Theorem 4 .  we have 

when 
Using sean value t h e o r e l ,  Eq. ( 6 4 )  can be w r i t t e n  a8: 

is the  unforced response of 91 due t o  nonzero i n i t i a l  state. 

vhere û  lies i n  t h e  interval .  bounded by ( 0 ; U c r  i 1 
+ g,i. Noting t h a t  the  opera tor  $1 
s impl i fy ing ,  we have 

9 i i O ;  ucri33- 16 paroive IO], and 
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where 

3a 

1- 1 
'go' = 1 'ecil < - 

The remainder of the proof is similar to that of rheorem 4. 

CONCLUDIH; REMARKS 

Robustness properties were investigated for tsv types of controllers for 
large space structures, whlch use collocated sensors and actuators. The first 
type is the collocated attitude (CAI controller, whlch controls the rigid-body 
attitude and the elastic motion wiqg negative. definite feedback of measured- 
attitude and rate. The second type of controller is tkz collocated direct 
velocity feedback (CWW) controller for damping enhancement. Such controllers 
are known to provide closed-loop asymptotic stability regardless of the wrrber 
of modes and parameter values, provided that the actuators and renoore are 
perfect. This robust stability property was extended further in this paper by 
proving that the global asymptotic stability le prcaerved eveo vhcn sensor#/ 
actuators are not perfect. Tbe CA controller preserves global asymptotic 
stabljty when the sensorejactuatore are represented by (1) linear, tiw- 
invariant dynamics which satisfy attain sirple phase conditions, or (1%) 
time-invariant, monotonic increasirg nonlinearities belonging to the ( 0 ,  a) 
Rector. The QWPB controller preserves global asymptotic stability mder much 
weaker conditions. In particiiar, CWW controllers have 90" phaw margin and 
are tolerant to time-varying nonlinearities in the [O, 0 )  sector. There global 
asymptotic stability results are valid regardless of the number of modes in t;ot 
model and regardless of parater valuer. Therefore. it can be concluded that 
these controllers offer viable methods for robust attitude control or damping 
enhancement, eopecially when the parameters are not accurately known. An 
important application of the collocated attitude controller would be during 
deployeent or assembly of a large apace structure, then the dpnaric character- 
istics are changing, and during initial operating phase, when tb dynamic 
characteristfcs are not known accurately. A robust collocated contr9ller can 
provide stable interim control which caa perhapr be replaced later by 'a 
high-periormance controller designed wing parameterr estimated OIL orbit. 
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Figure 1. - Collocated Contoller 
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Figure 2.- Nonlinearity belonging to the IO,-) sector 

Figure 3.- Linear dynemi-a and nonlinearltiee slmltaneoualy In the loops 
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