
5 R85-31204 
STABLE DIRECT A -.IsIIvE CONTROL OF 

LINEAR INFINFlrlEDDIMJ!,iJSIONAL SYSTEMS USING 
A COMMAND GENERATOR TRACKER APPROACH 

M. 1. Bmb, Ii, Kdhm, aad J. Wa 
Rcrrsstkcr pdyoechnic Institute 

Troy, NY 12180 

Ue present  a c-d generator tracker approach t o  model following cont ro l  
of l i n e a r  d i s t r ibu ted  parameter systems (EPS) whose dynanics are described on 
in f in i t ed imens iona l  Bilbert spaces. 
con t ro l l e r s  capable of exponen t id ly  stable t racking of the  refereme trajector- 
jes when c e r t a i 3  i d e a l  t r a j e c t o r i e s  xre  known to exist f o r  t he  open-loop DPS; 
w e  present  ccndi t ions f o r  the exis tence of these  i d e a l  t r a j e c t o r i e s .  An adaptive 
vers ion of this type of con t ro l l e r  is a l so  presented aid shown t o  achieve (in 
sane cases, asyapto t ica l ly)  atabze f i n i t e d i w n s i o n a l  cont ro l  of the  i n f i n i t e -  
dimensional DPS. 

This re thod generates  f in i t ed imens iona l  

I. INTRODUCTION 

By a d i s t r ibu ted  parareter system (DPS), ve mean a system whose dynamical 
behavior with respect  t o  external dis turbances is described by p a i t i a l  d i f f e r -  
e n t i a l  equations. 
espec ia l ly  i f  high performance is demanded, e.g., a slmple electrical c i r c u i t  
a t  vary high frequencies. 
equation) approximations o f t en  s u f f i c e  to  descr ibe t h e  system behavior of mmy 
engineering s y s t m .  Indeed, such gpproximations are necessery for DPS control-  
ler designs t o  be irplemented with on-line d i g i t a l  computers. Nevertheless, 
the d i s t r ibu ted  parameter nature  of cont ro l  prnblems should not  be discarded 
prematurely; otherwise, control. approaches can be generated vhich look good on 
paper but are not s u f f i c i e n t l y  robust t o  operate  with the  x t u e  system. This 
has been i l l u s t r a t e d  i n  computer s h u l a t i o n  and in even a few laboratory demon- 
a t r a t i o n s  of f l e x i b l e  s t ruc tu res ,  ye t ,  i t  continues t o  be ignored in some pa r r s  
of the  cont ro l  community. 
a DPS viewpoint is essen t i a l .  

Of course, everything is a DPS i f  it is ca re fu l ly  scrut inized,  

However, lumped parameter (ordinary d i f f e r a t f a 1  

To understand the  cont ro l le r -s t ruc ture  in te rac t ion ,  
- 

The most re r ious  d i f f i c u l t y  of the DPS vi2wpoint is t h a t  i t  requi res  the 
mathematical ideas  of i n f in i t e -dhens iona l  function spaces aad unbocnded oper- 
a t o r s  on these spaces; €or example, see [1]-[2]. Savt ra l  r e s u l t s  in the  p a s t  
have been posed within t h i s  mathematical framework with the required mathematical 
r i go r  [3] .  Yet, the necessary practichl cons t r a in t s  were in te rpre ted  so t ha t  
the  r e s u l t s  would be relevant  to  s t r u c t u r a l  dynamicists and cont ro l  sys tem 
engineers and would make the  maximum use of t h e i r  experience and i n t u i t i o n .  

With these ideas  i n  mind, the  concept of model following appears t o  be a 
procedure t h a t  y i e lds  a usefu l  f i n i t e  dimensional con t ro l l e r  t h a t  might be 
designed taking In to  account the  d i s t r ibu ted  na tc re  of the  system dynamics, 
whereas ea r ly  model fol loving cont ro l  systems required the  s a t i s f a c t i o n  of 
c e r t a i n  “Perfect Hodel Following“ conditions which necessi ta tzd the. w e  of a 



reference model having the  same order  as t h a t  of t he  process [4], t he  more 
recent output model following c o n t r o l l e r  o r  CoPrand Generator Tracker (CGT) a s  
developed by Broussard [SI allows the use of a model of a r b i t r a r y  order ,  provided 
that the  number of cont ro ls  is equal t o  the  number of outputs  being control led.  
This concept i n  f a c t  served as the  b a s i s  f o r  a f i n i t e  dimensional aflaptive 
con t ro l l e r  that was used f o r  con t ro l l i ng  l a rge  s t r u c t u r a l  s y s t e m s  [6, 71.  

Thus s ince  the  CGT algorithm makes i t  poss ib le  t o  use a f i n i t e  dimensional 
reference model which subsequently gives  a f i n i t e  dimensional con t ro l l e r  regard- 
less of the pr3cess order .  
t r o l l e r  which produces s t a b l e  closed-loop operat ion with the  class of liiiear 
d i s t r ibu ted  parameter systems considered here. The d i f f i c u l t i e s  of stable 
adaptive d i s t r ibu ted  parameter con t ro l  are de ta i led  i n ,  e.g., [SI-191 and the 
references containcd therein.  I n  S i x t i o r s  2 and 3 the nonadaptive model 
following c o n t r o l l e r  is  developed a id  analyzed; i n  Section 4 ,  the adaptive 
vers lon is presented zind shown t o  produce a s t a b l e  closed-loop. 
axid fu tu re  c'irecticns are presellted i n  Section 5 .  

This provider the basis f o r  a d i r e c t  adaptive con- 

Conclusions 

2. PROBLM FORHULATIQN 

2 . 1  Process Description 

lhe d i s t r ibu ted  paraaeter  systems (DPS) of i n t e r e s t  w i l l  be modeled by the  
following state space form: 

0 
= Av(t) + Bf(t)  ; v(o) = v i a t  (2.  la) 

where the s ta te  v ( t )  is  i n  an infinite-dimensional real Hi iber t  space H with 
inner product ( , 0 )  and corresponding norm I I 1 I . The bounded input-output 
operators  B and C have the same f i n i t e  rank P, and f ( t ) ,  y ( t )  represent  t he  
- i q u t s  f o r  P l i n e 2 r  ac tua to r s  and the  outputs  from P l i n e a r  sensors,  respective- 
l y .  Thus, 

P 

i= 1 
Bf( t )  = 1 bi f,(t) (2.2) 

and 

T 
y ( t )  = [y l ( t ) ,  ..., y p ( t ) l  

Yj ( t )  = (c 

with 

v ( t ) )  ; 1 2 j - < P  (2 3)  
j' 

where bi and c belong to H. In  infinite-dimensional theory, t he  operator  A 

is a closed, l i v e a r ,  unboundad (d i f f e ren t i a l )  operator with domain D(A) dense i n  
H. Furthermore, (2.1)-(2.3) represeuts  some well-posed physical sys tem,  which 
i n  mathematical terms is the  weak formulation of (2.1): 

j 
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t 
vCt> = U ( t )  v0 + J U(t-r) Bf( t )d t  

0 
y ( t )  = W ( t )  f t 2 0 

(2.4) 

where v 

opera tors  generated on H by A. This l a t t e r  means: 

is any i n i t i a l  s tate i n  H and U(t) is t h e  C -semigroup of bounded 
0 0 

V(0) = I (2.5b) 

l i m  [ U ( t )  - I] v = 0 : v i n  H 
t4+ 

Av = [ l i n  - U(t)- l~v ; v iu MA) 
t 

t+o+ 

( 2 . 5 ~ )  

(2.5d) 

N G t e  t h a t  the semigroup U(r) evolves t h e  i n i t i a l  cGnditions v forward i n  t h e .  

When v is i n  D(A) and f ( t )  has continuous f i r s t  de r iva t ive ,  v ( t )  also is d i f f e r -  
en t iabfe ,  lies i n  D(A) for t 2 0 ,  and s a t i s f i e s  (” 1). 

and any sqaare-integrable f ( t )  V-11 s a t i s f y  the  weak formulation (2.4) and y i e l d  
states v ( t )  i n  H f o r  a l l  t 10. Consequently, (2.4) is easier t o  work with i n  
infinite-dimensions and is  more l i k e l y  t o  represent  the actual physical  system 
being modeled by (2.1;. This form, (2.1) o r  (2.4), models most p r a c t i c a l  
i n t e r i o r  cont ro l  problems f o r  l i n e a r  DPS where the  ac tua tor  and sensor inf luence 
funct ions are given by b and c respec t ive ly .  

For example, cont ro l  of the  damped wave equation on a region Sls R 

0 

However, any vo and K 

i j’ 
n 

by a 
s ing le  ac tua tor  and sensor is described by ( fo r  E > 0 ) :  

.-, 
L 

- Aou(x,t) = b(x) f ( t )  a u(x, t )  + E au(x,t)  
2 a t  

’; 

y ( t )  = I c(x) u(x , t )  dx 
R 

(2.6a) 

(2.6b) 

where u ( x , t )  is the  displacement from equilibrium of Sl and the  inf luence func- 
t i ons  b and c can be taken as approximations of Dirac d e l t a  funct ions a t  the 
loca t ion  of the ac tua to r  and sensor.  The operator  A. is the  Laplacian given by 

a‘u(x,t) 
2 A u (x , t )  = 1 

0 e = i  ax, 

on D(A ) E !u(x,t)EHoiu(x,t) i s  smooth and u (x , t )  = 0 on the  boundary of n). 
The domain D(Ao) is dense i n  Ho f L (n) with t h e  usual  Inner product (e,*),. 

This can be put i n t o  the form (2.1) by choosing the  s ta te  v ( t )  = [u (x , t ) ,  

2 0 
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'"1 x H with the auergy inner product: au(x,t)p in = 
0 

- at 

The operator A in (2.1) becomes 

A = -3 
and the rest follows. 

Another important exaaple is the mathematical setting for large structural 
systems (LSS) which may be described as a continurn by the following system of 
partial differential equations: 

m(x;u (x,t) + Dout(x,t) + Aou(x,t) = F(x,t) (2.10) 
tt 

where u(x,t) represents a vector of instantaneous displac-nts nf the structure 
R from its equilibrium position due to transient disturbances and the applied 
force distribution F(x,t). The displacements can be translational and ratation- 
al, and the forces can be generalized to include torques, as well. The mass 
density m(x> is positive and bounded on n. 

The internal restoring force term 'Lou is generated by a tine-invariant, 
symmetric, non-negative differential operator A appropriate to the LSS. The 

dmain D(Ao! of A. contains all smooth functions satisfying the LSS bornpry 
conditions and is dense in the infinite-dimensional Hilbert space Eo = L (0) 
with the usual Inner product ( * ,  -IO and associated norm I I I Io. 
the operator A is assumed to have discrete spectrum, i.e., isolated resonances; 

0 

In post cases, 

C 
this can be expressed by the following eigen-problem: 

2 
Ao4k = "k 0 ,  (2.11) 

where w 

vibration mode shapes. 
rarely known for an actual LSS. 

are the vibration mode frequencies and +,(x) are the corresponding k 
Of course, exact expressions for this modal data are 

The damping term Dout is camposed of a skew symetric part, which repre- 

sents gyroscopic damping due to any on-board rotors or constant spin rate of 
the whole LSS, and a small symmetric part which represents the internal struc- 
tural damping and is thought to provide very low mode damping. 

The applied force distribution is 

1 30 



where F 

non l inea r i t i e s )  and Fc represents  the  cont rc l  forces  due t o  P ac tua tors :  

represents  the ex terna l  disturbance forces  on the LSS (and poss ib le  D 

P 
F C = B f =  0 E bi(X) f i ( t )  

i=l 
(2.13; 

where the ac tua tor  amplitudes are f i ( t )  and t he  ac tua tor  inf luence funct ions 

are bi(x) i n  Ho. 

approximate 6(x-x 1; however, they do not have t o  be point  devices.  

These are usua l ly  loca l ized  or po in t  devices so t h a t  they 

i 

Obse rva t inE  are obtained by P sensors 

y = C u + E u  (2.14) 
0 O t  

where y , ( t )  = (c. ,uo) + ( e . , u  

pos i t ion  sensors  and e for ve lac i ty  sensors  i n  H . Again, these  are usual ly  

lcca l ized  or point  devices but they do not have t o  be. 

1 < ,i < P, with inf luence funct ions c f o r  
- J J t o '  - - j 

j 0 

The LSS dynamics a r e  defixied by (2.10) and (2.14) csn be put  i n t o  the 
infinite-dimensional s t a t e  space form: 

bv( t1  
a t  (2.15a) 

I 
i y(t! = Cv(t) ; v(0) = v9 (2.1%) 

-A-- - Av(t; + Bfie) + I'f,(t) 

with (A,B,C! as i n  (2.3)  and the  p e r s i s t e n t  disturbance term r f D ( t )  obtained 

from F i n  (2 .12) .  Impulsive disturbances i n  the  s t r u c t u r e  are model.ed by the  

i n i t i a l  condition v . 
D 

0 

The Iiille-Yosida Theorem (e.g. [l], Theo. 8, 9, p. 153), provides condi- 
t i o m  under which an operator A generates a C -semigroup U ( t )  sa t i s fy ing :  

0 

I l U ( t )  I I 2 Ke-at, t 0 (2.16) 

where K 
the resolvent  operator R(X,A) 

1 and u real. The necessary fnd s u f f i c l e n t  condi t ions are given for  
(XI-A)- : 

(2.17) 

fo r  a l l  real X 
bounded operator  on HI. The spectrum of A, a(A) = p(A) is much more compli- 
cated in  infinite-dimensions, but ,  i n  finite-dimensions,  i t  cons i s t s  only of 
the ( f i n i t e  number of)  eigenvalues of A. We say t h a t  A is exponentially s t a b l e  
when (J > 0 i n  (2.16), i .e. ,  the semigroup U(t) generated by A deczyb exponen- 
t i a l l y  a t  the  r a t e  a. 
dimensions, but no o thers  provide the s a f e t y  of a s t a b i l i t y  margi3 a; therefore ,  

- a i n  the resolvent  s e t  of A, p(A)  = i X  complex /R(A,A)  is a 

There a r e  many other  types of s t a b i l i t y  i n  k f i n i t e -  
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t h i s  seems t o  be the kind of s t a b i l i t y  of most p r a c t i c a l  i n t e r e s t  f o r  cngineer- 
ing  appl ica t ions  where there  is alvays same uncer ta in ty  i n  the  m o d e l  of JPS. 

2 . 2  Model Following Control Frob]-em Formulation 

Given the DPS as defined i n  (2.1), i t  is desired t o  f i n d  a f i n i t e  dimen- 
s iona l  con t ro l l e r  so t h a t  the output y ( t )  ' ' fo l l~ws"  a des i r ab le  output t r a j ec -  
tory ym(t ) .  

(asymptotically) s t a b l e  reference model : 

This output t r a j e c t o r y  is t o  be generated by the f i n i t e  dimensional 

q = A q + B,um m (2.18a) 

(2.180) 

where 

q is the  model state vector  having dimension N, 

u is a s t e p  3r reference level conmand with dimension P, 

y m 

P 

is the  output t r a j e c t o r y  a l s o  having the dimension P, 

and Am, Bn are matrices with appropriate  dimensions. 

the dimension of bcth y, and urn is t he  same as the  dimension of the  process 

input f and the  process output y as defined i n  (2.1). 
chosen. 

It should be noted t h a t  

Usually qo = 0 w i l l  be 

The output model following cont ro l  problem t o  be solved is the  development 
of an  algorithm t h a t  def ines  the  process input  f ( t )  so t h a t  t he  following two 
model following condi t ions (MFC) are s a t i s f i e d :  

3. DEVELOPMENT OF THE NONADAPTIVE MODEL FOLLOWING CONTF.OLLER 

3.1 Solution Defini t ion 

In a manner similar to Broussard's developmegt of the  Copand Generator 
Tracker (%TI [ 5 ] ,  the  concept of an i d e a l  s ta te  v , cont ro l  f 
t r a j ec to ry  y w i l l  be introduced. 
a a t i s f y  the  process dynamics (2.1) and t h a t  the idea l  output y 

and output 

be iden t i ca l  
It is required t h a t  these  tga j ec to r i e s  
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t c  t h e  model output  y,. Thus: 
* * * 

AV ( t )  + Bf ( t )  
* * * 

y ( t )  = LhJ (t) ; v io)  = v 
0 

(3.la) 

(3 .  l b )  
* 

where t h e  i d e a l  s t a t e  v ( t )  i s  (as w i t h  v ( t ) )  i n  t h e  i n f i n i t e  d i n e n s i o n d  
H i l b e r t  space H. 

Fur t he mor e 

* 
I n  a manner similar t o  t h a t  i n  [SI, i t  w i l l  be assumed that v (t) and * 

f ( t )  are l i n e a r l y  r e l a t e d  t o  t h e  model s ta te  :vector q ( t )  and command v e c t o r  
u (t) as fol lows:  m * 

-J ( t )  = All q ( t )  + S12 um 

f ( t )  = s21 q ( t )  + s22 urn 
* 

The bounded l i n e a r  o p e r a t o r s  Sll, S,,, S21, S22 w i l l  n o t  be determined t o  

s a t i s f y  MFC 1. 

(3 .3)  

( 3 . 4 j  

To t h i s  e f f e c t ,  d i f f e r e n t i a t i o n  of (3 .3)  with r e s p e c t  t o  t and s u b s t i t u -  
t i o n  of ( 3 . 1 )  and (2.18) g i v e s :  

where 

( 3 .  Sa) 

* * 
Replacing v and f on the  r i g h t  s i d e  of (3.5) by (3 .3)  and (3 .4)  g i v e s :  

Sll Amq : B u '11 m m 

A ( " p  + s12 IJ 1 + B ( S 2 p  + S2? Urn) = (3 6) 

Now s i n c e  (3.6)  must be v a l i d  for  a l l  q and urn, i t  is necessary t h a t :  

11 + BS21 SI1 Am = AS 

Sll Bm = ASl2 + BS22 

( 3 . 7 )  

(3 .8 )  
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Final ly  the  incorporation of (3.2) y i e l d s  

Thus : 

order 

order 

which 

* 
Y (t) = CSllQ + CS12 um = ym = cmq 

(3.10) 

(3.11) 

In  summary then eqs. (3.71, (3 .8 ) ,  (3.10) and (3.11) must be*solved i n  
t o  f ind  S,l and S22 which i n  tu rn  def ine the idea l  cont ro l  f 

Recall however, t h a t  both MFC 1 and MFC 2 must both be s a t i s f i e d .  In 
t o  s a t i s f y  MFC 2,  it is use fu l  t o  consider the equation f o r  the  e r r o r  

e = v  - v  (3.17) 

of Eq. (3.4). 

* 
* 

i s  i n  D(A) when vo and vo are both i n  D(A) .  Differen t ia t ion  of (3.12) 
with respect  t o  time gives:  

* 
ae av 
a: a t  
- -  - -  

* * 
= AV + Bf - (Av + Bf ) 

* 
= Ae +, h(f - f ) (3.13) 

This equation suggests t h a t  t he  ac tua l  model following cont ro l  f be defined as: 
* 

f =: f + G(y - ym) 
* * 

= f  + G C ( V - V )  
* 

= f  + G C e  (3.14) 

Subs t i tu t icn  of (3.14) i n t o  (3.13) gives:  

l = (A + B G c ) e  (3.15) 

where G:RP-+RP is a bounded l i n e a r  operator.  
(A + B G C )  generates an exponentially s t a b l e  Co-semigroup, then the  cont ro l  f 
as defincd by (3.14) w i l l  s a t i s f y  the conditions f o r  model following. 

Thus i f  G is  chosen such tha t  ' 

It is  important t o  note  t h a t  t h i s  con t ro l l e r  is clearly f i n i t e  dimensional. 
For implementation it  i s  only necessary t o  "build" a f i n i t e  dimensional re fer -  
ence model and form the proper l i n e a r  combination of its s ta te  vec tor  and comrr.and 
vector.  
such tha t  the decay of any t r ans i en t  caused by i n i t i a l  p lan t  model output e r r o r  
is s u f f i c i e n t l y  fas t .  We summarize the above discussion a s  

The gain operator  G fs a l s o  f i n i t e  dimensional and should be chosen 
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Theorem 1: I f  (A ,B ,C)  i s  exponent ia l ly  output  s t a b i l i z a b l e  and t h e r e  exist  
bounded l i n e a r  o p e r a t o r s  S 11, S12, S21, and S22 such t h a t  (3.7) - (3.8) and 

(3.10) - (3.11) a r e  s a t i s f i e d ,  then t h e  model fol lowing c o n t r o l  (3.4) and (3.14) 
s a t i s f i e s  t h e  model followir-g c m d i t i o n s  MFC (1) and (2) and l i m  [v(t)-v ( t ) ]  = 
0 when both v and v belong t o  D ( A ) .  t- 

0 0 

From [ l o ] ,  lie see t h a t  ( A , B , C )  is exponent ia l ly  output  s t a b i l i z a b l e  i f  and 
only i f  i$ f N(C)I and HR F N(C) form a p a i r  of s t a b i l i z i n g  subspaces f o r  (A,B). 

Note t h a t  dim = ? which is t h e  number of sensors  ( o r  a c t u a t o r s )  used. "he 

condi t ions  f o r  ex is tence  of t h e  i d e a l  t r a j e c t o r i e s  (3.1) w i l l  be  developed i n  
the  next  subsect ion.  

3.2 Existence of I d e a l  T r a j e c t o r i e s  
* 

The ex is tence  of i d e a l  t r a j e c t o r i e s  v (t)  f o r  t h e  DPS (2.1) is  determined 
b y  s o l u t i o n s  S . .  t o  t h e  o p e r a t o r  equat ions  (3.7) - (3.8) and (3.10) - (3.11). 

These can be r e w r i t t e n  a s  
1; 

(3.16) 

wher N .e S :R +D(A) and S12:Rp+D(A) are bounded o p e r a t o r s  wi th  f i n i t e - r a n k  and 

P +R and S, :R+R are matrices of a p p r o p r i a t e  dimension. Note t h a t  

(3.16) d e s c r i b e s  a kind of aggregat ion ( i n  t h e  sense  of h k i )  for t h e  i n f i n i t e -  
dimensional s y s t e m  (2.1) in&o a f ini te-dimensional  system (2.17). 
of t h e  i d e a l  t r a j e c t o r i e s  v ( t )  i n  (3.1) guarantees  t h a t  such an aggregat ion i s  
p o s s i b l e ,  i . e .  t h e  DPS (2.1) genera tes  t h e  i d e a l  t r a j e c t o r i e s  which correspond 
t o  those of the f ini te-dimensional  model (2.18). 

N '4 P P  
& 2  

The exis tence  

* 
In  most s i t u a t i o n s ,  t h e  i d e a l  i n i t i a l  condi t ion  w i l l  be vo = 0; hence, 

from (3.5b) we would choose q, = 0 and SI2 = 0, which c o r r e c t l y  corresponds t o  

(3.11).  This reduces t h e  o t h e r  opera tor  equat ions t o  t h e  following: 

A = A Sll + B S21 '11 m 

'11 Bm = s22 

'11 - 
- 

we have t h e  following : 

(3.17a) 

(3.17b) 

( 3 . 1 7 4  

Theorem 2: 
c losed curve r containing a(Am) i n  i t s  i n T s r i o r  and a(A) i n  i t b  e x t e r i o r ,  then,  

given any l i n e a r  opera tor  S 21 
opera tor  S :RN+D(A) given by 

I f  t h e  s p e c t r a  c(X) and a(A ) are separated by a Sm00th simple 

:R'+RP, t h e r e  e x i s t s  a uniqrle bounded l i n e a r  

11 
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(3.18) 

N ior any q i n  k . 
- PROOF: From (3.17a), i t  follows t h a t  f o r  any AE.(J(A)() u(A,): 

SII R(A,Am)  - R(A,A) B S21 R(A,Am) R(A,A) Sll (3.19) 

But in tegra t ion  of (3.19) over the curve I' produces: 

because : encloses the f i n i t e  number of s i n g u l a r i t i e s  of A 
the spectrum of A. 

D ( A ) ,  and t h i s  is the  desired r e s u l t .  d 

and excludes a l l  of 
Clearly,  s ince  R(X,A):H+D(A), Sll mustmhave its range i n  

Once, we have spec i f ied  the matrix S21, the unique operator Sll is deter-  

Sa t i s f ac t ion  of ( 3 . 1 7 ~ )  could most e a s i l y  be done by defjning Cm t o  be mined. 

C Sll. The determination of the matrix S f o r  (3.17b) could be done from 22 * -1 * 
SZ2 = (B B) B Sli Bm (3.20) 

as long as B 

f u l l  ram P an2 so the  inverse of B B exists. 
is  c sen so t h a t  a so lu t ion  e x i s t s .  Note tha t  the  operator  B has * m 

Although the above exis tence r e s u l t  does not r e a l l y  requi re  the  number of 
ac tua tors  and sensors t o  be equal,  t h i s  w i l l  be needed i n  the la ter  sect ions.  
Also, the following a l t e r n a t i v e  exis tence r e e u l t  requi res  i t :  

Theorem 3 :  
3 

L e t  zezo belong t o  p(A)  and C A - l  B be nonsingnlar on R , then 

Sll satisfies: 

(3.21) 
sll = 51 A* + *12 

Tke proof of Theo. 3 can be obtained by straightforward computation using (3.16). 
Furthermore, t o t e  t ha t  
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which i s  the  same as (3.17a); however, Theo. 3 gives  a wider range of so lu t ions  
thar. Theo. 2 s ince  S need not be zero. The so lu t ion  of (3.21) can be handled 

when zero belongs t o  
1 2  

(A ) because we then have the  following: m 

which has a unique so lu t ion  SI1 whenever the  u(Arn-') and u(n ) are separated 

b y  a smooth simple closed curve (see proof of Theo. 2) .  
11 

4.  THE ADAPTIVE MODEL FOLLOWING CONTROLLER 

4.1 Development of the  Adaptive Control ler  

Tlie nogadaptive cont ro l  l a w  (3.14) requi res  exact knowledge of the gain 
operators  G ,  S and S These may be known t o  exist v i a  mathematical s t r u c t u r e  
of the  DYS (A,6:;) i n  ($?i) (e.g. Theos. 1, 2 ,  3) but  they may not  be ava i l ab le  
i n  an e x p l i c i t  form. Consequently, w e  Mould need an adapt ive vers ion of (3.14): 

f ( t )  = S21(t) q ( t )  + SZ2( t )  urn + G(t) ey(t) (4 1) 

where 
* 

e : y - y m = y - y  
Y 

We assume throughout See. 4.0 thaf the  hypotheses of Theo. 1 are s a t i s f i e d  
fo r  the DPS (2.1). Take e ( t ) * E v ( t )  - v (t) and, f r m  (2 .1 ) ,  (3.1),(3,3) and 
(4 .2) ,  ob ta in  ( f o r  vo and vo i n  D(A) ) :  

ae(t) = A,e(tS t. BAK(t) ri t)  1 a t  

where 

A i A + BGC generates  en exponentially s t a b l e  Co-eemigroup U c ( t )  and 
C 

Wt2' and AK(t) S K(t) - K where 
0 r ( t )  E 
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, z belongs 'io RW2', and r where E - 
matrices on R . Note t h a t  ( s i n c e  K is coilstant):  

I' are both p o s i t i v e  d e f i n i t e  
dKI 
dtP P' . .I 

0 

AiI( t )  = $ ( t )  = -rI -1 ey(t)  ( r ( t ) , * )  

where 

AKI(t) E I: ( t )  - K . I 0 

(4.5) 

The closed-loop adapt ive ly  c o n t r o l l e d  DPS io given by (4.3) and (4.5): 

a&) - - - I at= e ( t )  + F ( t ,  e(c)>  

(4.6) 

- 
e ( o )  = e i 

i 
I -  0 

V+2P The s ta te  I ( t )  of (4.6) r e s i d e s  i n  a new H i l b e r t  space E where 

R ) with B (H,,H ) represeqt ing  t h e  Schmidt c?.ass oE compact l i n e a r  o p e r a t o r s  

from H i n t o  H with inner product (A,B) I t r  A E where "tr" denotes  t h c  t r a c e  1 2 
I of t h e  opera tor ;  cap. [ l l ]  pp 262-264 f o r  f u r t h e r  d e t a i l s .  The inner  product uti 
H is formed by s-mining those of H and B we shall use t h e  same symbols f o r  a l l  

E H .A B2(R' 9 

P 
* 2 1 2  

2 '  
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inner products ( * , * )  and their corrzaponding noms 1 I I I . 
tion F(t, * )  :H+H is continuous; hence, 

The nonlinear func- - -  

_.  
c(c)  = i ( t )  Go; t I > 0 (4.7) 

where G(t) is 
- 
U<t)h = 

wl:i re 
- u (t) = 

C 

the nonlinear semigroup defined on % by (for any h in E) : 
- 
il t (t)h + I Ec(t-T) F(T,c(T)h)dt (4.8) 

v (t) 07 

I 0 Li 
C 1 is the linear C -semigroup generated on by io I 0 C 

(4.6). The above follows from [12] Lema 5.2 p.  186 where further details on 
nonlinear semigroups are a l so  available; consequently, the clcsed-loop infinite- 
dimensional system (4.5) AS well-posed on H. .' 

4.2  Closed-Loop Stability 

The stability analysis of the nonlinear infinite-dimensional syctem (4.6) 
This requires the extension of Lyapunov theory to infiniredimensional spaces. 

has been done in [12]-[13] and we summarize the necessary elements here: 

- Def: 
there exists 
t - > 0. 

Y implies lim 
t-- 

(4.5). Usually we can take & = 0 .  We say an equilibrium poitt is unstable 
whenever it is not stable. 

The equilibrium point 4 is stable for the system (4.6) if for every c > 0 
1 /e(t) - $ 1  I < E for all 

If, in addition to stability, there is a y > 0 such that I le(o) - $ 1  I < 
> 0 such that 1 Ie(o) - 4;: < 6 implies 

I Iz(r)-$ll = 0 ,  then 4 is said to be asymptotically stable for 

?ef :  
and ir(e) 5 o for all e in ii wnere A continuous functional V:%R is a Lyapunov function for (4.6) if V(o) = 0 

v (e( t))-v(e). irCe, lim sup c (4.9) 

t*+ 
L 

where e is in % and e(t) = y(t)s as given in (4.7). 

J.emma 1: If V : H + R  is a Lyapunov fmctron for ( 4 . 6 )  with the property that -- 
(4.10) 

for all f= such that 11.11 5 h (where 0 
f :[O,h]+R 

equilibrium point is stable for ( 4 . 6 ) .  

h c m) and fl is or' class M,, (i.e. 
+ with fl(o) = 0 and fl strictly increasing on [O,h], then the zero 1 

Le= 2: If in addition to the hypotheses of Lema 1, the Lyapunov function V(*) 
has tt. property: 
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(4. lla) 

(4. llb) 

where f 
stable $or (4.6). 

is also of class h $ ,  then the zero equflibrium point is asymptotically 

The proofs of knnae 1 and 2 can be found in 1131. 
Lyapuncv' s Direct Method on infinite-dimenaional spaces. 

n e s e  results constitute 

We now have the following stability result for our adaptively controlled 
closed-loop svsteni (4.6) : 

TheGrem 4 : Assume the foiioving : --- 

(a) In (4.3), Ac 5 A + BGC satisfies 
(Ac V, Pv) + (h, ACv) -(QV,v) (4.12) 

for all v in D(A) where P a d  Q are syretric positive operators on E such t h t  
( for some ( I ,  8 pcsitive constants): 

11.1 l 2  5 (V,b) L L? I I v l  l 2  (4.13a) 

(4.13b) 2 ! V I  I 5 (QV,~) (:.e Q is coercive) i ! 
for i?ll v in H, 

( b )  B P = C, 

( c )  

(4.14) 
* 

* 
the hypotheses for Theo. 1 are satisfied, and both vo and vo belong to D(A), 

T e l  - 
chen V(L) E (e,Pe) + (OKI, rI AKI)svith 5 ( t )  I KI(t) - KO and e I 

Lyapunov function for (4.6) snd the zero equilibrium point is stable. 

PROGF : Re ca 11 that - 
AK(t) = AKI(t) + K p ( t )  (4.15) 

Now, clearly V is a continuous functional from 
V(o) = 0. 
differentiable. Hence, from (4.6) m d  (4.121, 

into R (due to (4.13aj with 
Furthermorc, since fr is a quadratic functional, it is Frechet 

c(e) = -(Qe,e) + 2 l ~  

where p 5 [(Pe, BAKr) + (AKI,FI i5)1 

From (4.161, (4.4~1, and (4.151, we have 

(4.17) 
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* 
p = (B Pe, OKr) - (AKI, e (r,*)) 

Y * * 
= (B Pe, AKr) - (r, A 5  ey) 
= !B Pe, AKIr) + (B Pe, K r) - (r, AK e ) 

= (AKIr, [B Pe - e 1) + (K r, B Pe) 

* * * 
P I Y  * * 

(4.18) Y P * * 
where we have used (A,B) E tr A B = tr(BA ). 
(4.18), yields 

Furthermore, using (4.14) in 

tron (4.4b). Consequently, using (4.19) in (4.17), we obtain 

(4.19) 

(4.20 

where a = (r ) and we have used (4.13b). p - ‘min p 

Also ,  using (4.13a), we have 

2 In other words, f,(C) E [l + Xmin (r I )I5 
aboge satisfies the hypotheses of Lemma 1 and the desired result is obtained. 3 

which is of class I$. Therefore, the 
* 

Note that the use of a proportional adaptive gair (4.4b) produced the second 
term in (4.20) ; however, this term is not essential and the above argument 
could be shplified by omitting (4.4b) from the edaptive gain laws. 

The hypotheses (a) and (b) correspond t o  the Kalman - Yakubovich conditions 
in infinite-dimeqsional spaces. 
(Av, v) 2 w l  Ivl I 
(A,B ,Chould be equivalent to satisfaction of hypotheses (2) ; hovever, there 
would be no guarantee that ? and 0 could be found in (4.12). such that (4.14) 
could be obtaineG. In finite-dimensional spaces, the Kalplan - Yakubovich 
conditions are equivalent to the strict positive realness of the transfer 

function Tc(s) = C(sI-Ac) 
115-118. 
relationship in infinite-dimensional spaces. For example, [17] asserts that 
ReTc(jW) must be coercive,which would be quice a bit stronger than what is 
required in finite-dimensions. 
gat ion. 

F’rom [13] Theo. 4.7, if for some real w ,  
for all v in D(A), then exponential output stabilization of 

-1 B, i.e. Re Tc(jo) > 0 fcr all real w; see [14] pp. 
A r.uulber of papers, e.g. [lS] - [17], have been kitten on this 

This is an area rhat requires further investi- 

As pointed out in [9], we cannot immediately conclude asymptotic stability 
from (4.20) since it does not satisfy the hypotheses of Lemma 2. In finlte- 
dimensional space, we could apply the LaSalle Invariance Pxinciple to obtain 
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asymptotic s t a b i l i t y  as  is done i n  161; however, i n  i n f in i t ed imens iona l  spaces,  
i t  is not the case tha t  "bounded sets are prec-act" and t h i s  is e s s e n t i a l  f o r  
the LaSalle r e s u l t .  

The following r e s u l t  ([I31 Theo. 5.4 p. 188) may be helpful :  

Lema 3: L e t  i n  (4.6) generate  the l i n e a r  Co-semigroup E,(t) on and F 
is any-bounded, continuous funct ion such t h a t  (4.6) generates  a nonlinear semi- 
group U ( t )  on H (as given i n  i 4 . 8 ) ) ,  then a l l  bounded o r b i t s  ~7f (4.6) are pre- 
compact i f  e i t h e r  

(a) U ( t )  is rompact operator  f o r  al l  t 0 

C -- - 

- 
C 

or 
- 

(b) U (t)  is exponentially s t a b l e  and the  funct ion 

bounded sets i n t o  recaapact ones) 

i s  campact (i.e. maps 
C 

PA 
Due t o  the  form of lo' ] , i t  is not poss ib le  to  s a t i s f y  (b); however, 

( a )  may be s a t i s f i e d ,  f o r  example by operators  A which generate holomorphic 
semigroups. This latter is determined by the  form of damping operator i n  a 
f l ex ib l e  s t ruc ture .  Again, t h i s  is a top ic  f o r  f u r t h e r  inves t igs t ion .  An 
a l t e r n a t i v e  adaptive gain l a w :  

C 

(4.21) i , ( t )v  = -I' -1 (e (r ,v)  + KI(t)v) 
Y 

y ie lds :  

which does not qu i t e  give asymptotic s t a b t l i t y  but  might be modified t o  do so. 

5. CONCLUSIONS 

In t h i s  paper, we have presented a d i r e c t  adaptive con t ro l l e r  f o r  l i n e a r  
d i s t r ibu ted  parameter systems (DPS) described on inf ini te-dimeneional  Hi lber t  
spaces. The con t ro l l e r  is based on a caasand generator  t racker  approach used 
i n  f ini te-dimecsional  spaces, e.g. [ 6 ]  where it is shown to  be asymptotically 
s tab le .  We have shown here t h a t ,  under c e r t a i n  conditione on the open-loop 
loop DPS, i dea l  t r a j e c t o r i e s  do exist and the  adaptive cod t ro l l e r  is s t ab le ,  
i.e. the output and gain e r r o r s  remain bounded. 
A i n  (2.1) generates  a holomorphic Co-semigror;p is h p o s e d ,  then w e  can a l s o  
conclude asymptotic s t a b i l i t y  which guarantees asymptotic t racking o r  node1 
following. 

I f  the  f u r t h e r  condi t ion t h a t  

A number of i s sues  have been opened f o r  f u r t h e r  invest igat ion:  

(1) use of dynamic ra ther  than output feedback s t ab i l i za t ion ;  
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generation of asymptotic ideal trajectories by the open-loop DPS; 

connections between the Kalman-Yakubovich conditions and the input- 
output description of the 93s; 

development of altermtive adaptive gain laws which produce asymptotic 
stability of the closed-loop system; 

exploration of reasmable conditions under which taSalle's Invariance 
Principle can be used to determine asymptotic sta5flity of the closed- 
loop system. 
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