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ABSTRACLT

We present a commard generator tracker approach to model following control
of linear distributed parameter systems (DPS) whose dynamics are described on
infinite-dimensional Hilbert spaces. This method generates finite-dimensional
controllers capable of expomentielly stabple tracking of the reference trajector-
ies when certain ideal trajectories are known to exist for che open-loop DPS;
we prcsent conditions for the existence of these ideal trajectories. An adaptive
version of this type of controller 1s also presented and shown to achieve (in

some cases, asymptotically) stable finite-dimensional control of the infinite-
dimensional DPS.

I. INTRODUCTION

By a distributed parameter system (DPS), we mean a system whosaz dynamical
behavior with respect to external disturbances is described by partial differ-
ential equations. Of course, everything is a DPS 1f it is carefully scrutinized,
especially if high performance is demanded, e.g., a simple electrical circuit
at very high frequencies. However, lumped parameter {ordinary differertial
equation) approximations often suffice to describe the system behavior of many
engineering systems. Indeed, such epproximations are necessery for DPS control-
ler designs to be implemented with on-line digital computers. Nevertheless,
the distributed parameter nature of control problems should not be discarded
prematurely; otherwise, control approaches can be generated which look good on
paper but are not sufficiently rotust to operate with the ictual system. This
has been illustrated in computer simulation and in even a few laboratory demon-
strations of flexible structures, yet, it continyes to be ignored ir some parts
of the control community. To understand the controller-structure interaction,

a DPS viewpoint is essential.

The most rerious difficulty of the DPS viewpoint is that it requires the
mathematical ideas of infinite-dimensional function spaces aad unbounded oper-
ators on these spaces; for example, see [1]-[2]. Several results in the past
have been posed within this mathematical framework with the required mathematical
rigor [3]. Yet, the necessary practical constraints were interpreted so that
the results would be relevant to structural dynamicists and control system
engineers and would make the maximum use of their experience and intuition.

With these ideas in mind, the concept of model following appears to be a
procedure that yields a useful finite dimensional controller that might be
designed taking into account the distribnted nature of the system dynamics,
whereas early model following control systems required the satisfaction of
certain “Perfect Model Following" conditions which necessitatad thne use of a
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reference model having the same order as that of the process [4], the more

recent output model following controller or Command Generator Tracker (CGT) as
developed by Broussard [5] allows the use of a model of arbitrary order, provided
that the number of controls is equal to the number of outputs being controlled.
This concept in fact served as the basis for a finite dimensional adaptive
controller that was used for controlling large structural systems [6, 7].

Thus since the CGT algorithm makes it possible to use a finite dimensional
reference model which subsequently gives a finite dimensional countroller regard-
less of the process order. This provides the basis for a direct adaptive con-
troller which produces stable closed-loop operation with the class of liuear
distributed parameter systems considered here. The difficulties of stable
adaptive distributed parameter control are detailed in, e.g., [8]-[9] and the
references contained therein. In Sz2ctions 2 and 3 the nonadaptive model
following controller is developed zad analyzed; ia Section 4, the adaptive
version is presented and shown to produce a stable closed-locp. Conclusions
and future cdirecticns are preseated in Section 5.

2. PROBLEM FORMULATION
2.1 Process Description

The distributed parameter systems (DPS} of interest will be modeled by the
following state space feorm:

(2 - () + BED 5 v(0) = v (2.1a)
1 y(t) = Cv(t) (2.1b)

where the state v(t) is in an infinite-dimensional real Hilibert space H with
inner product (+,+) and corresponding norm ||+}|. The bounded input-output
operators B and C have the same finite rank P, and f(t), y(t) represent the

inputs for P linear actuators and the outputs from P linear sensors, respective-
ly. Thus,

Bf (t) = 1§1 by £ (1) (2.2)
and

y() = [y;(6), -..y vp(0)] with

yj(t) = (cj, v(t)) ;1 <j <P (2.3)

wvhere bi and cj belong tc H. 1In infinite-dimensional theory, the operator A

is a closed, linear, unboundad (differential) operator with domain D(A) dense in
H. Furthermore, (2.1)-(2.3) represents some well-posed physical system, which
in mathematical terms is the weak formulation of (2.1):
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t
vit) = U(t) v_ + [ U(t-1) Bf(t)dr

0 2.4)
y(t) = Cv(t) ; £t >0

where v, is any initial state in H and U(t) is the Co-semigroup of bounded

operators generated on H by A. This latter means:

U(t+r) = U(e) C(1) 5 £t >0, T>0 (2.5a)
t(o) = 1 (2.5b)
lim [U(t) - 1] v=0 ;v in H (2.5¢)
0"
Av = [lim LJ—(-t--z-:l]v ;3 v in D(A) (2.5d)
+ ¢
t>0

Ncote that the semigroup U{t) evolves the initial conditions v, forward in time.

When v is in D(A) and f(t) has continuous first derivative, v(t) also is differ-
entiab?e, lies in D(4) for t > 0, and satisfies (® 1). However, any v, and H

and any square-integrable f(t) wili satisfy the weak formulation (2.4) and yield
states v(t) in H for all t > 0. Consequently, (2.4) is easier to work with in
infinite-divwensions and is more likely to represent the actual physical system
being modeled by (2.1). This form, (2.1) or (2.4), models most practical
interior control problems for linear DPS where the actuator and sensor influence
functions are given by bi and cj, respectively.

For example, control of the damped wave equation on a region Q € R" by a
single actuator and senscr is described by (for € > 0):

2
3 u(x,t) Jdu(x,t) -
g + e 0 - Aou(x,t) = b(x) f(t) (2.6a)

P

y(t) = [ c(x) u(x,t) dx (2.6b)
Q

where u(x,t) is the displacemeant from equilibrium of Q and the influence func-
tions b and ¢ can be taken as approximations of Dirac delta functions at the
location of the actuator and sensor. The operator Ao is the Laplacian given by

n 2
A u(x,t) = Z ulx,t) 2.7
o 2

=1 ox 1

on D(Ao) = {u(x,t)eHoiu(x,t) is smooth and u(x,t) = 0 on the boundary of Q}.
The domain D(Ao) is dense in Ho = LZ(Q) with the usual inner product (-, o
This can be put into the form (2.1) by choosing the state v(t) = [u(x,t),
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3u(x!t)]T in H = D(Aol/

3t 2) x Ho with the esuergy inner product:

1
(v,w) = (Ao’/zvl, 1\01/2«»1)o + ("2’ “’2)0 (2.8)

The operator A in (2.1) becomes

A= (2.9)

and the rest follows.

Another important example is the mathematical setting for large structural

systems (LSS) which may be described as a contiruus by the following system of
partial differential equations:

m(x)utt(x,t) + Dout(x,t) + Aou(x,t) = F(x,t) (2.10)

where u(x,t) represents a vector of instantaneous displacements of the structure
Q from its equilibrium position due to transient disturbances and the applied
force distribution F(x,t). The displacements can be translational and rotation-
al, and the forces can be generalized to include torques, as well. The mass
density m(x) is positive and bounded on Q.

The internal restoring force term A u is generated by a time-invariant,
symmetric, non-negative differential operator Ao appropriate to the 1LSS. The

domain D(Ao) of Ab contains all smooth functions satisfying the LSS boungary
conditions and is dcnse in the infinite-dimensional Hilbert space Ho = L°(Q)

with the usual inner product (-,-)o and associated norm ||-||o. In most cases,
the operator AC is assumed to have discrete spectrum, i.e., isolated resonances;

this can be expressed by the following eigen-problem:
_ .2
A°¢k = v ‘k (2.1

where w, are the vibration mode frequencies and ¢k(x) are the corresponding

vibration mode shapes. Of course, exact expressions for this modal data are
rarely known for an actual LSS.

The damping term Dout is composed of a skew symmetric part, which repre-

sents gyroscopic damping due to any on-board rotors or constant spin rate of
the whole LSS, and a small symmetric part which represeniz the internal struc-
tural damping and is thought to provide very low mode damping.

The applied force distribution is

F(x,t) = Fc(x,t) + FD(x,t) (2.12)
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where FD represents the external disturbance forces on the LSS (and possible

nonlinearities) and Fc represents the contrcl forces due to P actuators:

P
F,=Bf = 121 b, (x) £, (t) (2.13)

where the actuator amplitudes are fi(t) and the actuator influence functions

are bi(x) in Ho. These are usually localized or point devices so that they

approximate 6(x—xi); however, they do not have to be point devices.
Observations are obtained by P sensors
y = Cou + Eout . (2.14)

where yi(t) = (Cj’uo) + (ej’ut)o’ 1 <3 <P, with influence functions ¢, for
position sensors and ej for velocity sensors in Bo. Again, these are usually
lccalized or point devices but they do not have to be.

The LSS dynamics are defined by (2.10) and (2.14) can be put into the
infinite-dimensional state space form:

o )
[ 2 vy + BECe) + TE (D) (2.15a)
{
[ y(®) =cv(e) 5 v(@) = v, (2.15b)

with (A,B,C) as in (2.]) and the persistent disturbance term TfD(t) obtained

from FD in (2.12). Impulsive disturbances in the structure are modeled by the

initial condition vo.

The Kille-Yosida Theorem (e.g. {1}, Theo. 8, 9, p. 153), provides condi-
tions under which an operator A generates a Co-semigroup U(t) satisfying:

o] < ke™%, >0 (2.16)

where K > 1 and o real. The necessary_ind sufficlent conditions are given for
the resolvent operator R(A,A) = (AI-A)
HROLOM |« —S—5n=1, 2, ... (2.17)
(A+0)

for all real A > - o in the resolvent set of A, p(A) = ék complex |R(A,A) is a
bounded operator on H}. The spectrum of A, g(A) = p(A) 1is much more compli-
cated in infinite-dimensions, but, in finite-dimensions, it consists only of

the (finite number of) eigenvalues of A. We say that A is exponentially stable
when 0 > 0 in (2.16), i.e., the semigroup U(t) generated by A decays exponen-
tially at the rate 0. There are many other types of stability in fufinite-
dimensions, but no others provide the safety of a stability margia o; therefore,

131



this seems to be the kind of stability of most practical interest for cngineer-
ing applications where there is always some uncertainty in the model of JPS.

2.2 Model Following Conttrol Problem Formulation

Given the DPS as defined in (2.1), it is desired to find a finite dimen-
sional contioller so that the output y(t) "follows" a desirable output trajec-
tory ym(t). This output trajectory is to be generated by the finite dimensional

(asymptotically) stable reference model:
q=A4q+Bu (2.18a)

Yo = Cpd s q(o) = q, (2.180)

where
q is the model state vector having dimension N,
u, is a step or reference level command with dimension P,
Y is the output trajectory also having the dimension P,

and Am’ Bm are matrices with appropriate dimensions. It should be noted that
the dimension of beth Ya and u is the same as the dimension of the process

input f and the process output y as defined in (2.1). Usually q, = 0 will be
chosen.

The output model following control problem to be solved is the development
of an algorithm that defines the process input f(t) so that the following two
model following conditions (MFC) are satisfied:

MFC 1) 1If y(tl) = ym(tl), then
y(e) =y (), for t > t,
MFC 2) 1If y(t;) # y (t;), then |
y(t) asymptotically will approach ym(t), i.e.

2im [y(t) - ym(t)] =0

t->
3. DEVELOPMENT OF THE NONADAPTIVE MODEL FOLLOWING CONTROLLER
3.1 Solution Definition

In a manner similar to Broussard's developmegt of the Cogmand Generator
Tracker (CGT) [5], the concept of an ideal state v , control f and output
trajectory y will be introduced. It is required that these tgajectories
satisfy the process dynamics (2.1) and that the ideal output y be identical
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tc the model output Ym* Thus:

*
ov (t) * *
—;;L—L = Av (t) + Bf (t) (3.1a)
* * * *
y (t) =¢v (t) ; v {0) = v, (2.1b)
*
where the ideal state v (t) is (as with v(t)) in the infinite dimension.l
Hilbert space H.
Furthermore
*
y (8) =y (£) =C q(t) (3.2)

*
In a manner similar to that in [5]}, it will be assumed that v (t) and

*
f (t) are linearly related to the model state vector q(t) and command vector
um(t) as follows:

*
v (t) = A11 q(t) + 512 u (3.3)
*
f (t) = 551 q(t) + 822 uy (3.4)
The bounded linear operators Sll’ 812, 521, 822 will not be determined to

satisfy MFC 1.

To this effect, differentiation of (3.3) with respect to t and substitu-
tion of (3.1) and (2.18) gives:

*
av _(t) _ .
5t - 517917 8y; A+ Sy, By (3.5a)
* *
= Av + Bf
where
* oS +5 (3.5b)
Vo T P11 9% 12 Ya :
is in D(A).

* *
Replacing v and f on the right side of (3.5) by (3.3) and (3.4) gives:
511 4a% ¥ 511 Bpta
A(Sllq + S12 um) + B(SZIq + 822 um) = (3.6)

Now since (3.6) must be valid for all q and ups it 1s necessary that:

S11 Am = AS11 + BS21 (3.7
811 Bm = AS12 + B822 (3.8)
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Finally the incorporation of (3.2) yields

*
y (£) = CS5,0q+CS,u =y =Cgq (3.9)
Thus:
cs,; = C (3.10)
cs,, = 0 (3.11)

In summary then eqs. (3.7), (3.8), (3.10) and (3.11) must be,solved in
order to find S and 822 which in turn define the ideal control f of Eq. (3.4).

Recall however, that both MFC 1 and MFC 2 must both be satisfied. In
order to satisfy MFC 2, it is useful to consider the equation for the error

* .
e=v -V (3.12)

*

which is in D(A) when v, and v_ are both in D(A). Differentiation of (3.12)
o

with respect to time gives.

*
3

©
Q@
<

Q
er
@
"t

* *
+ Bf - (Av + Bf )

n
Z

]

Ae + B(E - £7) (3.13)

This equation suggests that tihe actual model following control f be defined as:

f

"

*
f + G(y - ym)

* *
f +GC(v-v)

£ +6cCe (3.14)

[}

Substituticn of (3.14) into (3.13) gives:

= (A+BGCe (3.15)
where G: RP+RP is a bounded linear operator. Thus if G is chosen such that -
(A + B G C) generates an exponentially stable C -semigroup, then the control §
as defined by (3.14) will satisfy the condition8 for model following.

It is important to note that this controller is clearly finite dimensional.
For implementation it is only necessary to ""build"” a finite dimensional refer-
ence model and form the proper linear combination of its state vector and command
vector. The gain operator G is also finite dimensional and should be chosen
such thact the decay of any transient caused by initial plant model output error
is sufficiently fast. We summarize the above discussion as
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Theorem 1: 1f (A,B,C) is exponentially output stabilizable and there exist
bounded linear operators Sll’ 812, 821, and 822 such that (3.7) - (3.8) and

(3.10) - (3.11) are satisfied, then the model following control (3.4) ang (3.14)
satisfies the model followirg conditions MFC (1) and (2) and lim [v(t)-v (t)] =
0 when both v, and v, belong to D(A). £+

From [10], ve see_that (A,B,C) is exponentially output stabilizable if and
only if HN = N(C)L and HR £ N(C) form a pair of stabilizing subspaces for (A,B).

Note that dim ﬁN = P which is the number of sensors (or actuators) used. The

conditions for existence of the ideal trajectories (3.1) will be developed in
the next subsection,

3.2 Existence of Ideal Trajectories

*
The existence of ideal trajectories v (t) for the DPS (2.1) is determined
by solutions Si‘ to the operator equations (3.7) - (3.8) and (3.10) - (3.11).

J
These can be rewritten as

A BI[s S s 0 A B
;L‘ o o [ e
C oL_s?_1 S,s 0 1 C o

p

m
where S1 :RN*D(A) and Slz:R +D(A) are bounded operators with finite-rank and
SZI:PN+R and S,,Z:RP-rRP are matrices of appropriate dimension. Note that

(3.16) describes a kind of aggregation (in the sense of Aoki) for the infinite-
dimensional system (2.1) ingo a finite-dimensional system (2.17). The existence
of the ideal trajectories v (t) in (3.1) guarantees that such an aggregation is
possible, i.e. the DPS (2.1) generates the ideal trajectories which correspond
to those of the finite-dimensional model (2.18).

*
In most situations, the ideal initial condition will be v_ = 0; hence,
from (3.5b) we would choose q, = 0 and 812 = (, which correctly corresponds to

(3.11). This reduces the other operator equations to the following:

= (

S11 A.m A Sll + B 321 (3.17a)
S11 Bm =B 822 (3.17b)
C S11 = Cm (3.17¢)

we have the following:

Theorem 2: If the spectra c¢(A) and o(A_) are separated by a smooth simple
closed curve ' containing O(Am) in its in%erior and 6(A) in its exterior, then,

given any linear operator 821:RN+RP, there exists a unique bounded linear

operator S :RN*D(A) given by

11
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1

S149 = 5oy { R(A,A) B S, R(A,A )qd) (3.18)
for any q in RN.
PROOF: From (3.17a), it follows that for any Aec(A)() o(Am):
S11 R(A,Ah) - R(A,A) B 521 R(A,Am) = R(},A) S11 (3.19)

But integration of (3.19) over the curve T produces:

_1 . o1
0= 2ni }‘ R(%,4) kllq dx = 2ni I [811 R(X:Am)q - R(2,A) B S

R(,A )qldx
T C m

21

- .1
= 519 - 333 é R(A,A) B S, R(A,A )q dh .

because T encloses the finite number of singularities of A and excludes all of
the spectrum of A. C(learly, since R(}X,A):H+D(A), 511 must have its range in

D(A), and this is the desired result. #

Once, we have specified the matrix SZl’ the unique operator S11 is deter-
mined. Satisfaction of (3.17¢) could most easily be done by defining Cm to be

C Sll' The determination of the matrix 822 for (3.17b) could be done from

BPILINES R
822 = (BB) "B S11 Bm (3.20)

as long as Bm is ¢ 3en so that a solution exists. Note that the operator B has
*
full ranxk P and so the inverse of B B exists.
Although the above existence result does not really require the number of
actuators and sensors to be equal, this will be needed in the later sections.
Also, the following alternative existence result requires it:

Theorem 3: Let zero belong to p(A) and C A-l B be nonsingular on RP, then

E\ a‘l"l [“11 912] [A‘l(x-n(m'lz)'lu‘l) :A'ln(m”ln)’l]
= i -1_,.-1.,-1 -1..-1
c o 2, 9, ca™1p) tca )

and 512 = “11 S11 Bm’ 521 = 921 S11 Am + 922 Cm’ and 522 = J21 S11 Bm where
S11 satisfies:
S11 = nll S11 Am + 912 Cm (3.21)

The proof of Theo. 3 can be obtained by straightforward computation using (3.16).
Furthermore, note that
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AS;) = Ay, Sy A YA, Cp

"

(IwBle) S11 Am + (—3922) Cm

Si1 A~ Bl8yy S5 A+ 8y, C ) =5, A -BS,)

which is the same as (3.17a); however, Theo. 3 gives a wider range of solutions
than Theo. 2 since 812 need not be zero. The solution of (3.21) can be handled

when zero belongs to (Am) because we then have the following:
-1 -1
S; A =0, S+, C A (3.22)

which has a unique solution S11 whenever the O(Am-l) and 0(011) are separated

by a smooth simple closed curve (see proof of Theo. 2).

4. THE ADAPTIVE MODEL FOLLOWING CONTROLLER

4.1 Development of the Adaptive Controller

The nonadaptive control law (3.14) requires exact knowledge of the gain
operators G, § 1’ and S 2° These may be known to exist via mathematical structure
of the DPS (A,%,C) in (%.1) (e.g. Theos. 1, 2, 3) but they may not be available
in an explicit form. Consequently, we would need an adaptive version of (3.14):

f(t) = 821(t) q(z) + Szz(t) u + G(t) ey(t) (4.1)

where

*
e =Y - ¥y =Y - Y (4.2)

We assume throughout Sec. 4.0 thaf the hypotheses of Theo. 1 are satisfied
for the DPS (2.1). Take e(t), =v(t) - v (t) and, from (2.1), (3.1),(3.3) and
(4.2), obtain (for Vo and v, in D(A)):

3—2{51 = Ae(t) + BAK(E) £{t)
_ %*
e(o) = e, Vo = Y,

where

A + BGC generates an exponentially stable Co—semigroup Uc(t) and

u

A =
c
e (t
y()']
) M+2P -
r{t) = | q(t) belongs to E and AK(t) = K(t) -~ Ko where
m
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|
K(t) = [G(t) l Szl(t) g 322(t)] and K = [G| s
) |

{

The adaptive gain laws we shall use ar: motivated by [6] and have the form:

's]
21:22

K(t) = KI(t) + Kp\t) (4.4a)
K (t = -T t :
p( )z p ey( ) (r(v),2) (4.4))
. -1
{ K (t)z = -T; ey(t) (x(t),2) (4.4c¢)
. _ 9K o NH2P
where KI = ?ﬁ; » 2 belongs to R , and Pp, FI are both positive definite

matrices on R'. Note that (since Ko is consfant):

SR () = Rp(e) = -1y e (8) (x(e), ) (4.5)
where

AKI(t) = KI(t) - Ko.

The closed-loop adaptively controlled DPS is given by (4.3) and (4.5):

f de(t) _ A e(t) + F (t, 2(v))

{ ”* (4.6)

| o)

®
~~
o
S’
i
o
(1]

where _ e (t) _ A O
e(t) = , A = [- ¢ , and
8k (£) © Lo o
- e (&)
- [BAK(t) x(t) v
F(t,e(t)) = 1 _} with e'(t) = C e{t) and r(t) = {(qg(t)
e (t) (r(t),") ) ‘
y Yy
V+2P

The state e(t) of (4.6) resides in a new Hilbert space H where H = H % B (
R ) with B (h,,H ) representing the Schmidt c'ass of compact linear oporators
from H, into H, with inner product (A,B) = tr A B where "tr" denotes the trace

of the operator; see [11] pp 262-264 for further details. The innec product on
H is formed by summing those of H and B,; we shall use the same symbols for all
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inner products (-,*) and their corrz2sponding norms gl ||. The nonlinear func-
tion F(t,+):H+H is continuous; hence,

e(c) = U(t) e; t >0 .7)

where G(t) is the nonlinear semigroup defined on H by (for any h in H):

Uit)h 5C(t)h + [ Ec(m) F(1,U(1)h)d1 (4.8)

whiere
U_(t) o]

| is the linear Co-semigroup generated on ﬁiby Ké in
0 L

bckt)

(4.6). The above follows from [12] Lemma 5.2 p. 186 where further details on
nonlinear semigroups are a2lso available; consequently, the clcsed-loop infinite-
dimensional system (4.%5) .s well-posed on H.

12

4.2 Closed~-Loop Stability

The stability analysis of the nonlinear infinite-dimensional sy<stem (4.6)
requires the extension of Lyapunov theory to infinite-dimensional spaces. This
has been done in [12]-[13] and we summarize the necessary elements here:

Def: The equilibrium point ¢_is stable for the system (4.6) 1if for everv € > 0
‘there exists 5 > 0 such that 'Ie(o) - ¢, < & implies ||e(t) - ¢|l < ¢ for all
t > 0. 1If, in addition to stability, there is a vy > 0 such that |[e(o) - ¢|| <

Y implies 1im ||e(t)-¢|| = O, then ¢ is said to be asymptotically stable for
t-rx

(4.5). Usually we can take 6 = 0. We say an equilibrium point is unstable

whenever it is not stable.

Yef: A continuous functional V: HR is a Lyapunov function for (4.6) if V(o) =
and V(e) < 0 for all e in H wnere

lim sup !SSXE%):!&EI. (4.9)
0"

where e is in H and e(t) = U(t)T as given in (4.7).

V(e)

lLemma 1: If V:H+»R is a Lyapunov function for (4.6) with the property that
vie) > £,(llel » (4.10)

for all t-such that ||e]| < h (where 0 < h < =) and f1 is of class M (i.e.
[0 h,*R with f (o) = 0 and fl strictly increasing on [0,h], then the :zero
equilibrium point is stable for (4.6).

Lemme 2: If in addition to the hypotheses of Lemma 1, the Lyapunov function V(-)
has tl property:
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( V(e)

| A

-W(e) for all e in ¥ (4.11a)
1 W(e) 1f2(||€H) for ||e|]| <h (4.11b)

where f_ is also of class Hh’ then the zerc equilibrium point is asymptotically
stable Eor {4.6).

The proofs of Lemmae 1 and 2 can be found in [13]. These results constitute
Lyapuncv's Direct Method on infinite-dimenaional spaces.

We now have the following stability result for our adaptively controlled
closed-ioop system (4.6):

Thecrem 4:  Assume the foliowing:
(a) In (4.3), Ac = A + BGC satisfies
(Ac v, Pv) + (Pv, Acv) = -(Qv,v) (4.12)

for all v in D(A) where P and Q are symmetric positive operators on H such that
(for some a, 8 pcsitive constants):

[vI1? < upw) < 8 ]2 (4.13a)
L ullvll2 < (Qv,v) (i.e ¢ is coercive) (4.13b)

for 211 v in H,
x

(b) BP=2C, (4.14)
*
(¢) the hypotheses for Theo. 1 are satisfied, and both v, and v, belong to D(A),
e
then V(e) = (e,Pe) + (8K}, Ty 8K )swith AK (t) = K;(t) - K and e = ol is a
ped |

Lyapunov function for (4.6) snd the zero equilibrium point is stable.

PROGF : Recall that
AK(t) = AKI(t) + Kp(t) (4.15)
\ = 4.16
AKI(t) KI(t) ( )

Now, clearly V is a continuous furctional from H into R (due to (4.13a) with
V(o) = 0. Furthermore, since V 18 a quadratic functional, it is Frechet
differentiable. Hence, from (4.6) aad (4.12),

V(e) = ~(Qe,e) + 2u (4.17)
where y = [(Pe, BAKr) + (AKI,PI AKI)]

From (4.16), (4.4c), and (4.15), we have
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*
= (BPe, AK) - (8K, ey(r,-))

% *
(B Pe, AKr) - (r, AKI ey)

* *x *
(B'Pe, AK;¥) + (B Pe, Kr) - (r, 8K e

(KT, (B Pe - e,) + (K r, B Pe) (4.18)

* *
where we have used (A,B) = tr A B = tr(BA ). Furthermore, using (4.14) in
(4.18), yields

2
= (Kpr, ey) = —(Ppey)llr}l (4.19)
trom (4.4b). Consequently, using (4.19) in (4.17), we obtain
V(e)= -[(Qe,e) +2re, e)|lx 112

< - fa]]el]? +za|.e|'2||r||1<o (4.20

where ap = Amin(rp) and we have used (4.13b).

Also, using (4.13a), we have

vie > [lel1?+a ) |{ak|i?

- 2 .
In other words, fl(c) = 1+ xmin(rl)]; which is of class Hh. Therefore, the
above satisfies the hypotheses of Lemma 1 and the desired result is obtained. &

Note that the use of a proportional adaptive gain (4.4b) produced the second
term in (4.20): however, this term is not essential and the above argument
could be simplified by omitting (4.4b) from the adaptive gain laws.

The hypotheses (a) and (b) correspond to the Kalman - Yakubovich conditions
in 1nfinite-dimegsional spaces. From [13] Theo. 4.7, if for some real w,
(Av, v) < wl!vll for all v in D(A), then exponential output stabilization of
(A,B> Clwould be equivalent to satisfaction of hypotheses (2); however, there
would be no guarantee that P and Q could be found in (4.12). such that (4.14)
could be obtainei. In finite-dimensional spaces, the Kalman - Yakubovich
conditions are equivalent to the strict positive realness of the transfer

function Tc(s) = C(sI—AC)-lB, i.e. Re Tc(jw) > 0 for all real w; see [14] pp.

115-118. A ruwber of papers, e.g. [15] - [17], have been wricten on this
relationship in infinite-dimensional spaces. For example, [17] asserts that
ReTc(jw) must be coercive,which would be quite a bit stronger than what is

required in finite-dimensions. This 1s an area that requires further investi-
gation.

As pointed out in [9], we cannot immediately conclude asymptotic stability
from (4.20) since it does not satisfy the hypotheses of Lemma 2., In finite-
dimensional space, we could apply the LaSalle Invariance Principle to obtain
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asymptotic stability as is done in [6]; however, in 1nf1nite—dimensiona1 spaces,

it is nct the case that "bounded sets are precompact" and this is essential for
the LaSalle result.

The following result ([13] Theo. 5.4 p. 188) may be helpful:

Lemma 3: Let X. in (4.6) generate the linear C —semigroup ﬁ'(t) on K and F

is any_bounded, contlnuous function such that (4.6) generates a nonlinear semi-

group U(t) on H (as given in {4.8)), then all bounded orbits .f (4.6) are pre-
compact if either

(a) E;(t) is compact operator for all t > 0

or

(b) E;(t) is exponentially stable and the function F is compact (i.e. maps

bounded sets intorpreconpact ones)
()
Due to the form of ACE ¢ » 1t is not possible to satisfy (b); however,
0 (4]
(a) may be satisfied, for example by operators A which generate holomorphic
semigroups. This latter is determined by the form of damping operator in a

flexible structure. Again, this is a topic for further investigation. An
alternative adaptive gain law:

R (t)v = r! (e, (r.v) + Ky (£)V) (4.21)
yields:

V@< -lalle]1? + 2] jakj]? + 208k, K )]

which does not quite give asymptotic stability but might be modified to do so.
5. CONCLUSIONS

In this paper, we have presented a direct adaptive controller for linear
distributed parameter systems (DPS) described on infinite-dimensional Hilbert
spaces. The controller is based on a command generator tracker approach used
in finite-dimersional spaces, e.g. [6] where it is shown to be asymptotically
stable. We have shown here that, under certain conditions on the open-loop
loop DPS, ideal trajectories do exist and the adaptive codtroller is stable,
i.e. the output and gain errors remain bounded. If the further condition that
A in (2.1) generates a holomorphic C -semigroup is impused, then we can also

conclude asymptotic stability which guarantees asymptotic tracking or model
following.

A number of issues have been opened for further investigation:

(1) use of dynamic rather than output feedback stabilization;
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(2)
3)

%)

(5)

generation of asymptotic ideal trajectories by the open-loop DPS;

connections between the Kalman-Yakubovich conditions and the input-
cutput description of the DPS;

development of alternative adaptive gain laws which produce asvmptotic
stability of the ciosed-loop system;

exploration of reas-nable conditions under whichk LaSalle's Invariance
Principle can be used to determine asymptotic stability of the closed-
loop system.
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