\& N85-31201

ON THE STABILITY OF COLLOCATED CONTROLLERS IN THE PRESENCE OF UNCERTAIN NONLINEARITIES AND OTHER PERILS

S. M. Joshi
NASA Langley Research Center
Hampton, VA 23665

Abstract

Robustness properties are investigated for two types of controllers for large flexible space structures, which use-collocated sensors and actuators. The first type is an attitude controller which uses negative definite feedback of masured attitude and rate, while the second type is a denping enhancement controller which uses only velocity (rate) feedback. It is proved that collocated attitude controllers preserve closed-loop global asyaptotic stability when linear actuator/sensor dyamics satisfying certain phase conditions are present, or monotonc increasing nonlinearities are present. For velocity feedback controllers, the global asymptotic stability is proved under much weaker conditions. In particular, they have 90° phase margin and can tolerate nonlinearities belonging to the $[0, \infty)$ sector in the actuator/sensor characteristics. The results significantly enhance the viability of both types of collocated controllers, especially when the available information about the large space structure (LSS) parameters is inadequate or inaccurate.

INTRODUCTION

Large flexible space structures are infinite-dimensional systens with very small inherent energy dissipation (damping). Because of practical linitations, only finite-dimensional controllers and point actuators and sensors must be used for controlling large space structures (LSS). In addition, considerable uncertainty exists in the knowledge of the parameters. For these reasons, the design of a stable controller for a large space structure (LSS) is a challenging problew.

A class of controllers, termed "collocated controllers" [1], represents an attractive controller because of its guaranteed stability properties in the presence of plant uncertainties. Collocated attitude (CA) controllers are designed to control the rigid-body attitude as well as the structural modes, while collocated direct velocity feedback (CDVFB) controllers are designed only for enhancement of structural damping. Both types of collocated controllers guarantee stability regardless of the number of modes in the LSS model and uncertainties in the knowledge of the parameters [1], [2]. A CA controller basically consists of comparible sensor/actuator pairs placed at the same
locations, and utilizes negative definite feedback of position and velocity (e.gi, LSS attitude and attitude rate). A CDVFB controller [3] is a special case of the $C A$ controller where only rate feedback is used for damping enhancement without affecting the rigid-body modes. It has been proved in references [1], [2], [3] that, the closed-loop system is always stable in the sense of Lyapunov, and is also asyaptotically stable (AS) under certain additional conditions.

Although collocated controllers have attractive stability proper-ies with perfect (i.e., linear, instantaneous) sensors and actuators, the seusurs and actuators available in practice tend to have noniinearities and phase lags associated with them. In order to be useful in practical applications, the controller should be tolerant to nonlinearities (e.g., saturation, relags, deadzones, etc.), and to phase shifts (e.g., actuator dynanics and/or conputational delays). Uncertainties usually exist in the knowledge of the nonlinearities and the phase lags. For these reasons, this paper investigates tine closed-loop stabili:y of collocated controllers in the presence of umodeled sensor/actuator dynamics and nonlinearities. The situation is mathematically described by including an operator \mathscr{C} in the feedback path. The actual input c't) ${ }^{\text {s }} \mathrm{s}$ given by:

$$
\begin{equation*}
u(t)=\ell_{u_{c}(t)} \tag{1}
\end{equation*}
$$

where u_{c} is the ideal (desired) input, \mathscr{C} is a nonanticipative, inear or nonlinear, time-varying or invariant operator. For $C A$ controllers, it is proved that the closed-loop system is globally asyeptotically stable if

1) \mathscr{L} is linear, time-invariant (LTI) and stable with a rational transfer matrix $H(s)$ which satisfies certain frequency-domain conditions, or
2) If \mathscr{H} consists of time-invariant, strictly monotonic increasing nonlinearities belonging to the $[0,-)$ sector. (A function (0 () is said to belong to the $[k, h)$ sector if $\sigma(0)=0$ and $k \sigma^{2} \leq \sigma(\sigma)<h \sigma^{2}$ for all $0 \neq 0$).

For CDVFB controllers, it is proved that global asymptotic stability is preserved when
1; \mathscr{H} is a stable nonlinear dynamic operator and sacisfies certain passivity conditions, or
2) \mathbb{R}^{\prime} is a stable LII operator with phase within $\pm 90^{\circ}$
3) $I \ell$ consists of aor inear gains belonging to the $[0, \dot{\infty}$) sector.

These analytical i ults significantly enhance the stability and robustness properties of collocated controllers, and therefore increase their practical applicability.

PROBLEM PORMMLATION

The linearized equations of motion of a large flexible space structure (using torque actuators) are given by:

$$
\begin{equation*}
\dot{A x}+\dot{B} \dot{x}+C x=\sum_{i=1}^{E} \Gamma_{i}^{T} u_{i} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& x=\left(\phi_{8}, \theta_{8}, \psi_{s}, q_{1}, q_{2}, \cdots, q_{n q}\right)^{T} \tag{3}\\
& A=\operatorname{diag}\left(I_{8}, I_{n q \times n(}\right) \tag{4}\\
& B=\operatorname{diag}\left(0_{3} \times 3, D\right) \tag{5}\\
& C=\operatorname{diag}\left(0_{3 \times 3} \times \Lambda\right) \tag{6}\\
& r_{i}=\left[I_{3} \times 3, \varphi_{i}\right] \tag{7}\\
& u_{i}=\left(u_{x i}, u_{y i}, u_{z i}\right)^{T} \tag{8}
\end{align*}
$$

where $\phi_{8}, \theta_{g}, \psi_{s}$ denote the three rigid-body Buler angles, n_{q} is the number of structural modes, q_{i} denotes the modal aplitude of ith structural mode $\left(i=1,2, \ldots, n_{g}\right), I_{g}$ denotes the 3×3 moment of inertia matrix, Φ_{i} is the $3 \times n_{q}$ mode-siope matriz at the ith (3-axis) actuator location. It is assumed that m, 3 -axis torque actuators are used. $I_{l} x \ell$ denotes the ℓ x i identity matrix, and diag() denotes a block-diagonal matrix. D is a symetric positive definite or senidefinite matrix which represents the inherent structural damping. Since some damping, no metter how sall, is always present, we assume $D>0$ throughout this peper. A is an $n_{q} x n_{q}$ diagonal matrix of squared structural frequencies

$$
\begin{equation*}
\Lambda=\operatorname{diag}\left(\omega_{1}^{2}, \omega_{2}^{2}, \ldots, \omega_{n q}^{2}\right) \tag{9}
\end{equation*}
$$

Assuming that m, 3 -axis attitude and rate sensors (e.g., star trackers and rate gyros) are placed at the locations of the actuators, the meanured 3-axis attitude $y_{\text {ai }}$ and rate $y_{r i}$ at actuator location 1 (ignoring noise) are given by:

$$
\begin{align*}
& y_{a i}=r_{1} x \tag{10}\\
& y_{r i}=r_{1} \dot{x} \tag{11}
\end{align*}
$$

denoting

$$
\begin{equation*}
u=\left[u_{1}^{T}, u_{2}^{T}, \ldots, u_{\mathbf{w}}^{\mathbf{T}}\right]^{\mathbf{T}} \tag{12}
\end{equation*}
$$

$$
\begin{align*}
& r^{T}=\left[\Gamma_{1}^{T}, r_{2}^{T}, \ldots, r_{m}^{T}\right] \tag{13}\\
& y_{a}=\left[y_{a l}^{T}, y_{a 2}^{T}, \ldots, y_{a m}^{T}\right]^{T} \tag{14}\\
& y_{r}=\left[y_{r l}^{T}, y_{r 2}^{T}, \ldots, y_{r i n}^{T}\right]^{T} \tag{15}
\end{align*}
$$

where u, y_{a}, y_{r} are $3 m x 1$ vectors, and r is $a m x\left(n_{q}+3\right)$ matrix. The control law for the collocated attitude controller is given by:

$$
\begin{align*}
& u_{c}=u_{c p}+u_{c r} \tag{16}\\
& u_{c p}=-G_{p} y_{a} \tag{17}\\
& u_{c r}=-G_{r} y_{r} \tag{18}
\end{align*}
$$

where u_{c} represents the comand input, $u_{c p}$ and $u_{c r}$ represent comand attitude and rate inputs, and G_{p}, G_{r} are $3 m \times 3$ feedback gain matrices.

For CDVFB controllers, the rigid-body rates are rewoved fron the feedback signal by subtracting attitude rates at two locations. Consequently, the model used for damping enhancement has the form:

$$
\begin{equation*}
\ddot{q}+\dot{\mathrm{q}} \dot{q}+\Lambda \mathbf{q}=\ddot{\phi}_{\mathbf{u}}^{T} \tag{19}
\end{equation*}
$$

where $\boldsymbol{\sigma}$ consists of appropriate differences between the mode-slopes. The control law is given by:

$$
\begin{equation*}
u_{c}=-G_{r} \bar{y}_{r} \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
\dot{\mathbf{y}}_{\mathbf{r}}=\tilde{\Phi} \dot{q} \tag{21}
\end{equation*}
$$

The control laws given above for $C A$ and CDVFB controllers have very attractive robustness properties. It was shown in [1], [2] that, if $D>0$, $G_{p}=G_{p} T>0$, and $G_{r}=G_{\mathbf{r}} \mathbf{T}>0$, then the closed-system is asymptotically stable (AS), The stability result holds regardless of the number of modes in the model, and regardless of inaccuracy in the knowledge of the parameters. In real life, however, nonlinearicies and phase lags exist in the sensors and actuators, which invalidate these robust stability properties. The real problem then is to investigate the closed-loop stability for the case where the actual input is given by Eq. (1), where \mathscr{C} is a nonar.ticipative, linear or ronlinear, time-varying or invariant operator. The situation is shown in Figure 1. Our approach is to make use of input-output stability concepts and lyapunov methods. We assume throughcut the paper that the problem is well-posed, and that a unique solution exists. We start by defining the terminology and the concepts, which are adopted from [4].

MATHEHATICAL PRELIMINARIES

Consider the linear vector space $L_{n}{ }^{2}$ of real square-integrable n-vector functions of time t, defined as:

$$
\begin{equation*}
L_{n}^{2}=\left\{g: R_{+}+R^{n} \mid \int_{0}^{\infty} g^{T}(t) g(t) d t<\infty\right\} \tag{22}
\end{equation*}
$$

where R^{n} is the linear space of ordered n-tuples of real numbers, and R_{+} denotes the interval $0 \leq t<\infty$. The scalar product is defined as

$$
\begin{equation*}
\left\langle g_{1}, g_{2}\right\rangle=\int_{0}^{\infty} g_{1}^{T}(t) g_{2}(t) d t \tag{23}
\end{equation*}
$$

For $g \varepsilon L_{n}{ }^{2}$, its norm is defined as

$$
\begin{equation*}
|g|=\langle g, g\rangle^{1 / 2} \tag{24}
\end{equation*}
$$

Define the truncation operator P_{T} such that

$$
g_{T}(t) \triangleq P_{T} g(t)=\left\{\begin{array}{cc}
g(t) & 0 \leq t \leq T \tag{25}\\
0 & t>T
\end{array}\right.
$$

Define the extended space $\mathrm{L}_{\mathrm{ne}}{ }^{2}$:

$$
\begin{equation*}
L_{n e}^{2}=\left\{g:\left[R_{+}+R^{n} \mid g_{T} \in L_{n}^{2} \forall T \geq 0\right\}\right. \tag{26}
\end{equation*}
$$

Thus $L_{n e}{ }^{2}$ is a linear vector space of functions of t wose truncations are square-integrable on $[0, T)$ for all $T<\infty$. For $g_{1}, g_{2} \varepsilon L_{\text {ne }}{ }^{2}$, define the truncated inner product

$$
\begin{equation*}
\left\langle g_{1}, g_{2}\right\rangle_{T}=\left\langle g_{1 T}, g_{2 T}\right\rangle=\int_{0}^{T} g_{1}^{T}(t) g_{2}(t) d t \tag{27}
\end{equation*}
$$

The truncated norm is defined by: $\|g\|_{T}=\langle g, g\rangle_{2}$.
Consider an operator $\mathscr{L}: L_{n e}{ }^{2} \rightarrow L_{m e}{ }^{2}$. \mathscr{C} is said to be strictiy passive if there exist finite constants β and $\delta>0$ such that

$$
\begin{equation*}
\langle\mathscr{H}, g\rangle_{T} \geq \beta+\delta\|g\|_{T}^{2} \quad \forall T \geq 0, \forall g \in L_{n e}^{2} \tag{28}
\end{equation*}
$$

$\mathscr{L}_{\text {is passive if }} \delta=0$ in (28).

ROBUSTNESS OF COLLOCATED ATTITUDE CONTROLLERS

Stability With Dynamic Operator in the Loop

We consider the case where the operator \mathscr{H} is linear and time-invariant (LTI), and has a finite-dimensional state-space representation. We denote \mathcal{H}_{g} by $\mathscr{X}\left(z_{0} ; g\right)$ where z_{0} is the initial state vector of \mathscr{H}, and assume $m=1$ for simplicity (i.e., one 3 -axis actuator).

Theorem 1. Suppose \mathscr{H} is a non-anticipative, strictly stable, completely observable, LTI operator whose transfer matrix is $H(s)=\varepsilon I+H(s)$, where $\varepsilon>0$ and $\hat{H}(s)$ is a proper, minimum-phase, rational matrix. Under these conditions, the closed-loop system given by Eqs. (1), (2), (10), (11), (16)-(18) is asymptotically stable (AS) if

$$
\begin{equation*}
\hat{H}(j \omega)\left(\omega G_{r}-j G_{p}\right)+\left(\omega G_{r}+j G_{p}\right) \hat{H} \neq(j \omega) \geq 0 \text { for all real } \omega . \tag{29}
\end{equation*}
$$

where * denotes the conjugate transpose.
Proof - Define the function

$$
\begin{equation*}
v(t)=x^{T} C x+\dot{x}^{T} A \dot{x} \tag{30}
\end{equation*}
$$

Since $C \geq 0, A>0, V(t) \geq 0$ for all $t \geq 0$. Differentiating V with respect to t, and using (1), (10), (11), (16)-(18),

$$
\begin{equation*}
\dot{V}=-2 \dot{x}^{T} B \dot{x}-2 u_{c r}^{T} G_{r}^{-1} \mathscr{C}\left[z_{0} ; u_{c}\right] \tag{31}
\end{equation*}
$$

where \mathscr{C} also depends on its initial state z_{0}. since \mathscr{C} is linear,

$$
\begin{equation*}
\mathscr{H}\left[z_{0} ; u_{c}\right]=h_{0}(t)+\mathscr{H}\left[0 ; u_{c}\right] \tag{32}
\end{equation*}
$$

where $h_{o}(t)$ is the unforced response of \mathscr{C} due to nonzero initial state. Since \mathscr{X} is strictly stable, $\|_{0}$ is finite for any finite z_{0}.

Substituting (32) in (31) and integrating from 0 to T, since $V(T) \geq 0$,

$$
\begin{align*}
0 \leq V(T)=V(0) & -2\langle\dot{x}, \dot{B} \dot{x}\rangle_{T}-2\left\langle u_{c T}, G_{r}^{-1} h_{0}\right\rangle_{T} \\
& -2\left\langle u_{c r}, G_{r}^{-1} \mathscr{H}_{p} u_{c P}\right\rangle T \tag{33}
\end{align*}
$$

where

$$
\begin{equation*}
\mathscr{L}_{p} u_{c p}=\mathscr{L}\left[0 ;\left(G_{p}+s G_{r}\right) u_{c p}\right] \tag{34}
\end{equation*}
$$

In (34), "s" denotes the derivative operator. (s " is technicali; noncausal; however, this difiiculty can be overcome by defining the derivative of a truncation at T to be equal to that of the untruncated function.) Using Parseval's theorem,

$$
\begin{aligned}
& \left\langle u_{c r}, G_{r}^{-1} \mathscr{H}_{P_{C P}} u_{T}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} U_{c r_{T}}^{*}(j \omega) G_{r}^{-1} H(j \omega)\left[G_{p}+j \omega G_{r}\right] U_{C p_{T}}(j \omega) d \omega\right. \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} U_{c r_{T}}^{*}(j \omega) G_{r}^{-1} H(j \omega)\left[\frac{G_{p}}{j \omega}+G_{r}\right] U_{c r_{T}}(j \omega) d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} U_{\mathbf{C r}}^{*}(j \omega)\left[G_{\mathbf{r}}^{-1} \mathbf{H}(j \omega)\left(\frac{G_{\mathbf{P}}}{j \omega}+G_{\mathbf{r}}\right)\right. \\
& \left.+\left(\frac{G_{P}}{-j \omega}+G_{r}\right) H^{*}(j \omega) G_{r}^{-1}\right] U_{C r_{r}}(j \omega) d \omega
\end{aligned}
$$

The matrix in the brackets is positive (from Eq. 29), and we have

$$
\begin{equation*}
\left\langle u_{c r}, G_{r}^{-1} \not \mathscr{C}_{\mathrm{p}}^{u_{C P}}\right\rangle_{T} \geq \varepsilon\left\|_{u_{c r}}\right\|_{T}^{2} \tag{35}
\end{equation*}
$$

which yields (from (33)

$$
\begin{equation*}
0 \leq V(0)-2\langle\dot{q}, \dot{D} \dot{q}\rangle T{ }_{T}-2 \varepsilon\left\|_{c r}\right\|_{T}^{2}-2\left\langle u_{c r}, G_{r}^{-1} h_{0}\right\rangle_{T} \tag{36}
\end{equation*}
$$

wherein we have used the fact that $\dot{x}^{T} B \dot{B}=\dot{q} \dot{D} \dot{q}$. Therefore,

$$
\begin{equation*}
\lambda_{m} \text { (D) }\|\dot{q}\|_{T}^{2}+\varepsilon\left\|_{c r}\right\|_{T}^{2} \leq V(0) / 2+\left\|u_{c r}\right\|_{T}\left\|G_{r}^{-1}\right\|_{s_{0}} h_{0} \tag{37}
\end{equation*}
$$

where $I \|_{s}$ denotes the spectral norm of a watrix, and λ_{m} denotes the smallest eigenvalue. Eq. (37) can be written as

$$
\begin{equation*}
\lambda_{m}(D)\|\dot{q}\|_{T}^{2}+\left(c_{1}\left\|u_{c r}\right\|_{T}-\frac{c_{2}}{2 c_{1}}\right)^{2} \leq v(0) / 2+c_{2}^{2} / 4 c_{1} \tag{38}
\end{equation*}
$$

where $c_{1}=\sqrt{\varepsilon}$ and $c_{2}=\left\|h_{0}\right\|$ Therefore, $\lim _{t \rightarrow \infty} \dot{q}(t)=0$, and $\lim _{t \rightarrow \infty} \quad u_{c r}$ $(t)=0$. Denoting the rigid-body attitude ${ }^{t \rightarrow \infty} \alpha=\left(\phi_{8}, \theta_{8}, \psi_{s}\right)^{T}$, this implies that $\lim _{t \rightarrow \infty} \alpha(t)=0$. Taking the limit of the closed-loop equalion as $t \rightarrow \infty$,

$$
\left[\begin{array}{l}
0 \tag{39}\\
\Lambda \bar{q}
\end{array}\right]^{t+\infty}=\left[\begin{array}{c}
I \\
\phi^{T}
\end{array}\right] \quad \mathscr{\& C}_{u_{c p}}
$$

where the overhead bar denotes the limit as $t \rightarrow \infty$. From (39), $\overline{\mathscr{C}_{c p}}=0$ and $\bar{q}=0$, which yields $\bar{\alpha}=0$. Since \mathcal{C} is observable and its output tends to zero, its state vector tends to zero as $t \rightarrow \infty$, and the system is asymptotically stable.

The following corollary essentially states that, for diponal G_{p}, G_{r}, and H, it is sufficient that the phase lag of $\hat{H}(j \omega)$ is less than the phase lead introduced by the controller.

Corollary 1.1. Suppose G_{p}, G_{r} and H are diagonal and satisfy the assumptions of Theorem 1. Then the closed-loop system is globally asymptotically stable if

$$
\begin{equation*}
-\tan ^{-1} \frac{\omega G_{r i}}{G_{p i}} \leq \operatorname{Arg}\left\{\hat{H}_{i}(j \omega)\right\} \leq 180^{\circ}-\tan ^{-1} \frac{\omega G_{r i}}{G_{p i}} \text { for all real } \omega \tag{40}
\end{equation*}
$$

where $\operatorname{Arg}($) denotes the phase angle of a complex variable.
For the case where $H_{i i}(s)=k_{i} /\left(s+a_{i}\right)$, with $k_{i}, a_{i}>0$,
condition (40) becomes

$$
\begin{equation*}
\frac{G_{r i}}{G_{p i}} \geq 1 / a_{i} \tag{41}
\end{equation*}
$$

Thus, for the case of first-order sensor/actuator dynamics, the system is asymptotically stable if the ratio of rate-to-proportional gain is at least equal to the magnitude of the actuator pole.

In Theorem 1 and Corollary !. 1, the transfer function of \mathscr{C} was assumed to be of the form: $H(s)=\varepsilon I+H(s)$, where $\varepsilon>0$. That is, a direct transmission term, no matter how small, was present. From Theorem 1, the closed-loop system is $A S$ for any $\varepsilon>0$. Therefore, the closed-1oop efgenvalues are all in the open left half-plane (OLHP). Berares of continuity, ii is obvious that, when $\varepsilon=0$, the eigenvalnes will not cross the imaginary axis. That is, the eigenvalues :تili be in the closed left half-plane (CLHP). Theorem 2 given below considers the case when $\varepsilon=0$. It essentially shows that, if the closed-loop system with no elastic modes is AS with \mathcal{C} in the loop, then so is the system with elastic modes, provided that (29) is satisfied with H replacing \hat{H}.

Theorem 2. Suppose \mathscr{H} is a non-anticipative, strictly stable, completely observable, LTI operator with rational transfer matrix $H(s)$ which is proper and minimum-phase. If the closed-loop system for the rigid body model alone (i.e., Eqs. (1), (2), (1C), (11), (16)-(18) with $n_{q}=0$) is $A S$, then the entire clos. loop system (i.e., with $n_{q} \neq 0$) is AS provided that

$$
\begin{equation*}
H(j \omega)\left(\omega G_{r}-j G_{p}\right)+\left(\omega G_{r}+j G_{p}\right) H^{*}(j \omega) \geq 0 \text { for all real } \omega \tag{42}
\end{equation*}
$$

Proof. Considering the rigid-body equations,

$$
\begin{equation*}
I_{s} \ddot{\alpha}=\mathscr{H} u_{c}=\mathscr{L}\left(u_{\alpha}+u_{q}\right) \tag{43}
\end{equation*}
$$

where $u_{\alpha}=-G_{p}^{\alpha}-G_{r} \dot{\alpha}$ and ${u_{q}}_{q}=-G_{p} q_{q}-G_{r} \dot{q}$. Thus the transfer function from \dot{q} to $\mathbf{P}_{\dot{\alpha}}$ is given by

$$
M(s)=\left[I+H(s)\left\{G_{P}+G_{r}\right\}\right]^{-1} H(s)\left\{G_{p}+G_{r} s\right\}
$$

Since the closed-loop rigid-body systen is atrictly atable by assumption, $M(s)$ is strictly stable and finite-gain, which implies

$$
\begin{equation*}
\|\dot{\alpha}\|_{T} \leq \gamma\|\dot{q}\|_{T}+\left\|h_{T}\right\|_{T} \tag{44}
\end{equation*}
$$

where γ is the gain of M and $h_{\text {m }}$ is its free response. Proceeding as in the proof of Theore 1, we can arrive at Eq. (37) wherein $\varepsilon=0$ and n_{0} is replaced by $h_{\text {. }}$. Since $\left.u_{c r}=-G_{r}(\alpha+9)^{\circ}\right)$, we have from (44),

$$
\begin{equation*}
\left\|_{c r}\right\|_{T} \leq c_{1}\|\dot{q}\|_{T}+c_{2} \| h_{\mathrm{m}} \mathbf{I}_{T} \tag{45}
\end{equation*}
$$

where c_{1} and c_{2} are positive constants. Completing squares as in (38) and noting that $1 h^{\prime}$ is finite, it can be proved that 1 IT T is bounded for all $T>0$, and that $118 \mathrm{~g}(\mathrm{t})=0$. From (45), $u_{c r}$ also tends to zero as $t+\infty$. The remainder of the proof is sinilar to that of Theoren 1.

Corollary 2.2 With the same assumptions as in Theoren 2 , if G_{P}, G_{r}, and B are diagonal, then the closed-loop systen is As if (40) is satisfied with \quad (replacing î.

From Corollary 2.2, for the case where $H_{11}(s)=k_{1} /\left(s+a_{1}\right)$ with $k_{1}, a_{1}>0$, the closed-loop asymptotic stability is assured if $G_{p 1} \leq$ $a_{1} G_{r 1}$ for $1=1,2, \ldots$, m. 1.

The significance of the results of this section is that the stability can be assured by making the ratio of the rate-to-proportional gains sufficientiy large. One has to know only the sensor/actuator characteristics, and the knowledge of the plant parameters is not required. This reeult is completely consistent with the result obtained in [5] for single-input, single-output systems, for sall G_{P} and G_{r}, using a root-locus argument.

The next section conaiders the case where nonlinearities are present in the loop.

Stability in the Presence of Nonlinearities

Suppose Eq. (1) is replaced by

$$
\begin{equation*}
u=\psi\left(u_{\mathbf{c}}\right) \tag{46}
\end{equation*}
$$

where ψ is m wector, one-to-one, time-invariant function, $\psi: R^{\circ}+\boldsymbol{R}^{\boldsymbol{m}}$, as foilows:

$$
\begin{equation*}
\psi(\sigma)=\left[\psi_{1}\left(\sigma_{1}\right), \psi_{2}\left(\sigma_{2}\right), \cdots, \psi_{\mathrm{m}}\left(\sigma_{\mathrm{m}}\right)\right] \tag{47}
\end{equation*}
$$

For this case, the stability of the closed-loop system can be investigated using Lyapunov methods. A function $D(V): R^{l} \rightarrow R^{l}$ is said to belong to the $(0, \infty)$ sector if $\phi(0)=0$ and $\nu \phi(\nu)>0$ for $\nu \neq 0$. ϕ is said to belong to the $[0, \infty)$ sector if $\phi(0)=0$ and $v \phi(v) \geq 0$ for $v \neq 0$. [Pig. 2] Many nonlinearities encountered in practice, such as saturation, relay, dead-zones, belong to the $[0, \infty)$ sector. As in the previous section, we assume that the problem is well-posed, and that a unique solution exists, and we consider the case with one 3-axis actuator for simplicity.

Theorem 3. Consider the closed-loop system given by Eqs. (2), (10), (11), (16)-(18), and (46), where G_{p} and G_{r} are positive definite and diagonal, and each ψ_{i} is in the $(0, \infty)$ sector and is strictly mononic increasing for $1=1,2$, . . . , m. Then the closed-loop system is globally asyaptotically stable.

Proof. Define

$$
\begin{equation*}
v(x, \dot{x})=x^{T} C x+\dot{x}^{T} A \dot{x}+2 \sum_{i=1}^{3} G_{p i}^{-1} \int_{0}^{u} c p i \psi_{i}(v) d v \tag{48}
\end{equation*}
$$

where $G_{p i}$ and $u_{c p i}$ denote the iith and ith elements of G_{p} and $u_{c p}$, respectively. This form is the well-known "Lure'-type" Lyapunov function [6]. From Eqs. (4) and (6), $x^{T} C x+x^{T} A \dot{x}=0$ only when $\alpha=0$, $q=\dot{q}=0$. That is, this quantity can be zero when $\alpha \neq 0$. However, when $q=$ 0 , $u_{c p_{2}}=G_{p i} \alpha$, which is nonzero when $\alpha \neq 0$. Thus the third tera on the right hand side of (48) is positive (since ψ_{i} is in the ($0, \infty$) sector) for α $\neq 0$. Therefore, V is positive definite. From (48), using (2), (46), (16)-(18),

$$
\begin{equation*}
\dot{V}=-\dot{2} x_{B \dot{x}}-2 \sum_{i=1}^{3} u_{c r i} G_{r i}^{-1} \psi_{i}\left(u_{c p i} \cdot u_{c r i}\right)-G_{p i}^{-1} \psi_{i}\left(u_{c p i}\right) \dot{u}_{c p i} \tag{49}
\end{equation*}
$$

Since $\dot{u}_{c p i}=G_{p i} G_{r i}^{-1} u_{c r i}$, we have from (49):

$$
\begin{equation*}
\dot{V}=-2 \dot{x}^{\cdot} T_{B \dot{x}}-2 \sum_{i=1}^{3} u_{c r i} G_{r i}^{-1}\left[\psi_{i}\left(u_{c p i}+u_{c r i}\right)-\psi_{i}\left(u_{c p i}\right)\right] \tag{50}
\end{equation*}
$$

Since ψ_{i} is strictly monotonic increasing,

$$
\begin{equation*}
\dot{\mathrm{V}} \leq-\dot{2} q^{T} \dot{\mathrm{q}} \tag{51}
\end{equation*}
$$

$\stackrel{\bullet}{V}=0$ only when $\stackrel{\circ}{\mathbf{q}}=0$ and $u_{c r i}=0$, which implies $\dot{\alpha}=0$. Considering the closed-loop equation,

$$
\left[\begin{array}{l}
0 \tag{52}\\
\Delta q
\end{array}\right]=\left[\begin{array}{l}
I \\
\Phi T
\end{array}\right] \psi\left(u_{c p}\right)
$$

whicn yields $\psi_{i}\left(u_{c p i}\right)=0$ and $q=0$. Since $\psi_{i}(v)=0$ only at $v=0$, this implies that $\alpha=0$. Thus $V \equiv 0$ only at the origin, and the system is globally asymptotically stable.

Thus the collocated controller is guaranteed to be globally asymptotically stable in the presence of monotonic increasing nonlinearities. This n of the nonifnearities is also called "incremental passivity." As se n it previous section, if the nonlinearities are replaced by dynamic operat 3 , mere incremental passivity is not sufficient for stability.

ROBUSTNESS OF VELOCITY FEEDBACK CONTROLLERS

Stability with Dynamic Operator in the Loop

Consider the case where a nonlinear dynamic operator $\mathscr{H}\left(z_{0} ; v\right)$ is present in the loop. Suppose \mathscr{H} is represented by the following state-space model:

$$
\begin{align*}
& \dot{z}=f(z, v, t), z i n)=z_{0} \tag{53}\\
& w(t)=p(z, t) \tag{54}
\end{align*}
$$

where v and w are $3 m \times 1$ vectors which are the input and the output of \mathscr{l}. Define the operator

$$
\begin{equation*}
\partial \mathscr{H}\left(z_{0} ; g\right)=\mathscr{L}\left(z_{0} ; g\right)-\mathscr{L}\left(z_{0} ; 0\right) \tag{55}
\end{equation*}
$$

We define $\mathcal{I C}$ to be internally stable if $\mathscr{H}\left(\varepsilon_{0} ; 0\right) \|$ is finite for any finite z_{0}.

Theorem 4. Consider the system given by Eqs. (1), (19), (20) (21), where the operator \mathscr{H} has the state-space representation given by, 33), (54). Suppose $G_{r}^{-1} \partial \mathscr{C}$ is passive and $\mathscr{A C}$ is uniformly observable, finite-gat n, internally stable, continous operator. Then the closed-loop system is globally asymptotically stable.

Proof. Defining

$$
\begin{equation*}
V(t)=q^{T} \Lambda q+\dot{q}^{T} \mathbf{q} \tag{56}
\end{equation*}
$$

$V(t) \geqslant 0$ for all $t \geqslant 0$. Differentiating $V(t)$ with respect to t and using Eqs. (19), (20), (21) and (1),

$$
\begin{equation*}
\dot{v}=-2 \dot{q}^{T} \dot{D} \dot{q}-2 u_{c r}^{T} G_{r}^{-1} \mathscr{H}\left(z_{0} ; u_{c r}\right) \tag{57}
\end{equation*}
$$

Integrating from 0 to T, since $V \geq 0$,

$$
\begin{equation*}
0 \leq V(T)=V(0)-2\left\langle\dot{q}, \dot{\mathrm{D}} \dot{q}_{T}-2\left\langle u_{c r}, G_{\mathbf{r}}^{-1} \mu\left(z_{0} ; u_{c r}\right)\right\rangle\right\rangle_{T} \tag{58}
\end{equation*}
$$

which yields (after manipulation)

$$
\begin{equation*}
2 \lambda_{\mathrm{m}}(D)\|\dot{q}\|_{\mathrm{T}}^{2} \leq \mathrm{V}(0)-\beta+2\|\dot{q}\|_{\mathrm{T}}\left\|\tilde{ष}_{\mathrm{B}}\right\| \mathscr{H}\left(z_{0} ; 0\right) \| \tag{59}
\end{equation*}
$$

where β is a constant (see Eq. 28).
By using a procedure similar to that in the proof of Theorem 1, it can be proved that $\| q i$ is bounded, and that the system is globally asymptotically stable.

The following corollary is an immediate consequence of Theorem 3.
Corollary 4.1. If \mathscr{H} is a strictly stable, completely observable, LTI operator with rational, mimimum-phasf transfer matrix $\mathrm{H}(\mathrm{s})$, the closed-loop system of Eqs. (1), (19), (20), (21) is asymptotically stable provided that

$$
\begin{equation*}
H(j \omega) G_{r}+G_{r} H^{*}(j \omega) \geq 0 \text { for all real } \omega \tag{60}
\end{equation*}
$$

Note that the above condition is equivalent to passivity of $\mathrm{G}_{\mathrm{r}}{ }^{-1} \mathrm{H}$.
 asymptotically stable if

$$
\operatorname{Re}\left[H_{i}(j \omega)\right] \geq 0 \text { for all real } \omega
$$

As a result of Corollary 4.2 , CDVFB controllers can tolerate stable first-order dynamics in the loop. If $H_{1}(s)=e^{-J D_{i}}$, we have $\operatorname{Re}\left[H_{i}(j \omega)\right] \geq 0$ for $-90^{\circ} \leq \emptyset_{i} \leq 90^{\circ}$; tnerefore, CDVFL controllers have 90° phase margin.

Stability in the Presence of Nonlinearities

Suppose the operator \mathscr{C} in (1) is replaced by an m-vector nonlinear function ψ as in Eq. (47), except that ψ is allowed to be time-varying. The following theorem gives sufricient conditions for global asymptotic stability.

Theorsm 5. Consider the closed-loop system given by Eqs. (i), (19), (20), (21), where G_{r} is diagonal and positive definite, and each ψ_{i} belongs to the $[0, \infty$) sector. Then the closed-loop system is globally qsymptotically stable.

Proof. Starting with V as in Eq. (56),

$$
\begin{equation*}
\dot{v}=-2 \dot{q}^{\circ}{ }_{D q} \dot{q}-2 \sum_{i=1}^{3 m} G_{r i}^{-1} u_{c r i} \psi_{i}\left(u_{c r i}, t\right) \tag{62}
\end{equation*}
$$

Thus $\dot{\mathrm{V}}<0$, and $\dot{\mathrm{V}} \equiv 0$ only if $\dot{q} \equiv 0$, which can happen (from the equations of motion) only when $q \equiv 0$. Therefore, the system is globally asymptotically stable.

The next theorem considers a special case when nonlinearities and first-order dynamics are simultaneously present in the loop, as shown in fig. 3.

Theorem 6. Consider the closed-loop system given by Eqs. (1), (19), (20), (21), where $G_{r}>0$ is diagonal. Suppose $\mathcal{K}^{2}=$ diag $\left(\mathscr{H}_{1}, \mathscr{H}_{2}, \ldots\right.$ -•, $\left.\mathcal{H}_{\mathrm{m}}\right)$, where

$$
\begin{equation*}
C_{1} g=\psi_{1}\left(\zeta_{1} g\right) \tag{63}
\end{equation*}
$$

where each $\psi_{1}: R^{l}+R^{l}$ is a time-invariant, differentiable function belonging to the $[0, \infty)$ sector, and there exists a constant $K<\infty$ such that $\left|\psi_{i}^{\prime}\right|<K$ over the interval $(-\infty, \infty)$. Suppose ζ_{i} is an LTI operator whose transfer function is: $G_{1}(s)=a_{1}\left(1+p_{1} s\right)^{-1}, a_{i}>0, p_{i}>0$ for $1=$ 1, 2, . . ,m. Then the systen is globally asymptotically stable.

Proof. Starting with V as in Eq. (56) and proceeding as in the proof of Theorem 4, we have

$$
\begin{equation*}
0 \leq v(0)-2\langle\dot{q}, D \dot{q}\rangle_{T}-2 \sum_{i=1}^{3 m} G_{r i}^{-1}\left\langle u_{c r i}, \psi_{i}\left(\mathscr{S}_{1}\left(0 ; u_{c r i}\right)+g_{o 1}\right\}\right\rangle_{T} \tag{64}
\end{equation*}
$$

wher G_{01} is the unforced response of \mathcal{F}_{1} due to nonzero initial state. Using wan value theorem, Eq. (64) can be written as:

$$
\begin{align*}
0 \leq v(0) & -2\left\langle\dot{q}, \dot{D_{q}}\right\rangle_{T}-2 \sum_{i=1}^{3 m}\left\langle u_{c r i}, \psi_{i}\left\{\mathscr{S}_{i}\left(0 ; u_{c r i}\right)\right\}\right\rangle_{T} \\
& +\left\langle u_{c r i}, \psi_{i}^{\prime}(\dot{u}) g_{o 1}\right\rangle_{T} \tag{65}
\end{align*}
$$

 simplifying, we have

$$
\begin{equation*}
\lambda_{m}(D)\|\dot{q}\|_{T}^{2} \leq V(0) / 2+\|\dot{\phi}\|_{s} K\|q\|_{T}^{\|} g_{0} \| \tag{65}
\end{equation*}
$$

where

$$
\begin{equation*}
\lg _{o}\left|=\sum_{i=1}^{3 m} \|_{c i}\right|<\infty \tag{66}
\end{equation*}
$$

The remainder of the proof is sinilar to that of Theorem 4.

CONCLJDIING REMARKS

Robustness properties were investigated for twiv types of controllers for large space structures, why use collocated sensors and actuators. The first type is the collocated attitude (CA) controller, which controls the rigid-body attitude and the elastic motion usiug negative definite feedback of measuredattitude and rate. The second type of controller is tr? collocated direct velocity feedback (CDVFB) controller for damping enhancement. Such controllers are known to provide closed-loop asymptctic stability regardless of the number of modes and parameter values, provided that the actuators and sensors are perfect. This robust stability property was extended further in this paper by proving that the global asymptotic stability is preserved even when sensors/ actuators are not perfect. The $C A$ controller preserves global asyaptotic stablity when the sensorg/actuators are represented by (i) linear, tineinvariant dynamics which satisfy certain siaple phase conditions, or (ii) time-invariant, monotonic increasing nonlinearities belonging to the ($0, \infty$) sector. The CDVFB controller preserves global asymptotic stability under men weaker conditions. In particuiar, CDVFB controllers have 90° phase margin and are tolerant to time-varying nonlinearities in the $[0, \infty)$ sector. These global asymptotic stability results are valid regardless of the number of nodes in tine model and regardless of parameter values. Therefore, it can be concluded that these controllers offer viable methods for robust artitude control or denping enhancement, eopecially when the parameters are not accurately known. An important application of the collocated atittude controller would he during deployvent or assembly of a large space structure, when the dynanic characteristics are changing, and during initial operating phase, when the dynamic characteristics are not known accurately. A robust collocated controller can provide stable interia control which can perhapa be replaced later by a high-períormance controller designed using parameters estimated on orbit.

REFERENCES

1. Joshi, S. M.: A Controller Design Approach for Large Flexible Space Strucさures. NASA CR-165717, May 1981.
2. Elliott, L. E., Mingori, D. L., and Iwens, R. P.: Performance of Robust Output Feedback Controller for Plexible Spacecraft. Proc. 2nd Symposium on Dynamics and Control of Large Flexible Spacecraft, Blacksburg, Va., June 1979, pp. 409-420.
3. Balas, M. J.: Direct Velocity Feedback Control of Large Space Structures. Journal of Guidance and Control, Vol. 2, May-June 1979, pp. 252-253.
4. Desoer, C. A., and Vidyasagar, M.: Feedback Systems: Input-Output Properties. Acadeaic Press, N.Y., 1975.
5. Joshi, S. M.: Design of Stable Feedback Controllers for Large Space Structures. Proc. Third VPI\&SU/AIM Syaposium on Dynanics and Control of Large Flexible Spacecraft, Blacksburg, Va., June 15-17, 1981.
6. Aizerman, M. A., and Gantmacher, F. R.: Absolute Stability of Regulator Systems. Holden-Day, Inc., San Francisco, 1964.

Figure 1. - Collocated Contoller

Figure 2.- Nonlinearity belonging to the $[0, \infty)$ sector

Figure 3.- Linear dynami a and nonlinearities simaltaneously in the loops

