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ABSTRACT

The paper discusses several concepts and results in robust adaptive control
and is organized in three parts. The first pa.. "nr.eys existing algorithms,
Different formulations of the problem and theoretical solutions that have been
suggested are reviewed here. The second part contains new results related to the
role of persistent excitation in robust adaptive systems and the use of hybrid
control to improve robustness. In the third part promising new areas for future
researcn are suggested which combine different approaches currently known.

1. INTRODUCTICN

The stable adaptive control of linear time invarfant plants, in what 1is now
termed "the ideal case", was resolved in 1980 [1-4]. The assumptions made in
[1-4] regarding the plant to prove global stability are quite stringent. Specifi-
cally, knowledge of the sign of the high frequency gain K_, the relative degree
n* and an upper bound n on the order cf the plant transfeg function are assumed
to be known. Further it is assumed that the zeros of the plant transfer function
lie in the left half plane, the plant parameters are constant (though unknown) and
the system is disturbance free. However, in practice, these assumptions are rare-
ly met. No actual plant is truly linear, finite dimensional or noise free., Fur-
ther, in practical situations, the rationale for using adaptive control is to com-
pensa“e for large variations in plant parameters. In the presence of such devia-
tions from ideal conditions, the algorithms suggested in [l-4] no longer assure
the boundedness of the signals in the adaptive loop. This accounts for the wide
interest in the past few years in what is termed robust adaptive control to
achieve satisfactory performance in the prese ce of both mrdeling and operating
uncertainties. This japer attempts to survey some of the modest gains that have
been made in this direction, presents some new results for improving robustness
and discusses promising directions for future research.

Adaptive systems are special classes of nonlinear systems and many questions
which arise in such systems can be stated as problems in the stability theory of
differential equations. In particular, questions of robustness can be addressed
using amply discussed results cn practical stability and total stability, Since
such results are bound to find increased application in adaptive systems, some of
the more frequently used concepts, definitions and theorems are collected in
gection 2,

Recent years have witnessed many contributions to the robustness problem,
Among these some assume additional prior information regarding the ur :rtainties
to suitably mediry the adaptive algorithms [5~9 ] while ctheis ass  that the
reference inpute possess propertiec which make the ideal system e ,onentially
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stable. 1In all cases it is shown that boundedness of solutions is assured when
the true situation deviates in specific ways from the ideal., Some of these ana-
lytical results which are currently known are presented in section 3.

Sections 4 and 5 contain some new results on persistent excitation and hy-
brid auaptive control which are relevant to the problem of robustness. In sec-
tion 4 a nonlinear error equation of second oruer is discussed in detail. While
the ideal system is uniformly asymptotically stable it is showa that unbounded
solutions can result if the disturbance is sufficiently large. It is also shown
that by increasinp the depree of persistent excitation of the reference input the
overall system can be made practically stable. Section 5 discusses hybrid con-
trol algorithms recently introduced by the authors [10]. The same algorithms can
also be modified to adaptively control discret: plants by updating control param-
eters infrequently. Some plausible arguments are given towards the end of the
section as to why such algorithms -ay be more robust than continuous algorithms
when external bounded disturbances are present.

Finally, in section 6, possible vays of coﬁbining known methods are discussed
in the hope that it will stimulate research in these new directions., While no

hard results exist in these areas the suggestions are based on extensive simula-
tion studies.

2. MATHEMATICAL PRELIMINARIES AND STABILITY RESULTS

Some well known concepts and results of stability theory which find frequent
application in the analysis of adaptive systems are included in this section.
Waile they can be readily found in any good text [11-13] we present them here for
easy reference as well as to place some of the problems discussed .in the follow-
ing sections in proper perspective. We start with the definicions of uniform
asymptotic and exponential stability of the solution x = 0 of an equation
% = f(x,t), £(0,t) = 0. We assume that f is continuous and satisfies conditions
which guarantee the existence and uniqueness of solutions and continuity of their
dependence on the initial conditions, The general solution of vhe differential
equation is denoted as p(t,xo,to) with p(to,xo,to) = Xge

(i) Definition (Uniform Asymptotic Stability): The equilibrium x = O of the
differential equation % = f(x,t) i3 uniformly asymptotically stable if it is uni-
formly stable and for some € > 0 and all €, > 0 there is a T(el.ez) > 0 such that

""o <« implies || p(t,x,,ts) Il < e, for all t 3 t, 4 T.

.(ii) Definition (Exponential Stability): The equilibrinm state of the equation
x = f(x,t) is exponentially stable 1f two positive constants a and B which are
independent of the initial values gx%sf such that for sut lently small initial

-a(E=~ .
va1ues,|lp(t,x0,to)||< Bllx0||e 0,

A linear time-invariant system with f(x,t) = Ax where A is a constant matrix
is asymptotically stable if the eigenvalue. of A are in the open left F .1f of the
complex plane. Asymptotic, uniform asymptotic and exponential stabiiity are
equivalent in this case. For linear time-varying .ystems, asymptotic stability
does not imply uniform asymptotic stability whereas the latter is equivaleut to
exponential stability. For linear systems, all stability properties hold in the
large. 1In general, for nonlinear systems exponentfal stability implies uniform
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asymptotic stability but not vice versa, If f(x,t) is autonomous or periodic in
t,all stability properties are uniform,

In robust adaptive control we are interested in deducing *he properties of
the solutions of a perturbed system (S ) from the tehavior of the solutions of an
unperturbed system (S). These are desBribed by the differential equations

& o= f(x,t) () ; x * £(x,t) + g(x,t) (sp) (1)

Let the equilibrium state of (S) be exponentially stable, If"g(x,t)“ < L" x'l
for sufficiently small b and G,andllx “< §,then the equilibrium stav~ of (S ) 1is
also exponentially stable [11]). In physical situations the condition g(O,tg = 0

required above is not generally met and this gives rise to the concept of total
stability,

(iii) Definition (Total Stability) {*1}: The equilibrium state x = 0 of (S) is
totally stable if for every ¢ > 0 two positive numbers Gl(e) and 62(3) exist such

that every solution p(t,x_,t.) of (S ) satisfiesl'p(t,x st )“ < g, t 3t provided
0, 0 P 0’0 0
||x0" < 61 and f} g(x,t) < 62. .

In the Russian literature this is also referred to as stability under per-~
sistent disturbances. The uniform asymptotic stability of the u-,erturbed system
implies total stability {11] and is frequently used to prove robustness of adap-
tive systems in the presence of sufficiently small perturbations. Recently the
magnitude constraint on gx.l| in the definition of total stability has been velaxed
by Anderson and Johnstone ?8] at the expense of stronger conditions on f(x,t).

In practical s stems we are interested in the uniform boundedness of the asolu-
tioas in the presence of perturbatfons as well as in the magnitides of this bound.
This leads to the concept of practical stability def.ned below.

(iv) Definition (Practical Stability) [12]: Let Q0 = {xlllxﬂ < 61} be open
set in R° and 52 > 0 a constant sugk that]]g(x,t)}} < 5, for all x and ¢ 2 tye
If the solutions of (Sp) lie witkin a closeld bounded set Q :)Qo for X € Qo then
the system (S) is said to be practi..lly stable,

Total stability assures the existence of Q0 and 62 relative to which the sys-

tem (S) is oractically stable but provides no way of estimating the size of Q, or
the magnitude of 62. In adaptive control applications this is not adequate. One

is more interested in determining an estimate of Q from a knowledgu of 52.
An alternacive method for treuating the effect of pertur. tions is by consid-

ering them as bounded independent functions of time. This leads to the w L1 known
concept of bounded input - bounded output (BIBO) stability,

(v) Definition (BIBO Stability): A system X = f(x,u,t) with {(*,0,t) = 0 is
BIBO stable if for every a > 0 and every a 3 O ther: is a 3 = R(a,a) such that
leu(r,xo,to)" < B8 for ail © 3 ty for every initial condition (xo,tc) with

“,h'ls o and sgpl]u(t)'is a, where pu(b,xo,to) is tne solution of the system with
i u(e).
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A lineacr system x = A(t)« + b(t)u 18 L'80 stable if rhe homogeneocus part is
unif<rmly asymptotically stable, This is a pruperty which is frequently used i:
robust adaptive control using the concept of per-istent excitatior. In contrast
to the above, uniform asymptotic stability of a nonlinear system does not imply
BIBO stabilitv. An example of this was given by Deso=r et al [14]). A similar

situi.tior arises in the discussion of robustness of a second order nonlinear sye~
tem in section 4,

Stability Problems in Adaptive Syste is: The study of the stability or adaptive
systems (2s shown In (he fullowing sactions) can be convenieatly carried out usiig
a set of nonlinear time-varying error differential equations. Even in the "id-al"
or disturbance free case the time-variatinns arise due to the presence of the
reference input r(+). The foilowing are some noteworthy features of many of the
stability questions which arise in adapt e systems.

(i) 1In the !deal case, a Lyapunov function V > 0 with & « J can be found. The
regative semi-definiteness of ¥ cannot he avoided and is a resu'. cr th2 adap-ive
law used. )

(ii) ~t a result of (1) even the unforced (autonomous) ~ <em is uniformly sta-
ble. Even when tne reference input is persistently exciring, ' £ 0 buu the system
can be shown to be uniformly asymptotically stable [15]. We note that LaSalle's
theorem cannot be directly applied to prove this since the system is nonautonomous.

(i1i) Since the system is exponentially sta. ‘e with a persistently exciting ref-
erence irput, Malkin's theorem can be used to conclude that the solutions will be
bounded for some initial set Q0 and perturbation of magnitucde g 62. However, wvery
little can be said directly about either Qo or 62.

(iv) Aaother cc .sequence of the semidefiniteness of V is that assuring even tha
boundedness of solutions vsing Lyapunov's Direct method for givem bounus on per-
turbations is nc longer trivial., Sowe of these cases are consiaered in section 3.
In section 4 it is shown that even v =n the reference inpu. is persistentiy excit-
ing, if the disturbance 1s 1-cge the :32lutions can be unbounded. Alternately, for
a given bound on the disturbance the persistent excitation czn te made sufficient-
ly large to assure the boundedness of the solutions.

3. GJECENT RESULTS IN ADAPTIVE CONTROL

In this secti. n we attempt to survey briefly some oi. the theoretical results
currently known ir the area of robust adaptive control. The aim of the sectiun ias
to provide an understanding of the qualitative idea: that lcd to these resurts a1
well as the analy .ical tools used in deri:’'ng them. Since the idecal system rcrms
the starting point of all perturbation a.:.lyses, we shall .briefly outline the
statement of the vroblem and tne proof of stability in chis case. Further, whiie
several stable adaptive algori.ams have been suggested in the literature, we shall
discuss the proof of stability using only 2 alg.rithm proposed in [16]. The
proofs using all the other algorithms follow along similar Iiues.

a) Idesl System: The plant to be contro.led is described by tue a*atc equsticos
° i
= AX +bu ; = c (2)
TR T P T % p
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and a reference mod2l is described by

° T
= + . = -
X, = AXp bt 5oy = X 3)
where %x_, u and y_ are rz2spectively the state input and output of the plant and
X, ane “y, - are the state anu outjut of the model. The transfer functions of

the plant and mcdel are

X2 (s)
= T - -1 = 2...?.._ . = T -1 = &l
W (s) = c "(sI-A) b, Py 5 w8 = (sI;AD) by R_(s)

o
The following assumptions a:- r ;e regarding Hp(s) and Wm(s)

(i) Zp(s), Rp(s) and & ~) are moric polynom: s of degrees m, n and n*=n-m
(ii) ZD(s) and Rm(s) ar.. . tric.ly stable polynomials
and (iii) r is a piecewise cantinuous un1;orﬁly bounded reference input,

The objective is to COXtTJl the planc in such a fashion that the output error
between plant and model e, =v, -y, tonds to zero asymptotically, while the sig~

Py

nals and parameters of the system remain uniformly bounded. It is now well known
that knowledge of the c¢xact relative degree n* of the plant, an upper bound n on
its order, the s51gn of the gain Kp and the condition that Zp(s) be Hurwitz as

given in ,iil) are needed to solve *he problem. n* enables the model to be con-
structed while the value of n det..mines the order of the controller to be used.

The sign of K and the constraint on Z (s) are necded to prove the stability of
the overall s?stem. P

Structure of Controller: In the following we shall assume that K_ is known and
Kp = Km = ], To meet the control objective a controller describell by the follow-
ing equations is used:

o) | gD

+ gu &(2) = Fw(Z) + gyp ; u= 6Tw +r 4)

where F is an asymptotically stable nxn matrix, (F,g) is controllable,

T, @7

w = [w s ] and 6(t) is a Zn dimensional parameter vector which is to be
adjusted adaptively. It is well known [17] that a unique constant vector 6%
exists such that the transfer function of the plant together with the controller
matches that of the model exactly, when 8(t) = 6%, The aim of the adaptive law

is to adjust 6(t) in such a merner that the overall system is globally stable and
lim el(t) = 0, '

£

While several aspecial cases of the adaptive control problem have been con-
sidered, we discuss below the general case when W_{s) has a relative degree

n* > 2, If 6(t) - o% 4 ¢(t), then ¢ is the parameter errnr vector and the output
of the plant can be expressed as

y (6 = V() [x(e) + ¢7(D)u(t)] (5)
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The Adaptive Scheme: To generate the adaptive law an auxiliary error signal Yo (t)
is added to e (t) to generate an augmented error € (t). if

v, (B 2 o (W ()T ~ Hm(S)6 (t) Ju(t) (6)

then
T (DT(E) = e (1) +y (£) = € (t) )

where Hm(s)lw = L. The adaptive law for updating 6(t) then depends on the aug-
mented “error € (t) and the signal z7(t) and is given by
= £ (6)z(r)
o(t) = 8(r) = -——~———-——-— (8)
1+¢ (t)C(t)
fhis has been shown to result in global stability of the adaptive loop [16].

T
Proof of Global Stability: 1If V(¢) = 1/2 ¢ ¢, the adaptive law (8) yields

¢, ()

T
1+ 7 (t)g(e)
from which it follows that

V(¢) =

(i) ¢ and 6 are uniformly bounded
(i1) ¢ ¢ L2 9)
and (111) e (6) = w1 + ¢ @1, v e 1

Since the complete proof is too long and involved to be included here in its
entirety we merely outline the principal steps involved.

(a) Since the parameter vector is bounded by (i) it is first shown that

sup|y (T)| 4" sup“w( )(T)ll n sup “m(‘r)" " sup “C(T)u (10)
Tt £t

Here v is an equivalence relation and 1nplies that the corresponding signals in
(10) grow at the same rate [i8].

(b) - Since $ € L2 it can be shown that Yo (t) grows at a slower rate than

sup lw(t)u denoted by Yq (t) = of[sup Ju(x) B 1. (11
&t st
(¢c) From (5), (9-1i1) and (11) it follows that
e, = ¥ ¢Tw = v[l + ;Tclllz + ofsup JJu(D)|f ] (12)
TSt

(d) Since v ¢ L using equation (4) we conclude that
sup||w( )(T)|| = o sup ||w(r)|| which contradicts (10).
T8t Tst
Hence all the signals in the system are uniforamly bounded and lim el(t) = 0,

L+

180



The importance of demonstrating the boundedness of ¢(t) and $ € L2 in the
proof of stability is worth noting. [In some cases it may be possible to show
that lim ¢(t) = 0, which serves the same purpose.] The former assures that the

£
relevant signals in (10) grow at the same rate while the latter is used to prove
that |yp(t) andllmz(t)" should grow at different rates if the adaptive control

is used, leading to a contradiction.

Asymptotic Stability of the Ideal System: Once the boundedness of all the signals
in the adaptive system has been established, interest shifts to the convergence
of the parcueter vector 6(t) to its desired value 6% or equivalently of ¢(t) to
the null vector. Since the adaptive law (8) can be represented as

&(t) - — C(t)CT(t)
1 + zT(t)z(t)

the conditions that have to be imposed on [(t)-to accomplish this is of interest,
Following the results of Morgan and Narendra [19] if g(t) is persistent-

#(t) (13)

T
Y1 + ¢ (t)g(t)
ly exciting 1lim ¢(t) = 0 and the convergence is exponential. Since Wm(s)Im = 7,
to

a sufficient condition for z(+) to be persistently exciting is that w(e) is per-
sistently exciting [15]. Hence conditions under which w(e) will be persistently
exciting have been investigated by several authors [15,20-22].

Persistent Excitation (PE) of w(t) and w*(t): Early results on the convergence of
the parameter vector to the null vector were stated in terms of the PE of w(t).
However since w(t) is a dependent variable within the adaptive loop, very little
can be said directly about its persistent excitatjon., Hence attempts were made to
express this condition in terms of the PE of signals in the model which are at the
discretion of the designer. Since the adaptive system and model transfer functions
are identical when 6(t) = 6*, the model can be parametrized in such a fashion that
a signal w* in it would correspond to the signal w(t) in the adaptive loop. Fur-
ther since the model 1s time 1nv%rianx, conditions on r(t) which would assure the
P of w*(t) can be derived. If w(t) 2 u(t) - w*(t), the adaptive law assures that
lim w(t) = 0, Hence, in the ideal case the PE of w*(t) ensures the PE of w(t)

[

and hence the convergence of the parameter vector 8(t) to its true value.

Ccaments:

(1) The abuve arguments have focussed attention on several interesting ques-

tions related to persistent excitation and transformations-under which the proper-
ty is preserved [15].

(11) The convergence of X{t) to 0 1s used above to show the PE of w(t) and hence
the convergence of ¢(t) to O, This ie no longer possible when an external dis-

turbance is present since even the boundedness of the signals is not assured in
such a case,

(i11) From the results of several authors it is now known that an almost periodic
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reference input with n-distinct frequencies results in the PE of w(t).

b) Adaptation Under Perturbations: The adaptive control system described in sec-
tion (3a) assumed ideal conditions. The plant was linear and time-invariant and
no external disturbances were present. In addition, considerable prior knowledge
of plant transfer characteristics was assumed to help in setting up a reference
model and deriving stable adaptive laws. As mentioned earlier, plants are rarely
strictly linear or finite dimensional and in many practical situations the need
for adaptive control arises due to large parameter variations, Also, external in-
put and output disturbances are invariably present in real systems. Hence there
is a definite need to extend the theory developed for the ideal case to situations
with modeling errors and external disturbances., Some of the schemes that have
been proposed in recent years to achieve robustness in the presence of such per—

turbations are briefly reviewed in this section and some new results are reported
in sections 4 and 5.

The basic adaptive system in the ideal case is only uniformly stable. This
implies that bounded perturbations can theoretically produce unbounded outputs.
When the reference input is persistently exciting, the nonlinear system is uni-
formly asymptotically stable in the large and exponentially stable when the ini-
tial state x, lies in a finite ball around the origin. The latter fact allows
BIBO results to be derived using theorems cf the type described by Malkin, pro-
vided the perturbations are sufficiently small., However, as pointed out in sec-
tion 2, very little can be said using such an approach about the effect of bounded
perturbations of a specified maximum amplitude on the global behavior of the solu-
tions of the adaptive system, In addition to such perturbation methods a few
global wethods have also been used to derive results in robust adaptive systems.
The principal concepts involved in deriving some of these are discussed below.

(1) Use of Dead-Zone {5]: The problem statement is similar to that given for the

ideal system with the exception that yp = cpTxp + vy where vy is a bounded dis-

turbance., Using the same adaptive law (8) as in the ideal case, the error equa-
tions can be expressed as

$T(D)Z(E) + v(t) = e(t) (14)
and

* =Te(t t

jo) - L@@
1+ z (£)rg(t)
where v is an equivalent output disturbance due to vl. The difficulty arises due

to the presence of v(t) in (14). When sgn[¢T; + v] = sgn[¢Tc] the adaptation is
in the right direction. Otherwise the parameter vector may be adjusted away from
its desired value, This implies that problems of convergence may arise when e(t)
is of the order of the vound v, of v(t). The modification in the algorithm sug-
gested in [5] is to use a dead-zone so that the adaptive parameters are not ad-
justed when €(t) lies inside it. Hence the overall system operates in two modes--
a linear time~invariant mode when |e(t)| g v, + § (for some constant § > 0) and
an adaptive mode otherwise. In 5] it is shgwn that such an algorithm results in
a system with bounded signals, Further, adaptation takes place for only a finite
time, This implies that in practice the system will converge to a linear time-
invariant system in a finite time after which the output error will lie entirely
in the dead-zone and hence adaptation ceases entirely.

(adaptive law)
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(i1) Bound onfe*ll : An alternate approach to the bounded disturbance problem

was taken by Kreisselmeier and Narendra [6]. While the statement of the problem
as well as the structure of the controller are identical to that in (i), it is
assumed that no knowledge of a bound on the disturbance is available, Instead,
it is assumed that the desired vector §* has a norm less than a specified value
"e*llmax° Hence the search procedure can be confined essentially to the set

S:{sl Hell 5" e*||max}. The adaptive law used to update §(t) is identical to that

in the ideal case when 6 lies in the interior of S and is modified when it reaches
the boundary of S, or lies outside it., In [6] it is shown that such a scheme re-
sults in the boundedness of all signals in the system.

Apart from the obvious differences between the schemes suggested in [5] and
[6], there are mathematical diiferences in the proof that are worth stressing.
As in [1-4], the proofs of stability in [5] use limiting arguments as t + = to
show that ¢ ¢ L2. Such a procedure cannot be used in [6], since ¢(t) does not
tend to any limit as t + =, Hence all arguments are based on the analysis of the
behavior of the systen over a finite interval. As shown in sectlon 6 the approach-
es in {5] and [6] complement each other and can be . ombined to have wider applica-
tion in adaptive systems in the future,

(iii) The og-modification Scheme: In approaches (i) and (ii) certain prior infor-
mation is assumed to implement the adaptive laws. In contrast to this, a scheme
suggested by loannou and Kokotovic [7] assures boundedness of all signals in the
system, without any assvmptions regarding the bounds on either the disturbance or
the control parameters, However, to the authors' knowledge, the method has been
shown to result in global boundedness only for the special case when the refer-
ence model is strictly positive real.

The method is based on the following simple ideas., If V(e,¢) is a quadratic
Lyapunov function candidate, the time derivative V(e,¢), along a trajectory, is
generally a quadratic fugction of e and hence is negat}ve sem*definite. When_a
disturbance is yresent, V(e,¢) has the general form -e Qe + e av, where Q = Q > 0,
a is a constant vector and v is a bounded disturbance. Very little can be con-
c¢l.1ed regarding stability from this and accounts for the modifications suggested
in [5] and [6]. Jn {7), an additional term —¢6 is used in the adaptive law, as a
result of which V(e,$) becomes negative definite outside a bounded region in the

(e,¢) space. From this it is concluded that all signals in the system are bound-
ed.

(iv) Adaptive Systems and Time-Varying Plants: The methods outlined in sections
3b(1-11i) deal with the global behavior of the adaptive systems when bounded per-
turbations are present. In contrast to this Anderson and Johnstone [ 8] examine
adaptive control problems where the assumptions made regarding the system deviate
slightly from the idesl. While [ 8] addresses primarily the problem of time-
varying plant parameters the authors claim that the same methods with remarkably
little change allow examination of the effect of measurement noise, plant nonlin-
earity and undermodelling of the plant order.

As 1in our discussions in section (3a), the authors first consider the ideal
system and demonstrate uniform or exponential stability in the presence of per-
sistent excitation., For the various types of perturbations considered,their aim
is then to show that the resulting equations can be cast in such a form that the
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total §tability of the overall system can be demonstrated using modifications of
Malkin's theorems. [ wever, as mentioned earlier, the theorems are useful primar-

ily for establishing the existence of robustness in the presence of sufficiently
small perturbations rather than for providing guidance in the choice of the con-

trol input to assur: boundedness of solutions when the class of perturbations is
specified.

4. PERSISTENT EXCITATION AND ROBUSTNESS

In the last section, we discussed two approaches of studying the robustness
problem in adaptive systems, The approach in 3-d assumed that the perturbations
were sufficiently small and derived BIBO results local in nature, using Malkin's
theorem, whereas in 3a-3c the approach was global in nature and used additional
information regarding plant dynamics and the external perturbations. Also, the

first approach made use of the PE of the reference input which was not needed in
the second.

In this sectlon, we present some new results which demonstrate global bound-
edness of all signals in the adaptive system in the presence of bounded disturb-
ances’ when the reference input is sufficiently persistently exciting. We show
that by analyzing a set of nonlinear error differential equations, we can estab-
lish the global robustness behavior of the adaptive systems. In particular, it is
shown that if the persistent excitation of the model output is larger than the
disturbance, the solutions will be globally bounded and that if the maximum ampli-
tude of the disturbance is greater thar that of the model output, the system can
have unbounded solutions. The basic idea is stated here by considering the adap-
tive control of a first order plant and studying the corresponding second order
nonlinear differential equations in detail. The same methodology is
applicable to the general adaptive control probl:am,

Nonlinear Error Equations: The plant to be adaptively controlled, the correspond~
ing reference model and the resulting error equations are as follows:

.

Plant: = a +u+v; u=60y +r
n yp py P ’ yp
Model: § = -y +7r
.m m (15)
: = - +
Error Equations e el + ¢yp v
Adaptive Law: & = —elyp

where r is the refergnce input, v i8 a bounded input disturbance, e, 1s the output
error defined as e1 = yp - Yp and ¢ is the parameter error. In the ideal case,

when v(t) = 0, by considering

e. (t) = —e_(t) + ¢(t)y (t)
1o K (16)
p(t) = -el(t)yp(t)

it immediately follows that the system is uniformly stable and if y (t) is per-
sistently exciting, the system is exponentially stable. When a P 4isturbance
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v(t) is present, it is tempting to proceed as in the ideal case and require y_(t)
in (15) to be persistently exciting so that the unperturbed system is expo-
nentially stable resulting in a bounded error vector for bounded perturbations.
Since stability of the overall system has not been established, y (t) cannot be
assumed to be bounded and proving that it is PE becomes specious.' Hence we have
to express the right hand side of (15) in terms of the model output y (t) which

is an independent variable rather than the dependent variable y (v). ™his results
in the following nonlinear error differential equations:

e, (1) = -e,(£) + ¢(B)y_(£) + ¢(t)e (V) + v

. 2 (17
o(t) = -e,(t)y (t) - e, (t)

By analyzing the above nonlinear differential equation, we demonstrate the global
behavior of the adaptive system in the presence of v(t).

The Ideal ‘ystem: In the absence of external: perturbations, the nonlinear system

e, (1) = e, (£) + ¢(t)y_(£) + d(t)e, (t)

o(t) = e, (t)y () - e, "(£)

can be shown to be uniformly asymptotically stable in the large as follows: If

W(e s9) =-l [e 2 + ¢2], the time-derivative W[e1,¢] = --el2 < 0. Hence the system

e, (t) and ¢(t) are uniformly bounded for all t > to, if W[el(to).¢(t0)] < »,
Since e, ¢ L and e1 is bounded, 1im el(t) = 0. The nonlinear vector [¢el,-e12]T

can be considered to be the inputtz: the linear part which is exponentially stable
if ym(t) is PE. As e 0 as t + =, this input tends to zero and hence x(t) - O

as t + = where x 2 [e1,¢]T. Since all the arguments are independent of the init~
ial time t and the magnitude of the initial conditions, the system is u.a.s.l.
It is also worth noting that when ym(t) is PE, the linear part of (18) is expo-

nentially stable but the nonlinear system is exponentially stable only when the

initial state x(t.) lies in a finite ball around the origin and not globally ex-
ponentially stablg

Perturbed System: To provide some insight into the behavior of the nonlinear sys-

tem, we shall discuss three cases where the perturbed nonlinear system (17) is
autonomous,

Case (1) Ym (t) = 0: When v(t) = 0, the system is uniformly stable., If v(t) = max
1im ¢{t) = ~» and lim e (t) = (,

£ o

Case (ii) ym(t) = Yoax® The unforced system in this case is autonomous and, by

LaSalle's theorem, is u.a.s.l, since the largest invariant set in E = {x]el2 = 0}
is the origin. However, since the system 18 nonlinear, it no longer follows that

a bounded input will result in a bounded output. If, for example, v(t) = ~v

max’
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where Voax  Ymax® ¥€ can show that lim el(t) = “Ypax and lim ¢(t) = -=,

t-ro 0
Case (iii) ym(t) z Ymax*Ymax > Vmax' The system is Lagraege stable. When
v(t) = “Voax® the system has an equilibrium state at (O, max ) which is
max
u.a.s.,1l. Similarly when v(t) = Viax® the system has an equilibrium state at
ma;
0, - 7).
max

The above special cases reveal that the behavior of the nonlinear system is
very much dependent on Y max and Viax® In particular, when ym(t) = Y max and

v(t) = =-v__, the system has unbounded solutions when v >y and all solu-

tions are “bounded when Y pax >v__ ., The results also carry over to the general

case when both v(t) and y (t) are time-varying and are stated in the following
main theorem of the paper? (Fig. 1)

1: < . -
Theorem 1:Let |ym(t)| S Voax® Iv(t)| 2 Voax and ym(t) be a smooth persistently ex

citing signal in the sense described in [23]. This implies that positive numbers
TO’EO and 60 exist such that given any t. > 0, there exists a t, € [tl,t + TO],

2
1 t,+§
s 1
with [t + 0](: [t)st) + T,l and T I t2 Oym(r)drl > €5 Then

(a) 1If Ymax < Voax® by choosing an input v(t) as

1
2%

v(t) = -sgr.(ym(t))vmax when lel(t)l > Yoax

= sgnley (B))v, Iel(t)l < Ymax

where sgn(a(t)) s T;%é%% when a(t) # 0 and is equal to unity when a(t) = 0, there

exist initial conditions for which 1lim ¢(t) = -« and el(t) approaches asymptotic-

o~
ally the region |el| < ymax + €, where € 18 an arbitrary positive constant.

(b) 1If €0 > Vmax + 8 where 6 is any arbitrary positive constant, then all the
solutions of the differential equation (17) are bounded,

Prooif;

a) Let D, be the open domain enclosed by the line e, = ~v and the curve
e1 + v 1 max

1 max _

$ ;;_:7;;;; with ¢ < 0. When ym(t) 2 Yoax and v(t), Vax all solutions
that start on the boundary a(Dl) enter Dl' Since the system is autonomous and
contains no singularities in D.,all solutions originating D, are unbounded and

1 1
lim ¢(t) = -», lim e, (t) = -y .
1 max

oo Lty

For a time-varying signal y (t) the proof of unboundedness is related to the
above autonomous case. Consider™the solution of the differential equation with
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-V
initial condition (0 ith ~ax = -

( ,¢0) w ¢0 < Y oan » wWith ym(t) Y max and v(t) Voax’
Let T', denote the open curve along which the trajectory lies for all t 3 0., Simi-

larly let TI'_ denote the curve along which the solution lies for all t 3 0 when
v(t) = Vinax and y(t) = Y pax® Let F(¢0) = h+(] r_. F(¢o) divides the plane into

two open regions D2 and DZc where (0,¢) ¢ D2 if ¢ < ¢0. Then all solutions of the
differential equation with Iym(t)l S Ymax and ]v(t)l A with initial conditions
on F(¢0) lie either in r(¢0) or enter D2' Since this is true for every ¢0, the

"

solutions are unbounded and lim ¢(t) = -,
A T Lo 2
b) Let x = [e,,0]. Let D denote the region in R" D#{x||e;| < v} and let

c

D~ denote the complement of D. If W(x) = 1/2 xTx, the time derivative of W along
a trajectory is ﬁ(x) = --el2 + ev < 0 for x ¢ D°. Hencellxlldecreases in D¢ and
can increase only in D, We wish to show that -a constant ¢ exists so that if

“x(tO)“ = ¢, > c over an interval [to,to + TO], thenllx(to + To)u < ey

1f "x(toxl = 4o integrating the equation for él in (17) 41t gan be shown that
if x(to) e D, then x(tl) e D° for some t

2{T + 1]
(eo-vmax)T

max
1 € [to,t0 + To] if o > S1a0 ° where

cot 6 = + Hence under the conditions specified in the theorem, the

trajectory invariably enters p¢ during every period To. By increasingl'x(to)“

monsconilally, the trajectory can be made to lie in a subdomain of D¢ for a finite
time A with 0 < A < §, over every period. Sincellx(t)l decays exponentially in
this subdomain, a constant c > c0 exists satisfying the conditions of the theorem,

Comments:1,The positive limit set of any solution x(t) lies in D,

2, €, will be referred to as the degree of persistent excitation. By the theorenm,

the solutions are bounded if €0 > Vnax but the nature of the limit set depends on
TO’ €. and §_,

0 0
3. From the theorem it follows that for a given bound Voax °0 the perturbations,
the system can be made robust by increasing the degree of persistent excita-
tion. Note that this is an example of practical stability.

4, The conditions for boundedness and unboundedness of solutions are given in
this case in terms of y (t)., For design purposes it is more appropriarc to ex-
press them in terms of ™ the reference input r(t).

%. HYBRID ADAPTIVE CONTROL
In continuous adaptive systems of the type described in the previous sections,
the plant operates in continuous time and the controller parameters are adjusted

continuously. Recent advances in microprocessor and related digital computer tech-
nology favor the use of discrete systems in which signals are defined at discrete
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instants. Practical systems on the other hand may contain both discrete and con-
tinuous elements. Such systems may be described as hybrid systems. In a recent
report [10] the authors have developed analytical models of hybrid ystems in
which control parameters are adjusted in discrete time even as the continuous
plant signals are processed in real time. The same algorithms can also be extend-
ed to control disciete time plants so that the overall discrete system operates

on two time scales -~ a fast time scale in which the system operates and a slow

time scale in which the control parameters are updited, We shall refer to such a
system as a discrete hybrid system,

In this section we describe briefly one of the hybrid adaptive algorithms and
demonstrate global stability in the ideal case of an adaptive system which uses
such an algorithm. The behavior of a discrete hybrid system is then discussed
when bounded external disturbances are present. Using the results of the previous
sectior, arguments are put forward as to why hybrid schemes should result in more

rcbust systems and simulation results are presented to show that this is indeed
the case.

a) Hybrid Error Model: 1In this section we consider the first of several hybrid
error medels giver: in [10] and discuss its properties., Similar results can also
be derived in all the other cases. The error model is described by the equation -

T
o u(t) = el(t) t e [tk’tk+1)’ k e N (19)
where u: nl+ +|Rm, e, : m+ —>[R1 are plecewise continuous fur:tions which are refer-
red to as the input and output functions of the error model. {ck} is a monotonic~

+
ally increasing unbounded sequence in (R with 0 < Tmln g 'I'k < Tmax < = for k ¢ N

where Tk = tk+l - tk. When Tk = T, a constant, we shall call T the sampling peri-
od. ¢:u§*—+n€n is a plecewise constant function, referred to as the parameter

error vector and assumes values $(t) = ¢k. t c [tk’tk+l)’ where ¢k is a constant
vectort, i

It is assumed that ¢0 (and hence ¢k) is unknown, the values u(t) and el(t)
can be obgserved at every instant t and A¢k ¢ ¢k+1 - ¢k can be adjusted at

t=t . The objective is to determine an adaptive law for choosing the sequence
{A¢k} using all available input-output data so that lim el(t) = C,

o0 .
Theorem 2:If in the error equation (19) the vector ¢k is updated according to the
adaptive law

t
f k1 el(t)U(r)

b, = dt (20)

<)L
—

8 1+ ul(t)ulr)

then

(1) 4if u(t) and G(t\ are uniformly bounded in Bf'lim nl(t) =

>
(i1) 1if in addition to the conditions in (1) u iR” persistently exciting over an
interval T , , 1lim ¢, = 0
min K k
00
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(iii) If u ¢ L: then e (c) = p(t)[1 + uTull/z. pE Lz-

1
Proof: 1f V(k) = §'¢k ¢k’ using the adaptive law (20) we obtaln AV(k) = - 3 ¢k
[21 - R JR 9, < O
Rk Rk “ 1 tk+1 U(T)uT(T)
where Rk = ir-Jt T dt
k“’7k 1+ u (t)u(r)

Hence V(k) is a Lyapunov function and assures the boundedness of ¢k. Since
£ AV(k) < = it follows that lim AV(k) = 0. Henc

k=1 k+~ t e (1)
Lin ¢k RO, - % J k+1 1T
1 4+ u (t)u(t)

ke k+m k
(i) If u is bounded, e1 is bounded and e1 € LZ. If u is bounded lim el(t) = 0.
to
(ii) 1If u is persistently exciting Rk is uniformly positive definite and hence

¢k + 0 as k + «,

(iii) . If u grows in an unbounded fashion with u € L:, e / where p € L

dt = 0.

Comments: In the three cases given in theorem 2 the first two assume that the
input u is uniformly bounded and the corresponding results are applicable > the

identification problem. The third case which treats unbounded inputs is applic-
able to the control praoblem,

The fact that T, need not be a constant is also worth noting. As shown in section

6 a time-varying period may be used to improve the transient response of the sys-
tem,

b) Stable Hybrid Adaptive Control - Ideal Case: The hybrid adaptive algorithm
described in the preceding section can be used to adjust the control parameters
of a hybrid adaptive system., Using an approach very similar to that used in sec-
tion 3 for a continuous time system the overall system can be shown to be globally
stable. Using the same notation as in section 3 we have for ths adaptive law
~1 Yktl € (T)c(r)
M= 1 e
k% 1+ ¢ (0n

From the analysis in the previous section we conclude that

dat

(1) the parameter error vector ¢k is bounded
and (ii) € " eVl + ;T; where p ¢ Lz.

whizh conditions are the same as those o?&siued for the continuous case, Condi-
tion (1) assures that the signals y_, fu(E))f and fz(t)}| grow at the same
rate., Condition (ii) results in lyp(t)[ =0 gggllm(r)“ which coutradicts the pre-

vious assertion proving the boundedness of all the signals.

The similarity between the continuous and hybrid syst=ms also extends to
cases when external bounded disturbances are present and the methods described in
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sections 3 and 4 apply to the hybrid case as well., However, as shown in the fol-
lowing section, the use of averaged values over an interval rather than instant-
aneous values, results in more robust coutrol,

c) Adaptive System with Two Time Scales: The hybrid adaptive algorithm developed
in section 5a and applied to hybrid adaptive systems in section 5b can also be

s’ . modified for discrete hybrid systems or discrete systems with two time
- shown below,

Let the output error e, (k) ¢ Rl and the parameter error vector ¢(k) (.:l:Rn be
related by tne error equation

¢T(k)w(z) = el(z) k,2 € N, & e[kT,(k+1)T] (21)

where ¢(k) is a constant vector over the interval [kT,(k+1)T], T ¢ N and denotes
the period of the interval and w(2) ¢ 1s an input vector. Using information
collected over the entire interval, the parameter error vector ¢(k) is updated at
time (k+1)T using the adaptive law

(k+1)T-1 el(i)w(i)

¢(k+1) ~ ¢(k) 4 A¢p(k) = - 1/T T T
i=kT 1 + w(i) w(i)
( = = R(k)¢ (k) (22)
k+1)T-1 T
where R(k) 4 1/T T w(1)w(i) .

KT 1 4+ w(i) w(i)

In [10] it is shown that V(k) = 1/2 ¢T(k)¢(k) is a Lyapunov function for the
system (21) from which it follows that ¢(k) is bounded if ¢(0) is bounded and
e (i)
lim 72 * 0 1 eN (23)
i+ [14w(i) Ta(1))

If the adaptive law (22) is used in a control system to update the parameters,
equation (23) can be used to dem nstrate global stability [10].

When an external disturbance v is present the error equation (23) have to be
modified as

TIOW) + v() = e (1) 2 elkT, (D] (24)
Using the same adaptive law as before, the error equation has the form
(k+1)T-1 w(1)v(1)
8¢(k) = -R(k)¢(k) + z (25)

i=kT 1 + w(i)Tw(i)
= -R(k)$(k) + s(k)
(k+1)T-1

where s(k) 4 b w(i)v(;) .
1=kT 1 + w(i) w(i)

The matrix R(k) and the vector s(k) in algorithm (25) are averaged values
over an interval rather than instantaneous values. Hence the equivalent sysiem
may be considered to have more persistently exciting inputs in its homogeneous
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equation and a smaller magnitude of perturbation (if the mean value of the dis-
turbance is small). Due to both reasons the outputs tend to be smaller. Simula-
tion results shown in Fig, 2 indicate the dramatic improvement in performance.

6. NEW DIRECTIONS

The criteria for judging the performance of an adaptive control system are
no different from those used for any conventional control system and include sta-
bility speed and accuracy of response. In the preceding sections methods using
persistent excitation of reference input, and nonlinear and hybrid adaptive aigo-
rithms were described which would make the overall system stable under perturba-
tions. A judicious combination of these different methods may improve the robust-
ness of the system substantially and result in schemes which are practically at-
tractive. Some of these combinations as well as extensions of known methods which
appear promising are given below.

(i) Robustness of nth Order System Using Persistent Excitation: A detailed analy-
sis of a first order adaptive system containing a single control parameter was
given in section 4., When a disturbance is present it was shown that a sufficiently
large persistently exciting reference input would also result in bounded solutions.
Further studies have revealed that similar c~aclusions can be drawn regarding
higher order systems and research is currently being done to determine the bounds
on the solutions.

(ii) Hybrid Adaptive Control: 1In the adaptive control system described in sec-
tion 5, it was shown that the sampling incerval Tk could 1itself be time-varying

provided it lay in a bounded interval ([T s T ]Twith T > 0, In practical
min® "max min

on line to improve the transient response

systems it appears possible to adjust Tk
of the - 1,

(ii1) exd-Zone, Persistent Excitation and Plant Identification: A suf.iciently
large dezd-zone in the adaptive algorithm was shown to result in bounded solutions
in section 3. The results in section 4 indicated that boundedness of solutions
could also be achieved by increasing the PE of the reference input. It therefore
appears likely that the same results can be achieved using a combination of a
smaller dead-zone and a smaller degrvee of persist- ‘- excitation. Simulation stu-

dies have shcwn that this is indeed the case and a..empts are being made to demon-
strate this theoretically.

When the reference input is persistently exciting and the adaptive loop 1is
stable, the plant parameters can be estimated on-~line and used in second level
adaptation to reduce the dead-zone further., Hence combining a dead~zone with PE
of reference inputs appears to be of boih theoretical and practical interest.

* . o
(1v) "e "max and Persistent Excitation: As in (1i1) a persistently exciting in-

put enables 8* to be estimated and hence an attempt could be made to use thaz infor-
mation to decrease the region of search,

(v) o-mcdification and Persistent Excitation: The o-modification scheme, 1n its
basic form, described in section 3 is unappealing, since the parameter error can
be large if || 6*]} 1s large. Using identification methods as in (iii) and (iv) and
estimating 6% on line, secord level adaptive procedures may result in a smaller

bias.
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The second level adaptation problems stated in (ii)-(v) while practically at-
tractive, lead to stability questions in more complex nonlinear systems. Further,
it is worth pointing out that all of them consider external disturbances rather
than perturbations in plant dynamics. The reduced order problem which deals with
the design of a low order controller to adaptively control a higher order plant is
generally agreed to be the single most important theoretical question in the field
of adaptive control. While considerable research is being carried out in this
area, it is acknowledged that even a proper formulation of this problem is a form—
idable one. It is felt that the answers to some of the questions raised in this
section will contribute significantly towards this end.
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