MAXIMUM LIKELIHOOD ESTIMATION WITH EMPHASLS ON AIRCRAFT FLIGHT DATA

K. W. Dif* and R. E. Mrine**
NASA Ames Research Center
Dryden Flight Research Facility
Edwards, CA 93523

ABSTRACT

Accurate modeling of flexible space structures is an important field that is currently under investigation. Parameter estimation, using methods such as maximum likelihood, is one of the ways that the model can be improved. The maximum likelihood estimator has been used to extract stability and control derivatives from flight data for many years. Most of the literature on aircraft eatimation concentrates on new developments and applications, assuming faniliarity with basic estimation concepts. This paper presents some of these basic concepts. The paper briefly discusses the maximun likelihood estimator and the aircraft equations of motion that the estimator uses. The basic concepts of minimization and estimation are examined for a simple computed aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to help illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Specific examples of estimation of structural dynamics are included. Some of the major conclusions for the computed example are also developed for the analysis of flight data.

INIRODUCTION

Accurate modeling of flexible space structures is an important area that is currently under investigation. The mathematical modeling of these structures can be improved using parameter estimation. Such techniques have been successfully used to estimate aircraft stability and control derivatives and refine aircraft mathematical models. Some of the experience gained in the aircraft problen can be applied directly to analysis of flexible space structures.

The maximum likelihood estimator has been used to obtiain stability and control estimates from flight data for nearly 20 years. The results of many applications have been reported worldwide. Reference 1 contains a representative list of some of these reports. Several good texts (including Refss 2 and 3) contain thorough treatments of the theory of maximum likelihood estimation. Experience reports (Refs. 1, 4, and 5) poirting out practical considerations for

[^0]PRECEDNG PAGE BLAN:K NOT FILMED
applying the maximum likelihood estimator have also been published. Stability and control derivatives estimated from flight data are currently required for correlation studies with predictive techniques, handling qualities documentation, design compliance, aircraft simulat z_{i} enhancement and refinement, and control system design. Correlation, simulation, and control system design applications (including the space shuttle) are discussed in Ref. 6. Current studies have concentrated on estimation model structure determination (Refs. 7 and 8), equation error with state reconstruction (Refs. 9 to 11), and maximum likelihood estimation in the frequency domain (Refs. 12 and 13).

Most of the reports in the estimation area concentrate on new developments and applications, assuming familiarity with the basic concepts of maximum likelihood estimation. In this paper some of these basic concepts are reviewed, concentrating on simple, idealized models. These simple models provide insights applicable to a wide variety of real problens.

This paper also presents sove of the basics of maximum likelinood estimation as applied to the aircraft problem. It briefly discusses the maximum likelihood estimator and the aircraft equations of motion that the sstimator uses. The basic aspects of minimization and astimation are then examined in detail for a simple computed aircraft example. Finally, the discussion is expanded to the general aircraft estimation problem including specific examples of estimation of structural dynamics.

SYMBOLS

A, B, C, D, F, G	system matrices
a_{N}	normal acceleration positive upward, g
a_{x}	longitudinal acceleration, g
a_{Y}	lateral acceleration, g
a_{Z}	normal acceleration positive upward, g
b	reference span, ft
C_{ℓ}	coefficient of rolling moment
C_{n}	coefficient of yawing moment
C_{X}	coefficient of axial force
C_{Y}	coefficient of side force
C_{Z}	coefficient of normal force
$f(\cdot), g(\cdot)$	general functions

GG*	measurement noise covariance matrix
g	acceleration due to gravity, ft/8ec ${ }^{2}$
H	approximation to the information matrix
$\mathrm{I}_{\mathrm{X}}, \mathrm{I}_{\mathrm{Y}}, \mathrm{I}_{\mathbf{z}}, \mathrm{I}_{\mathbf{X Z}}$	moment of inertia about subscripted axis, slug-ft ${ }^{2}$
i	general index
J	cost function
Kp	sidewash factcs
L	rolling moment divided by I_{x}, deg/sec ${ }^{2}$
L^{\prime}	rolling moment, ft-lb
$L^{\text {YJ }}$	rolling moment due to yaw jet, ft-lb
M	pitching moment divided by I_{y}, deg/sec ${ }^{2}$
m	mass, slug
N	number of time points or cases or yawing moment divided by I_{z}, deg/ sec^{2}
n	state noise vector or number of unknowns
$\hat{\mathbf{p}}_{g}$	estimated roll rate due to turbulence, deg/sec
p	roll rate, deg/sec
q	pitch rate, deg/sec
\bar{q}	dynamic pressure, $1 \mathrm{l} / \mathrm{ft}^{\mathbf{2}}$
R	innovatirn covariance matrix
r	yaw : ce, g/sec
s	reference area, ft^{2}
T	time increment, sac
t	time, sec
u	control input vector
v	forward velocity, ft/sec

$x_{a_{y}}, Y_{a_{y}}, z_{a_{y}}$

2
$\tilde{\mathbf{z}}_{\boldsymbol{\xi}}$
α
B
ξ vector of unknowns

ω

Subscripts:
$p, q, r, \alpha, \dot{\alpha}, \beta, \dot{\beta}$,
$\delta, \delta_{a}, \delta_{r}, \delta_{e}$

0
m
$\ddagger \quad$ integral of transition matrix, or heading angle, deg
state vector
distance between lateral accelerometer and the center $o_{\text {: }}$ gravity along the appropriate axis, ft
observation vector
predicted Kalman-filtered estimate
angle of attack, deg
angle of sideslip, deg
estimated angle of sideslip due to turbulence, deg
time sample interval, sec.
contrci deflection, deg
aileron deflection, deg
elevon deflection, deg
rudder deflection, deg
measurement noise vector
pitch angle, deg
mean
standard deviation
time, sec
transition matrix or bank angle, deg
integral of transition matrix, or heading angle, deg
irequency, rad/sec
partial derivative with respect to subscripted quantity
bias or at time zero
neasured guāníity

Other nomenclature:

\sim	predicted estimate
\sim	estimate
- \quad transpose	
• indicates moment in ft-lb	

MAXIMUM LIKELIHOOD ESTIMATION

The concept of maximum likelihood is discussed in this section. First the general heuristic problem is discussed, and then the specific equations for obtaining maximum likelihood estimates for the aircraft problem are given. In the following sections, both the concepts and the computations involved in a simple but realistic example are discussed in detail.

The aircraft parameter estimation problem can be defined quite simply in general terms. The system investigated is assumed to be modeled by a set of dynamic equations containing unknown parameters. To determine the values of the unknown parameters, the system is excited by a suitable input, and the input and actual system response are measured. The values of the unknown parameters are then inferred based on the requirement that the model response to the given input match the actual system response. When formulated in this manner, the problem of identifying the unknown parameters can be easily solved by many methods; however, complicating factors arise when application to a real system is considered.

The first complication results from the impossibility of obtaining perfect measurements of the response of any real system. The inevitable sensor errors are usually included as additive measurement noise in the dynamic model. Once this noise is introduced, the theoretical nature of the problem changes drastically. It is no longer possible te exactly identify the values of the unknown parameters; instead, the values must be estimated by some statistical criterion. The theory of estimation in the presence of measurement noise is relatively straightforward for a system with discrete time observations, requiring only basic probability.

The second complication of real systems is the prasence of state noise. State noise is random excitation of the system from unmeasured sources, the standard example for the aircraft stability and control problem being atmospheric turbulence. If state noise is present and measurement noise is neglected, the analysis results in the regression algorithm.

When both state and measurement noise are considered, the problem is more complex than in the cases that have only state noise or only measurement noise. Reference 14 develops a mixed continuous/discrete maximum likelihood formulation that allows for both state and measurement noise. This formulation has a continuous system model with discrete sampled observations.

The final problem for real systems is modeling. It has been assumed throughout the above discussion that for some value (called the "correct" value) of the unknown parameter vector, the system is correctly described by the dynamic model. Physical systems are seldom described exactly by simple dynamic models, so the question of modeling error arises. No comprehensive theory of modeling error is available. The most common approach is to ignore it: Any modeling error is simply treated as state noise or measurement noise, or both, in spite of the fact that the modeling error may be deterministic rather than random. The assumed noise statistics can then be adjusted to include the contribution of the modeling error. This procedure is not rigorously justifiable, but, combined with a carefully chosen model, it is probably the best approach available.

With the above discussion in mind, it is possible to make a more precise, mathematically probabilistic statement of the parameter estimation problem. The first step is to define the general system model (aircraft equations of motion). This model can be written in the continuous/discrete form as

$$
\begin{align*}
x\left(t_{0}\right) & =x_{0} \tag{1}\\
\dot{x}(t) & =f[x(t), u(t), \xi]+F(\xi) n(t) \tag{2}\\
z\left(t_{i}\right) & =g\left[x\left(t_{i}\right), u\left(t_{i}\right), \xi\right]+G(\xi) n_{i} \tag{3}
\end{align*}
$$

where x is the state vector, z is the observation vector, f and g are system state and observation functions, u is the known control input vector, ξ is the unknown parameter vector, n is the state noise vector, and n is the measurement noise vector. The state noise vector is assumed to be zero-mean white Gaussian and stationary, and the measurement noise vector is assumed to be a sequence of independent Gaussian random variables with zero mean and identity covariance. For each possible estimate of the unknown parameters, a probability that the aircraft response time histories attain values near the observed values can then be defined. The maximum likelihood estimates are defined as those that maximize this probability. Maximum likelihood estimation has many desirable statistical characteristics; for example, it yields asymptotically unbiased, consistent, and efficient estimates (Ref. 15).

If there is no state noise and the matrix G is known, then the maximum likelihood estimator minimizes the cost function

$$
\begin{equation*}
J(\xi)=\frac{1}{2} \sum_{i=1}^{N}\left[z\left(t_{i}\right)-\tilde{z}_{\xi}\left(t_{i}\right)\right] *\left(G G^{*}\right)^{-1}\left[z\left(t_{i}\right)-\tilde{z}_{\xi}\left(t_{i}\right)\right] \tag{4}
\end{equation*}
$$

where GG* is the measurement noise covariance matrix, anc $\tilde{z}_{\xi}\left(t_{i}\right)$ is the computed response estimate of z at t_{i} for a given value of the unknown parameter vector ξ. The cost function is a function of the difference between the measured and computed time histories.

If Eqs. (2) and (3) are linearized (as is the case for the stability and control derivatives in the aircraft problem),

$$
\begin{align*}
x\left(t_{0}\right) & =x_{0} \tag{5}\\
\dot{x}(t) & =A x(t)+B u(t)+\operatorname{En}(t) \tag{6}\\
z\left(t_{i}\right) & =C x\left(t_{i}\right)+\operatorname{Du}\left(t_{i}\right)+G n_{i} \tag{7}
\end{align*}
$$

For the no-state-noise case, the $\tilde{z}_{\xi}\left(t_{i}\right)$ term of Eq. (4) can be approximated by

$$
\begin{align*}
\tilde{\mathbf{x}}_{\xi}\left(t_{0}\right) & =\mathbf{x}_{0}(\xi) \tag{8}\\
\tilde{\mathbf{x}}_{\boldsymbol{\xi}}\left(t_{i+1}\right) & =\phi \tilde{\mathbf{x}}_{\xi}\left(t_{i}\right)+\psi\left[u\left(t_{i}\right)+u\left(t_{i+1}\right)\right] / 2 \tag{9}\\
\tilde{z}_{\xi}\left(t_{i}\right) & =C \tilde{x}_{\xi}\left(t_{i}\right)+\operatorname{Du}\left(t_{i}\right) \tag{10}
\end{align*}
$$

where

$$
\begin{aligned}
& \phi=\exp \left[A\left(t_{i+1}-t_{i}\right)\right] \\
& \psi=\int_{t_{i}}^{t_{i+1}} \exp (A \tau) d \tau \bar{D}
\end{aligned}
$$

When state noise is important, the nonlinear forin of Eqs. (1) to (3) is intractable. For the linear model defined by Eqs. (5) to (7), the cost function that accounts for state noise is

$$
\begin{equation*}
J(\xi)=\frac{1}{2} \sum_{i=1}^{N}\left[z\left(t_{i}\right)-\tilde{z}_{\xi}\left(t_{i}\right)\right] * R^{-1}\left[z\left(t_{i}\right)-\tilde{z}_{\xi}\left(t_{i}\right)\right]+\frac{1}{2} N \ln |R| \tag{11}
\end{equation*}
$$

where R is the innovation covariance matrix. The $\tilde{z}_{\boldsymbol{\xi}}\left(\mathrm{t}_{\mathrm{i}}\right)$ term in Eq. (11) is the Kalman-filtered estimate of z, which, if the state noise covariance is zero, reduces to the form of Eq. (4). If there is no state noise, the second term of Eq. (11) is of no consequence (unless one wishes to include elements of the G matrix as unknowns), and R can be replaced by GG* which makes Eq. (11) the same as Eq. (4).

To minimize the cost function $J(\xi)$, we can apply the Newton-Raphson algorithm which chooses successive estirntes of the vectof of unknown coefficients, $\hat{\xi}$. Let L be the iteration number. The $L+i$ estimate of $\hat{\xi}$ is then obtained from the L estimate as follows:

$$
\begin{equation*}
\hat{\xi}_{L+1}=\hat{\xi}_{L}-\left[\nabla_{\xi}^{2} J\left(\hat{\xi}_{L}\right)\right]^{-1}\left[\nabla_{\xi}^{*} J\left(\hat{\xi}_{L}\right)\right] \tag{12}
\end{equation*}
$$

The first and second gradients are defined as

$$
\begin{align*}
v_{\xi} J(\xi)= & -\sum_{i=1}^{N}\left[z\left(t_{i}\right)-\tilde{z}_{\xi}\left(t_{i}\right)\right] *\left(G G^{*}\right)^{-1}\left[\nabla_{\xi} \tilde{z}_{\xi}\left(t_{i}\right)\right] \tag{13}\\
\nabla_{\xi}^{2} J(\xi)= & \sum_{i=1}^{N}\left[\nabla_{\xi} \tilde{z}_{\xi}\left(t_{i}\right)\right]^{*}\left(G G^{*}\right)^{-1}\left\{\nabla_{\xi} \tilde{z}_{\xi}\left(t_{i}\right)\right] \\
& -\sum_{i=1}^{N}\left[z\left(t_{i}\right)-\tilde{z}_{\xi}\left(t_{i}\right)\right] *\left(G G^{*}\right)^{-1}\left[\nabla_{\xi}^{2} \tilde{z}_{\xi}\left(t_{i}\right)\right] \tag{14a}
\end{align*}
$$

The Gauss-Newton approximation to the second gradient is

$$
\begin{equation*}
\nabla_{\xi}^{2} J(\xi) \cong \sum_{i=1}^{N}\left[\nabla_{\xi} \tilde{z}_{\xi}\left(t_{i}\right)\right] *\left(G^{*}\right)^{-1}\left[\nabla_{\xi} \tilde{z}_{\xi}\left(t_{i}\right)\right] \tag{14b}
\end{equation*}
$$

The Gauss-Newton approximation, which is sometimes referred to as modified Newton-Raphson, is computationally much easier than the Newton-Raphson approximation because the second gradient of the innovation never needs to be calculated. In addition, it can have the advantage of speeding the convergence of the algorithm, as is discussed in the SIMPLE AIRCRAPT EXAMPLE section.

Figure 1 illustrates the maximum likelihood estimation concept. The measured response of the aircraft is compared with the estimated response, and the -ifference between these responses is called the response error. The cost functions of Eqs. (4) and (11) include this response error. The Gauss-Newton computational algorithm is used to find the coefficient values that maximize the cost function. Each iteration of this algorithm provides a new estimate of the unknown coefficients on the basis of the response error. These new estimates of the coefficients are then used to update the mathematical model of the aircraft, providing a new estimated response and, therefore, a new response error. The updaring of the mathematical model continues iterati iely until a convergence criterion is satisfied. The estimates resulting from this procedure are the maximum likelihood estimates.

The maximum likelihoci estimator also provides a measure of the reliability of each estimate based on the information obtained from each dynamic maneuver. This measure of the reliability, analogous to the standara deviation, is called the Cramèr-Rao bound (Ref. 16) or the urcertainty level. The Cramèr-Rao bound as computed by current programs should generally be used as a measure of relative accuracy rather than absolute accuracy. The bound is obtained from the approximation of the information matrix, H. This matrix equals the approximation to the second gradient given by Eq. (14b). The bound for each unknown is the square root of the corresponding diagonal element of H. That is, for the ith unknown, the Cramèr-Rao bound is $\sqrt{H(i, i)}$.

The Maine-Iliff formulacion (Ref. 14) and minimization algorithm discussed above are implemented with the Iliff-Maine code (MMLE3 maximum likelihood estimation program). The program and computational algorithms are described fully in Ref. 17. All the computations shown and described in the remainder of the paper use the algo-rithms exactly as described in Ref. 17.

ATRCRAFT EQUATIONS OF MOTION

Abstract

For the discussion that follows in later sections of this paper, some owledge of the airsraft equations of motion is assumed. To clarify some of tran discussion, the aircraft equations are discussed briefjy in this section.

Eirst, tire axis system on which the aircraft equations of motion are based is discuss s. Figure $2(a)$ shows th; aircraft reference ody-axis system and the conventional control rיrfaces. The origin of the body-axis system is at the center of gravity. The sign convention for this axis system is detined by the right-hand rule with the x-axis defined as positive forward on the aircraft. The :ongitudinal acceleration (a_{x}) and nondimensional axial force coefficient. (C_{y}) are defined along this axis, and the roll rate (p) and rolling moment (L^{\prime}) are defined about this axis. The y-axis is defined as positive out the right wing. The lateral acceleration (a_{y}) and nondimersional side force coefficient (C_{Y}) are defined along this axis, and the pitch rate (q) and pitching moment (M') are defined about this axis. The $2-2 x i s$ is defined as positive out the bottom of the aircraft. The normal acceleration (a_{z}) and nondimensionai normal force coefficient (C_{2}) are rafined along this axis, and the yaw rate (r) and yawing moment (N') are defined about this axis. The normal acceleration is sometimes defined is positive upward but is then referred to as a_{N}. The three woments ($L ', M '$, and $N '$) are usually divided by the corresponding moments of inertia (I_{x}, I_{y}, and I_{z}), and are then referred to without the prime as $L_{, ~ M, ~}^{M}$ and N. Thess q 'antities are nondimensionalized ($C_{\ell}, C_{m,}$ and $C_{n,}$ respectively) for use in the eq:ations of motion soon to be discussed. The primary control about th. roll axis (x-axis) is the aileron (δ_{a}), about the pitch axis (y-axis) is the ele racor (δ_{e}), and about the yaw axis (z-axis) is the rudder (δ_{r}). Some aircraft have other controls, but in this paper these will only be defined where they are discussed (the reacioion control jets on the space shuttly, for example).

The Euler angles ϕ, θ, and ψ define the aircraft attitude with respect to the earth. These angles define the rotations which transform earth-fixed axes to the aircraft reference body-axis system of Fig. 2(a). . The order of rotation must be atout the z-axis (ψ), then the y-axis (θ), and finally the x-axis (ϕ) for the aircraft equations of motion that will be written subsequently.

For s tabilit ${ }^{-\quad}$ and control analysis, the velocity of the aircraft with respect to the air (not with respect to the earth) is of primary interest. Figure $2(b)$ shows the relationship between the aircraft axis system and the flow angles. The flow angle in the $x-z$ plane is the angle of attack (α), and the flow angle in the $x-y$ plane is the angle of sideslip (B). A more rigorous and
detailed definition is required for the derivation of the equations of motion, but the above definitions are sufficient to define the following equation of motion.

Generalized nonlinear equations of motion are given in detail in Ref. 17, which fully describes the Iliff-Maine code (MMLE3 program). All computations a^{\prime} ' aircraft examples in this paper use the linearized form for the lateraldirectional equations. These equations are given below and referred to in the remainder of the paper.

$$
\begin{array}{r}
\dot{\beta}=\frac{\bar{q} s}{v}\left(C_{y}+\dot{\beta}_{0}\right)+\frac{g}{v} \cos \theta \sin \phi+p \sin \alpha-r \cos \alpha \\
\dot{p} I_{x}-\dot{r} I_{x z}=\bar{q} s b C_{l}+q r\left(I_{y}-I_{z}\right)+p q I_{x z} \\
\dot{r} I_{z}-\dot{p} I_{x z}=\bar{q} s b C_{n}+p q\left(I_{x}-I,-q r I_{x z}\right. \\
\dot{\phi}=p+r \cos \phi \tan \theta+q \sin \phi \tan \theta+\dot{\phi}_{0}
\end{array}
$$

where

$$
\begin{gather*}
c_{Y}=c_{Y_{\beta}} \beta+c_{Y_{p}} \frac{p b}{2 \nabla}+c_{Y_{r}} \frac{r b}{2 V}+c_{Y_{\delta}} \delta+c_{Y_{0}} \tag{19}\\
c_{\ell}=c_{\ell_{\beta}} \beta+c_{\ell_{p}} \frac{p b}{2 V}+c_{Z_{r}} \frac{r b}{2 V}+c_{\ell_{\delta}} \delta+c_{\ell_{0}}+c_{\ell \dot{B}} \frac{\dot{\beta b}}{2 V} \tag{20}\\
c_{n}=c_{n_{\beta}} \delta+c_{n_{p}} \frac{p b}{2 \nabla}+c_{n_{r}} \frac{r b}{2 V}+c_{n_{\delta}} \delta+c_{r_{0}}+c_{n_{\beta}} \frac{\dot{\beta} b}{2 V} \tag{21}
\end{gather*}
$$

where the δ term is summed over all controls.

The observation equations are

$$
\begin{align*}
& B_{m}=K_{\beta} \beta-\frac{z_{B}}{\nabla} p+\frac{x_{\beta}}{\bar{v}} r \tag{22}\\
& P_{m}=p \tag{23}\\
& r_{m}=r \tag{24}\\
& \phi_{m}=\phi \tag{25}\\
& a_{y_{m}}=\frac{\bar{q}_{s}}{m g} \Sigma_{y}-\frac{z_{a_{y}}}{g} \dot{p}+\frac{x_{a_{y}}}{g} \dot{r}-\frac{Y_{a_{y}}}{g}\left(p^{2}+r^{2}\right) \tag{26}\\
& \dot{F}_{m}=\dot{p}+\dot{p}_{0} \tag{27}\\
& \dot{r}_{m}=\dot{r}+\dot{r}_{0} \tag{28}
\end{align*}
$$

The state, control, and observation vectors for the lateral-directional mode can then be defined as

$$
\begin{align*}
& x=\left(\begin{array}{lll}
\beta & p & x
\end{array}\right)^{*} \tag{29}\\
& u=\left(\delta_{a} \delta_{r}\right) * \tag{30}\\
& z=\left(\beta_{m} P_{m} \quad r_{m} \phi_{m} a_{y_{m}} \dot{p}_{m} \dot{r}_{m}\right) * \tag{31}
\end{align*}
$$

SIMPLE AIRCRAFT EXAMPLE

The basic concepts involved in parameter estimation problem can be illustrated by usirg a simple example representative of a realistic aircraft problem. The example chosen here is representative of an aircraft thet exhibits pure rolling motion from an aileron input. This example, although simplified, typifies the motion exhibited by many aircraft in particular flight regimes, such as the $\mathrm{F}-14$ aircraft flying at high dynamic pressure, the $\mathrm{F}-111$ aircraft at moderate speeds with the wing in the forward position, and the T-37 aircraft at low speed.

Derivation of an equation describing this motion is straightforward. Figure 2(c) shows a sketch of an aircraft with the x-axis perpendicular to the plane st the figure (positive forward on the aircraft). The rolling moment (L'), roll zate (p), and aileron deflection (δ_{a}) are positive as shown. For this example, the only state is p and the only control is δ_{a}. The result of sumaing moments is

$$
\begin{equation*}
I_{x} \dot{P}=L^{\prime}\left(p, \delta_{a}\right) \tag{32}
\end{equation*}
$$

The first-order Taylor expansion then becomes

$$
\begin{equation*}
\dot{p}=L_{p} p+L_{\delta_{a}} \delta_{a} \tag{33}
\end{equation*}
$$

where

$$
L^{\prime}=I_{x^{\prime}}
$$

Since the aileron is the only control, it is notationally simpler to use δ instead of δ_{a} for the discussion of this example. Equation (33) can then be written as

$$
\begin{equation*}
\dot{p}=L_{p p}+L_{\delta} \delta \tag{34}
\end{equation*}
$$

;.. alternate approach that results in the same equation is to rombine Eq. (16) with ic, (20), aubsiniuting for C_{i}, and then eliminate the terms that are zero for our example. This yields

$$
\begin{equation*}
\dot{p}_{I_{x}}=\bar{q} s b C_{\ell_{p}} \frac{p b}{z}+C_{\ell_{\delta}} \delta \tag{35}
\end{equation*}
$$

where p is the roll rate and δ is the aileron deflection. Rearranging terms, the equation can be put into the dimensional derivative form of En. (34).

Equation (34) is a simple aircraft equation where the forcing function is provided by the aileron and the damping by the damping-in-roll term, L_{p}. In subsequent sections we examine in detail the parameter estimation problem where Bo. (34) describes the system. For this single-degree-of-freedom problem, the maximum likelihood estimator is used to estimate either L_{p} or L_{δ} or both sor a given computed time history.

We will assume that the system has measurement noise, but no state noise as in Eqs. (1), (2), and (3). Equation (4) then gives the cost function for maximan likelihood estimation. The weighcing GG* is unimportant for this problem, so let it equal 1. For our example, Eqs. (2) and (3) become $x_{i}=p_{i}$ and $z_{i}=x_{i}$. Therefore, Eq. (4) becomes

$$
\begin{equation*}
J\left(I_{p}, L_{\delta}\right)=\frac{1}{2} \sum_{i=1}^{n}\left[p_{i}-\dot{\tilde{p}}_{i}\left(I_{p}, L_{\delta}\right)\right]^{2} \tag{36}
\end{equation*}
$$

where p_{i} is the value of the measured response p at time t_{i} and $\bar{p}_{i}\left(I_{p}, L_{\delta}\right)$ is the computed time history of \tilde{p} at time t_{i} for $L_{p}=\tilde{L}_{p}$ and $L_{\delta}=\dot{L}_{\delta}$. Throughout the rest of the paper, where computed data (not fiight data) are used, the measured time history refers to p_{i}, and the computed time history refers to $\tilde{p}_{1}\left(L_{p}, I_{\delta}\right)$. The computed time history is a function of the current estimates of I_{p} and L_{δ}. but the measured time history is not.

The most straightforward method of obtaining pi_{i} is with Eqs. (3) and (8), In terms of the notation stated above,

$$
\begin{equation*}
\tilde{p}_{i+1}=\phi \tilde{p}_{i}+\phi\left(\delta_{i}+\delta_{i+1}\right) / 2 \tag{37}
\end{equation*}
$$

where

$$
\begin{aligned}
& \phi=\exp \left(L_{p} \Delta\right) \\
& \psi=\int_{0}^{\Delta} \exp \left(L_{p} T\right) d \tau L_{\delta}=\frac{L_{\delta}\left[1-\exp \left(I_{p} \Delta\right)\right]}{L_{p}}
\end{aligned}
$$

and Δ is the length of the sample interval $\left(t_{i+1}-t_{i}\right)$. Simplifying the notation

$$
\begin{equation*}
\delta_{i+1 / 2}=\left(s_{i}+\delta_{i+1}\right) / 2 \tag{38}
\end{equation*}
$$

then

$$
\begin{equation*}
\tilde{p}_{i+1}=\phi \check{r}_{i}+\psi \delta_{i+1 / 2} \tag{39}
\end{equation*}
$$

The maximum likelihood estimate is obtained by minimizing Eq. (36). The Gauss-Newton method described earlier is used for this minimization. Equation (12) is used to determine successive values of the estimates of the unknowns during the minimization.

For this simple problem, $\hat{\xi}=\left[\hat{L}_{p} L_{\delta}\right]^{*}$ and successive estimates of \hat{L}_{p} and \hat{L}_{δ} are determined by updating Eq. (12). The first and second gradients of Bq. (12) are defined by Eqs. (13) and (14). The complete set of equations is given in Ref. 17.

The entire procedure can now be written for obtaining the maximum likelihood estimates for this simple example. To start the algorithm, an initial estimate of L_{p} and L_{δ} is needed. This is the value of $\hat{\xi}_{0}$. With Bq . (12), ξ_{1} and subsequently $\hat{\xi}_{L}$ are defined by using the first and second gradients of $J\left(L_{p}, L_{\delta}\right)$ from Eq. (36). The gradients for this particular example from Eq. (13) and '14b) are

$$
\begin{align*}
& \nabla_{\xi} J\left(\hat{\xi}_{L}\right)=-\sum_{i=1}^{N}\left(p_{i}-\tilde{p}_{i}\right) \nabla_{\xi} \tilde{p}_{i} \tag{40}\\
& \nabla_{\xi}^{2} J\left(\hat{\xi}_{L}\right) \cong \sum_{i=1}^{N}\left(\nabla_{\xi} \tilde{p}_{i}\right) *\left(\nabla_{\xi} \tilde{p}_{i}\right) \tag{41}
\end{align*}
$$

With the specific equations defined in this section for this simple example, we can now proceed in the next section to the computational details of a specific example.

Computational Details of Minimization

In the previous section we specified the equations for a simple example and described the procedure for obtaining estimates of the unknowns from a dynamic maneuver. In this section we give the computational details for obtaining the estimates. Some of the basic concepts of parameter estimation are best shown with computed data where the correct answers are known. Therefore, in this section we study two examples involving computed time histories. The first exapple is based on data that have no measurement noise, wich results in esicmates that are the same as the correct value. The second example contains significant measurement noise; consequently, the estimates are not the same as the correct values. Throughout the rest of the paper, wiere computed daca are used, the term "no-noise case" is used for the case with no noise added and "noisy case" for the case where noise has been added.

Since we are studying a simple computed example, it is desirable to keep it simple enough to complete some or all of the calculations on a home computer or, wit some labor, on a calculator. With this in mind, the number of data points nexds to be kept spicll. For this anmputed example, 10 points (time samples) are
used. Ti.e simulated data, which we refer to as the measured data, are based on Eq. (34). We use the same correct values of L_{0} and $L_{\delta}(-0.2500$ and 10.0 , respectively) for both examples. In addition, the same input (δ) is used for both e) moles, the sample interval (Δ) is 0.2 sec , and the initial conditions are zetc. Tables of all the significant intermediate values are given with each examp!c. These values re given to four significant digits, although to obtain exactily L same values with a computer or calculator requires the use of 13 significin: digits, as in the computation of these tables. If the four-digit num ers are used in the computation, the answers will be a few tenths of a percent off; but will still serve to illusirate the minimization accuracy. In both exa eples, the initial values of L_{p} and $L_{\delta}\left(\right.$ or $\hat{\xi}_{g}$) are -0.5 and 15.0, respectively.

Example With No Measurement Noise

The reasurement time history for no measuizment noise (no-noise case) is shown in Fig. 3. The aileron input starts a^{+}zero, goes to a fixed value, and then returns to zero. The resulting rosl-rate time history is also shown. The values of the measured roll rate to 13 sigrificant digits are given in Table 1 along with the aileron input.

Table 2 shows the values for $\hat{L}_{p}, \hat{L}_{\delta}$, and J for each iteration, along with the values of $\$$ a.d ψ needed for calculations of \tilde{p}_{i}. In three iterations the aigorithm converges to the correct values to four significant digits for both L_{p} and L_{δ}. \hat{L}_{δ} overshoots slightly on the first iteration and then comes quickly to the correct answer. $\hat{\mathrm{L}}_{\mathrm{p}}$ overshcots slightly on the second iteration.

Figure 4 shows the match between the measured data and the computed data for each of the first three terations. The match is very good after two iterations. The match is nearly exact after three iterations.

Although the ilgorithm has converged to four-digit accuracy in L_{p} and L_{δ}, the value of the cost function, J, continues to decrease rapidly between iterations 3 and 4. This is a consequence of using the maximum likelihood estimator on data with no measurement noise. Theoretically, using infinite accuracy the value of J at the minimul should ke zero. Hovever, with finite accuracy the value of, becomes small but never quite zero. This value is a function of the number of significant digits that are being used. For the 13-digit accuracy used here, the cost eventually decreases to approximately 0.3×10^{-28}.

Example With Measurement Noise

The data used n this tiample (noisy case) are the same as those used in the previous sectiun, except that pseudo-Gaussian noise has been added to the roll rate, The time history is s.ion in Fig. 5. The signal-to-noise ratio is quite low in thi example, as is readily apparent by comparing Figs. 3 and 5. The exact values of the time history to 13 -digit accuracy are shown in rable 3. The values of $\hat{L}_{p}, \hat{L}_{\delta}, \notin, \psi$, and J are shown for each iteration in Table 4. The
algorithm converges in four iterations. The benavior of the coefficients as they approach convergence is much like the no-noise case. The most notable results of this case are the converged values of \hat{L}_{p} and \hat{L}_{δ}, which are somewhat different from the correct values. The match between the measured and computed time h: tcry is shown in Fig. 6 for each iteration. No change in the match is apparent for the last two iterations. The match is very good considering the amount of measurement noise.

In Fig. 7, the computed time history For the correct values of L_{p} and L_{δ} is compared to that for the noisy-case estimates of T, and $L \delta$. Because the algorith converged to values somewhat different - an the correct values, the two compute. time histories are similar but not identical.

The accuracy of the converged elements can be assessed by looking at the Cramèr-Ras inequality (Refs. 16 and 17) discussed earlier. The Cramèr-Rao bound can be obtained from the following approximation to the information matrix.

$$
H=2\left(J_{\text {minimum }}\right)\left(\nabla_{\xi}^{2} J\right)^{-1} /(N-1)
$$

The Cramèr-Rao bounds for L_{p} and I_{δ} are the square roots of the diagonal elements of the H matrix, or $\sqrt{H(1,1)}$ and $\overline{H(2,2)}$, respectively. The Cramèr-Rao bounds are 0.1593 and 1.116 for \hat{I}_{p} and \hat{L}_{δ}, respectivaly. The errors in L_{p} and L_{δ} are less than the bounds.

Cost Functions

In the previous section we obtained the maximum likelinood estimates for computed time histories by minimizing the values of the cost function. To fully understand what occurs in this minimization, we must study in more detail the form of the cost functions a.dd some of their more important characteristics. In this section, the cost function for the no-noise case is discussed briefly. The cost function of the noisy case is then discussed in more detail. The same two time histories studied in the previous section are evamined here. The noisy case is more interesting because it has a meaningful Cramèr-Rao bound and is more representative of aircraft flight data.

First we will look at the one-dimensional case where L_{δ} is fixed at the correct value, because it is easier to grasp some of the characteristics of the cost function in one dimension. Then ive will look at the two-dimensional case, where both L_{p} and L_{δ} are varying. It is important to remember that everything shown in this paper on cost functions is based on computed time histories that are defined by Eq. (36). For every time history we might choose (computed or flight data), a complete cost function is defined. For the case of n variables, the cost tunction defines a hypersurface of $n+1$ dimensions. It might occur to us that we could just construct this surface and look for the minimum, avoiding the need to bother with the minimization algorithm. This is not a reasonable
approach because, in general, the number of variables is greater than two. Therefore, the cost function can be described mathematically but not pictured graphically.

One-Dimensional Case

To illustrate the many interesting aspects of cost functions, it is easiest to first look at cost functions having one variable. In an earlier section, the cost function of L_{p} and L_{δ} was mirimized. That cost function is most interesting in the L_{p} direction. Ther iore, the one-variable cost functiun studied here is $J\left(L_{p}\right)$. All subsequent discussions are for $J\left(L_{p}\right)$ with L_{δ} equal to the correct value of 10 . Figure 8 shows the cost function plotced as a function of L_{p} for the case where there is no measurement noise (no-noise case). As expected for this case, the minimum cost is zero and occurs at the correct value of $L_{p}=-0.2500$. It is apparent that the cost increases much more slowly for a more negative L_{p} than for a positive I_{p}. In fact, the slope of the curve tends to become less negative where L_{p} is more negative than -1.0 . Physically this makes sense since the more negative values of L_{p} represent cases of high damping, and the positive L_{p} represents an unstable system. Therefore, the p_{i} for positive L_{p} becomes increasingly different from the measured time history for small positive increments in L_{p}. For very large damping (very negative L_{p}) the system would show essentially no response. Therefore, large increases in damping result in relatively small changes in the value of $J\left(L_{p}\right)$.

In Fig. 9, the cost function based on the time history with measurement noise (noisy case) is plotted as a function of L_{p}. The correct value of $L_{p}(-0.2500)$ and the value of $L_{p}(-0.3218)$ at the minimum of the cost (3.335) are both indicated on the figure. The general shape of the cost function in Fig. 9 is similar to that shown in Fig. 8. Figure 10 shows the comparison between the cost functions based on the time histories with and without measurement noise. The comments relating to the cost function of the no-noist sase also apply to the cost function based on the noisy case. Figure 10 shows clearly that the two cost functions are shifted by the difference li: the value of L_{p} at tine minimum and increased by the difference in the minimum cost. One would expect only a small difference in the value of the cost when far from the minimum. This is because the "estimated" time history is so far from the measured time history that it becomes irrelevent as to whether the measured time history has noise added. Therefore, for large values of cost, the difference in the two cost functions should be small in comparison to the total cost.

Figure 11 shows the gradient of $J\left(L_{p}\right)$ plotted as a function of L_{p} for the noisy case. This is the function for which we were trying to find the zero (or equivalently, the minimum of the cost function) using the Gauss-Newton method of a previous section. The gradient is zero at $L_{p}=-0.3218$, which corresponds to the value of the minimum of $J\left(L_{p}\right)$.

The difference between the Newton-Raphson method (Eq. (14a)) and the Gauss-Newton method (Eq. (14b)) of minimization has been mentioned previously.

For this simple one-dimensional case, we can easily compute the second gradient both with the second term of Eq. (14a) (Newton-Raphson), and without the second term (Gauss-Newton, Eq. (14b)). Figure 12 shows a comparison between the Newton-Raphson and the Gauss-Newton approximation second gradients. The Gauss-Newton second gradient (dashed line) always remains positive because it is the sum of quadratic terms (squared for the one-dimensional example). The Newton-Raphson second gradient can be positive or negative, depending upon the value of the second partial with respect to L_{p}. Other than the difference in sign for the more negative $L_{p,}$ the two curves have similar shapes.

As stated earlier, the Gainss-Newton method can be shown to be superior to Newton-Raphson in certain cases. We can demonstrate obvious cases of this with our example. An easy way to select a spot where problems with the lewtonRaphson method will occur is to look for places where the second gradient (slope of the gradient) is near zero o. negative. Figure 11 has such a region near $L_{p}=-1.0$. If we choose a point where the gradient slope is exactly zero, we are forced to divide by zero in Eq. (12) with the Newton-Raphson meti, d. This point is at $L_{p}=-1.13$ in Fig. 12. If the value of the slope of the gradient is negative, then the Newton-Raphson method will go to very negative values of L_{p}. For very negative values of L_{p}, the cost becomes asymptotically constant and the gradient becomes nearly zero. In that region, the Newton-Raphson algorithm would diverge towards negative infinity. If the slope of the gradient is positive but small, we still have a problem with the Newton-Raphson merhod. Figure 13 shows the first iteration starting from $L_{p}=-0.95$ for both GaussNewton and Newton-Raphson. The Newton-Raphson method selects a point where the tangent of the gradient at $L_{p}=-0.95$ intersects the zero line. This results in the selection of an L_{p} of approximately 2.6 in the first iteration. From that value it requires many iterations to return to the actual minimum. On the other hand, the Gauss-Newton method selects a value for L_{p} of approximately -0.09 and converges to the minimum to four-digit accuracy in two more iterations. With more complex examples a comparison of the convergence properties of the two algorithms becomes more difficult to visualize, but the problems are generalizations of the situation we have observed with the one-dimensional example.

The usefulness of the Cramèr-Rao bound was discussed in the Example With Measurement Noise section. At this point it is useful to digress briefly to discuss some of the ramifications of the Cramer-Rao bound for the one-dimensional case. The Cramèr-Rao bound only has meaning for the noisy case. In the noisy example, the estimate of L_{p} is -0.3218 and the Cramèr-Rao bound is 0.0579 . The calculation of the Cramèr-Rao bound was defined in the previous section for both one-dimensional and two-dimensional examples. The Cramèr-Rao bound is an estimate of the standard deviation of the estimate. One would expect the scatter in the estimates of L_{p} to be of about the same magnitude as the estimate of the standord deviation. For the one-dimensional case discussed here, the range ($L_{p}(-0.3218)$ plus or minus the Cramèr-Rao bound (0.0579)) nearly includes the correct value of $L_{p}(-0.2500)$. If noisy cases are generated for many time histories (adding different measurement noise to each time history), then the sample mean and sample standard deviation of the estimates for these cases can be calculated. Table 5 gives the sample mean, sample standard deviation, and the
standard deviation of the sample mean (standard deviation divided by the square root of the number of cases) for 5,10 , and 20 cases. The sample mean, as expected, gets closer to the correct value of -0.2500 as the number of cases increases. This is also reflected by the decreasing values in column 4 of Table 5, which are estimates of the error in the sample mean. Column 3 of Table 5 shows the sample standard deviations, which indicate the approximate accuracy of the individual estimates. This standard deviation, which stays mors or less constant, is approximately equal to the Cramèr-Rao bound for the noisy case being studied here. In fact, the Cramer-Rao bounds for each of the 20 noisy cases used here (not shown in the table) do not change much from the values found for the noisy case being studied. Both of these results are in good agreement with the theoretical characteristics (Ref. 16) of the Cramèr-Rao bounds and maximum likelih.od estimators in general.

The examples shown here indicate the value of obtaining more sample time histories (maneuvers). More samples improve confidence in the estimate of the unknowns. The same result holds true in analyzing actual flight time histories (maneuvers); thus it is always advisable to obtain several maneuvers at a given flight condition to improve the best estimate of each derivative.

The size of the Cramèr-Rao bounds and of the error between the correct value and the estimated value of L_{p} is determined to a large extent by the length of the time history and the amount of noise added to the correct time history. For the example being studied here, it is apparent from Fig. 5 that the amount of noise being added to the time history is large. The effect of the power of the measurement noise (GG*, Eqs. (3) and (4)) on the estimate of L_{p} (that is, \hat{L}_{p}) for the time history is given in Table 6. The estimate of L_{p} is much improved by decreasing the measurement noise power. A reduction in the value of G to one-tenth of the valu: in the noisy example being studied yields an acceptable estimate of L_{p}. For ilight data, the measurement noise is reduced by improving the accuracy of the output of the measurement sensors.

Two-Dimensional Case
In this section the cost function (which is del endent on both L_{p} and $i \delta$) is studied. The no-noise case is examined first, followed by the noisy case.

No-noise case. Even though the cost function is a function of only two unknowns, it is much more difficult to visualize than the one-unknown case. The cost function over a reasonable range of L_{p} and L_{δ} is shown in Fig. 14. The cost increases very rapidly in the region of positive L_{p} and large values of L_{δ}. The reason is just an extension of the argument. for positive L_{p} giver in the previous section. The shape of the surface can be depicted in greater detail if we examine only the values of the cost function less than 200 for L_{p} less than 1.0. Figure 15 shows a view of this restricted surface from the upper end of the surface. The minimum must lie in the curving valley that gets broader as we go to the far side of the surface. Now that we have a picture of the surface, we can look at the isorlines of constant cost on the L_{p}-versus-L L_{δ} plane. These isoclines are shown in Fig. 16. The minimum of the cost function
is inside the closed isocline. The steepness of the cost function in the positive- I_{p} direction is once again apparent. Inside the closed isocline the shape is more nearly elliptical, indicating that the cost is nearly quadratic here, so fairly rapid convergence in chis region would be expected. The Ip axis becomes an asyaptote in cost as L_{δ} approaches zero. The cost is constant for $L_{\delta}=0$ because no response would result from any aileron input. The astimated response is zero for all values of L_{p}, resulting in constant cost.

Figure 16 shows the region of the minimum value of the cost function, which, as seen in the earlier example (Table 2), occurs at the correct valueg for L_{p} and L_{δ} of -0.2500 and 10 , respectively. This is also evident by looking at the cost function surface shown in Fig. 17. The surface has its minimum zt the correct value. As expected, the value of the cost function at the minimum is zero.

Noisy case. As shown before in the one-dimensional case, the primary difference between the cost functions for the no-noise and noisy cases was a shift in the cost function. In that instance, the noisy case was shifted so that the minimum was at a higher cost and more negative value of L_{p}. In the twodimensional case, the no-noise and noisy cost functions exhibit a similar shift. For two dimensions the shift is in both the L_{p} and L_{δ} directions. The shift is small enough that the difference between the two cost functions is not visible at the scale shown in Fig. 14 or from the pergpective of Fig. 15. Figure 18 shows the isoclines of constant cost for the noisy case. The figure looks much like the isoclines for the no-noise case shown in Fig. 16. The difference between Figs. 16 and 18 is a shift in L_{p} of about 0.1 . This is the difference in the value of L_{p} at the minimum for the no-noise and noisy cases. Heuristically, one can see that the same would be true for cases with more than two unknowns. The primary difference between the two cost functions is near the minimum.

The next logical part of the cost function to examine is near the minimum. Figure 19 shows the same view of the cost function for the noisy case as was shown in Fig. 17 for the no-noise case. The shape is roughly the same as that shown in Fig. 17, but the surface is shifted such that its minimum lies over $L_{p}=-0.3540$ and $L_{\delta}=10.24$, and is shifted upward to a cost function value of approximetely 3.3.

To get a more precise idea of the cost of the noisy case near the minimum, we once again need to examine the isoclines. The isoclines (Fig. 20) in this region are much more like ellipses than they are ir Figo. 16 aid 18 . We can follow the path of the minimization example used before by including the results from lable 4 on Fig. 20. The first iteration $(\mathbb{L}=1)$ broughc the values of L_{p} and I / δ very close to the values at the minimum. The next iteration essentially selected the values at the minimum when pisived at this scalc. One of the reasons the convergence is so rapid in this region is that the isoclines are nearly -liptical, demonstrating that the cost is very nearly quadratic in this region. If we had started the Gauss-Newton algorithm at a point wheie the isoclines are much less elliptical (as in some of the border regions in Fig. 18), the
convergence would have been much slower initially, but much the same as it entered the nearly quadratic region of the cost function.

Before concluding our examination of the two-dimensional case, we need to examine the Cramèr-Rao bound. Figure 21 shows the uncertainty ellipsoid, which is based on the Cramèr-Rao bounds defined in an earlier section. The relatiorships between the Cramer-Rao bound and the uncertainty ellipsoid are discuss :d in Ref. 16. The uncertainty ellipsoid almost includes the correct value of L_{p} and L_{δ}. The Cramèr-Rao bound for L_{p} and L_{δ} can be determined from the pr jection of the uncertainty ellipsoid onto the L_{p} and L_{δ} axes, and compared with the values given earlier, which were 0.1593 and 1.116 for L_{p} and L_{δ}, respectively.

ESTIMATION USING FLIGHT DATA

In the previous severai sections we examined the basic mechanics of obtain.ing maximum likelihood estimates from computed examples with one or two unknown parameters. Now that we have a grasp of these basics, we can explore the estimation of stability and control derivatives from actual flight data. For the computationally much more difficult situation usually encountered using actual. flight data, we will obtain the maximum likelihood estimates with the IliffMaine code (MMLE3 program) described in Ref. 17. The equations of motion that are of interest are given in the AIRCRAFT EQUATIONS OF MOTION section of this paper; the remainder of the equations are given in Ref. 17.

In general, flight data estimation is fairly complex, and codes ouch as the Iliff-Maine code must usually be used to assist in the analysis. However, one must still be cautious about accepting the results; thai ; 3, tine estimates must fit the phenomenology, and the match between the messured and computed time histories must be acceptable. This is true in all flight segimes, buic one must be particularly careful in potential problem situations such as (1) in separated flow at high Mach numbers or high angle of attack, (2) with inusual aircraft configurations such as the oblique wing (Ref. 18), or (3) with modern highperformance aircraft with high-gain feedback loops. In any of the above cases, one should be particularly careful where there are even small anomalies in the match. These anomalies may indicate ignored terms in the equations of motion, separated flow, nonlinearities, sensor problems, insufficient resolution (Ref. 1), sensor location (Ref. 1), time or phase lags (Refs. 1 and 9), or ainy of a long list of ocher problems.

The following brief examples are intended to show how the above caveats and the computed examples of previous sections can be used to assist in the analysis. I. the computed example, the desirability of low-noise sensors, an adequate mociel, and several maneuvers at a given flight condition is shown.

Hard Calculation Example

Sometimes evaluation of a fairly complex flight maneuver can be augmented with a simple hand calculation. One example of this can be found for the space
shuttle. The space shuttle is a large double-delta-winged vehicle designed to enter the atmosphere from space and land horizontally. The entry control system consists of 12 vertical reaction-control-system (RCS) jets (six up-firing and six down-firing), 8 horizontal RCS jets (four left-firing and four right-firing) 4 elevon surfaces, a body flap, and a split rudder surface. The locations of these devices are shown in Fig. 22. The vertical jets and the elevons are used for both pitch and roll control. The jets and elevons are used symetrically for pitch control and asymetrically for roll control. The space shuttle control system is described briefly in Ref. 6.

The shuttle example used here is from a maneuver obtained at a Mach number of approximately 21 and an angle of attack of approximately 40°. The controls being used for this lateral-directional maneuver are the differential elevons and the side-firing jets (yaw jets). The maneuver is shown in Fig. 23. Equations (15) to (31) describe the equations of motion. A simplified approach can be used to determine some of the derivatives by hand. The approach is one that has been used since the beginning of dynamic analysis of flight maneuvers. In particular, for this maneuver the slope of the rates can be used to determine the yaw jet control derivatives. This is possible for this example, even with a high-gain feedback system, because the yaw jets are essentially step functions, and the slope of the rates p and r can be determined before the vehicle and the differential elevon (aileron) responses become significant. The rolling moment due to yaw jet ($L_{Y J}$) is particularly important for the shuttle (ReE. 6 discusses the essencial nature of flight-determined $L_{Y J}$ in the redefinition of entry maneuvers) and is, in general, more difficult to obtain than the more dominant yawing moment due to yaw jet. Therefore, as an illustrative example, LyJ is determined by hand. Figure 24 shows yaw jet activity and smoothed roll rate plotted at expanded scales. The equation for $L_{Y J}$ is given by

$$
\begin{equation*}
\mathrm{L}_{\mathbf{Y J}}=\dot{\mathrm{p}} \mathrm{I}_{\mathbf{X}} / \text { (Number of yaw jets) } \tag{42}
\end{equation*}
$$

$$
\begin{equation*}
\dot{p} \cong \Delta \mathrm{p} / \Delta t=\frac{0.07}{57.3}+(0.1) \tag{43}
\end{equation*}
$$

Therefore, given that $I_{x} \cong 900,000$ slug-f t^{2}, and the number of yaw jets is 4 , $L_{Y J} \cong 2750 \mathrm{ft}-\mathrm{lb}$.

The same maneuvex was analyzed with MMLE3, and the resulting match \cdot. shown in Fig. 25. The match is very good except for a small mismatch in p at about 6 sec. This small mismatch was studied separately wth MMLE3 and found to be caused by a nonlinearity in the aileron derivative. The value from male for LYJ is $2690 \mathrm{ft}-1 \mathrm{~b}$, which for the accuracy used here is essentially the same value as obtained by the simplified method. The aileron derivatives would be difficult to determine as accurately as the yaw jet derivatives. Although good estimates can seldom be obtained with the slope method discussed here, rough estimates can usually be obtainied to gain some insight into values obtained with MMLE3 (O : any other maximum likelihood program). These rough estimates can then be used to help explain unexpected values of estimates from an estimation program.

Sometimes a flight example becomes too complex to allow anything other than qualitative estimates to be determined by hand. The example shown in Fig. 26 ts the determination of the rudder derivative for tre F-8 aircraft with the yaw jugmentation system on. This example, taken from Ref. 20, includes an aileron pulse and a rudder pulse. Although an indepusdent pilot rudder pulse is input during the maneuver, the rudder is largely responding to the lateral acceleration feedback. When the rusder is moving, several other variables are also moving, thus making it difficult to use the simplified mpproach just discussed. However, $c_{n_{\delta_{r}}}$ can be roughly detcrmined when the rudder moves, approximately 1.7 sec from the start of the maneuver. Most of the slope of yaw rate s probably caused by the rudder, but a poor estimate would be obtained using the hand calculation.

Cost Function for Full Aircraft Problem

The analysis of a lateral-directional maneuver obtained in flight typically has from 15 to 25 unknown parameters (as shown in Eqs. (15) and (31)), in contrast to the one or two in the simple aircraft example. This makes detailed examples unwieldy and any graphic presentation of the cost function impossiblis. Therefore, in this section we are primarily examining tle estimation procedure and the process of the minimization.

For our flight example, we have chosen a lateral-directional manevver, with both aileron and rudder inputs, that has $i 7$ unknown parameters. The data ari from the oblique wing aircraft (Ref. 18) with the wing unskewed during the maneuver. This example was chosen because it is a typical maneuver. The time history of the data and the subsequent ovicput of MMLE3 have been published in Ref. 21. Some results of the ana'ysis are shown in Table 7. The match between the measured time history (solid aines) and the estimated (calculated) time history (dashed lines) is shown as a function of iteration in Fig, 27. Figures 27 (a) to (e) are for iterations 0 to 4, respectively. Table 7 shows that the cost remains unchanged after four iterations. A similar result was obtained for the two-dimensional simple aircraft example in Fig. 6 and Table 4.

Of the many things the analyst mist consider in oftdining estimates, the two most important onas are how good is the match and how gnod is the convergence. A satisfactory match and monotor convergence are necessary, but not sufficient, conditions for a success: 1 analysie. Figure $27(e)$, althouyh not perfect, is a very good match. The convergence can best be eva? uated by looking at the normalized cost in the last row of Table 7. The cost has converged rapidiy and monotonically in four iterations, and it remains at the converged cost. These factors are convincing evidence that the convergence is complete. Therefore, the criteria of match and convergence are satisfied in our example. In some cases we might encointer cost that does not converge rapidly (in four to six iterations) or monotonically, or stay "exactly" at the minimum value. These situations usually indicate at least a small problem in the analysis. These probiems, if found, are usually traced to an instrumentation or data aquisition problem, an inadequate mathematical model, or a maneuver that contains a marginal amount of information.

Table 7 also shows that the startup values of all the coefficients are zero for the control and bias variables. Wind turnel estimates could have been used for starting value; but the convergense of the algorithm is not very dependent
on the startup values. As part of the startlip algorithm, the MMLE3 program normally holds the derivatives of the state variables consta.t until after the first iteration, as is evident in Table 7.

Figure 27(a) shows the match between the measured and computed data for the startup values. The match is very poor because the startup values for the control derivatives are all zero, so the only motion is in response to the initial conditions. The control derivatives and biase. are determined on the first: iteration, resulting in the much improved match shown in Fig. 27(b). The match after two iterations, shown in Fig. 27!c), is improved as the program further modifics the control derivatives and, fcr the first time, adjusts the derivatives affesting the natural frequency $\left(C_{n_{\beta}}\right.$ and $\left.C_{l_{\beta}}\right)$. By the third iteration (Fig. 27(d)), the improvement in the match is almost complete, because minor adjustments to the frequency are made and the damping derivatives are changed. Fig. 27 (e) shows the match when all but the most minor derivatives have ceased to change.

Several general observations can be made based on this weli behaved example. The strong or most important coefficients have essentially converged in threse iterations. The same effect was seen in the simple example - that is, Les converged faster than L_{p} (Table 4). Some of the less important or second-order coefficients have only converged to two pliaces after three iterations and are still changing by one digit in the fourth place at the end of six iterations, Another observation is that for some coefficients $\left(C_{\ell_{r}}, C_{n_{\delta_{a}}}\right.$ and $C_{\ell_{\delta_{r}}}$) even
though the sign is wrons after the first iteration, the algorithm quickly selects their correct values once the important derivatives have stabilized.

In general, if the analysis of a maneuver has gone well, we do not need to spend much time inspeccing a table analogous to Table 7, Homever, $2 F$ there have been problems in convergence or in the quality of the fit, a detailed inspection of such a table may be necessary. The data may show an important coefficient going unstable at an early iteration, which could cause problems later. If the starting values are grossly in error, the algorithm is driven a long way from reasonable values and then for many reasons does nct behave well. Dccasionally the alyorithm alternately selects from two diverse ser, of values of two or more cuefficients on successive iterations, behaving as if the shape of the cost function were a narrow multidimensional valley analogous to but more extreme than the two-dimensional valley shown in Figs. 18 and 20.

> Cramèr-Rao Bounds

The earlier sections regarding the computed example have shown that the Cramèr-Rao bound is a good indicator of the accuracy of an estimated parameter. The Cramèr-Rao bounds can be used in a similar, but somewhat more qualitative, fashion on flight data. The Cramèr-Rao bounds that are included in MMLE3 (as well as many other maximum likelihood estimation programs) have been useful in
determining whether estimates are good or bad. The aircraft example discussed here nas bf an reported previously (for example, in Refs. ? and 16). However, this example of the use of the Cramer-Ran bound in the assessment of flightderived estimates is pertinent to the thrust of this paper. Figure 28 shows estimates of $C_{n_{p}}$ as a function of angle of attack for the PA-30 twin-engine generai aviation aircraft (Ref. 22) at three flap settings. There is a significant. amount of scatter, which makes the reliability of the information on $\mathrm{C}_{\mathrm{n}_{\mathrm{p}}}$
questionable. The data shown are the estimates from the MMLE3 program, which also provides the Crasèr-Rao bounds for each estimate. Past experience (Ref. 1) has shown that if the Cramer-Rao bound is multiplied by a scale factor (the result sonetimes being called the uncertainty level (Refs. 1 and 16)) and plotted as a vertical bar with the associated estimate, it helps in the interpretation of flight-aetermined results. Figure 29 shows the same data as Fig. 28, with the uncertainty levels now included as vertical bars. The estimates with small uncertainty levels (Cramèr-Rao bounds) are the best estimates, as was discussed earlier in the section on Cramèr-Rao bounds for the one-dimensional case. The fairing shown in Fig. 29 goes through the estimates with small Cramèr-Rao bounds and ignores the eistimates with large bounds. One can have great confidence in the fairing of the estimates, because the fairing is well defined and consistent when the Cramèr-Rao bound information is included. In this particular instance, the estimates with small bounds were from maneuvers where the aileron forced the motion, and the large bounds were from maneuvers where the rudder forced the motion. Therefore, in addition to aiding in the fairing of the estimates, the Cramèr-Rao bounds help show that the aileronforced maneuvers are superior for estimating $C_{n_{p}}$ for the PA-30 aircraft.

This example illuscrates that the Cramèr-Rao bounds are a useful tool in assessing flight-determined estimates, just as they were found useful for the simple aircraft example with computed data.

Atmospheric Turbulence (State Noise)

Atmospheric turbulence (state noise) cannot always be ayoided in flight; therefore, it is desirsble to be able to obtain stability and control derivatives in the presence of turbulence. In addition, an estimste of the turbulence time history can be of interest, particularly in the implementation of turbulence suppression systems.

Many years ago it was demonstrated that the stability and control derivatives cain be adequately determined with maximum likelihood estimation techniques for maneuvers performed in smooth air. If these techniques, which do not account for turbulence, are applied to data obtained in turbulence, not only are the resulting matches of the time histories unsatisfactory but the estimated coefficients are unacceptable (Refs. 23 to 25). The technique described in Refis. 14, 23, and 25 can account foi the effect of turbulence. With this technique, maximum likelihood astimates of the stability and control derivatives as well as estimates of the turbulence time histories are wtained by minimizing the cost function given by Fq. (11). Reaults of the application of the technique to longitudinal maneuvers obtained in turbulenco have been reported previously (Refs. 23 to 25).

Tre lateral-directional equations (Eqs. (15), (16), (17), (18), and (29)) can be modified in a manner similar to that used to rodify the longitudinal equations in Refs. 23 to 25. The turbulence (state noise) acidel is the Dryden expression, which is described in Ref. 26. The Iliff-Maine code (Ref. i7) can be used to obtain the maximum likelihood e3timates where state noise is present.

Thirty-eight seconds of data from the PA-30 aircraft flying in turbulence was analyzed at 50 samples/sec. The best match that could be obtained with the maximum likelihood estimation method that does not account for turbulence is shown in Fig. 30. The match is unacceptable and resulted in poor estimates of the stability and control derivatives. Figure 31 shows the match obtained with the maximu likelihood estimation technique that accounts for turbulence (Re^{\prime}. 14 and 17). The match is excellent and the maneuver provided acceptable es mated stability and control derivatives. It is also of interest to compare the power spectra of the estimated turbulence time histories. The power spectrum of the turbulence component affecting angle of sideslip, $\hat{B}_{\mathcal{G}}$, is shown in Fig. 32. Figure 33 presents the power spectrum of the curbulence component affecting roll rate, \hat{P}_{g}. The slopes of the asymptotes shown in Figs. 32 and 33 are those defined by the Dxyden expression given in Ref. 26. Good agreement is showis be ween the power spectra and the asymptotes for $\hat{\beta}_{g}$ and $\hat{\mathrm{p}}_{\mathrm{g}}$.

The algorithm used here is based on a linearized system described by Eqs. (5) to (7) and solved by minimizing the cost function given by Eq. (11). The system need not resemble that for the aircraft stability and control problem other than in the requirement for linearity. Therefore, many formulations for the structural problem are wraten in the form of Eqs. (5) to (7), and the algorithm under discussion can be directly applied with these formulations.

ESTIMATION POR SIMPLE SIRUCTURAL PROBLEM

[^1]This paper has discussed some of the experience gained from the applicatius. of aircraft stability and control analysis to flight data. The codes used for this analysis are for lumped parameter systems in the time doman. The codes have been used successfully for structural problems and are fully adaptable to the frequency domain if that is found to be preferable.

Although few results have been obtained for time-domain structural analysis at the Ames Dryden Flight Research Facility, sose superficial experience in structural time-dcmain analysis has been obtained. The following two examples show how the techniques being used for stability and control analysis can be applied to simple structural problems. The preceeding section discussed the incorporation of state noise in the model. The following examples do not include the use of state noise, but state noise, if varranted, could easily be incorporated in the types of examples to be discussed.

Estimation of Structural Characteristics

All aircraft have observable structural modes. These modes usually cause no difficulty in estimating stability and control derivatives because the structural frequencies are higher than the aerodynamic frequencies. In general, if the structural frequencies are higher than the highest aerodynamic frequency by more than a factor of 5 to 10 , they can be neglected unless their amplitude is so large as to mask measurementr desired for the aerodynanic analysis. however, if one or more structural modes are affecting the aerodynamic modes, as may occur in large aircraft, these structural modes must be included in the mathematical model being analyzed.

Even though no completely satisfactory practical results are available that account for structeral modes and their interactions with the aerodynamics, it is interesting to assess the time-donain maximum likelihood analysis of the structural modes independent of any interaction. This can be done where a structural mode is observed and no significant coupling is apparent.

Figure 34 shows a structural mode on the lateral acceleration of an aircraft where little effect was observed for structural-aerodynamic coupling. The frequency of the mode is high enough that the mode does not interact with the aerodynamic modes. Therefore, the stability and control derivatives were obtained separately and held constant for the succeeding analysis. The analysis consisted of using the maximum likelihoct estimation progran wale 3 (Ref. 17) with a sixth-order model that inciuded the lateral-directional aerodynanic mocies plus one structural more. The Jynamic presaure and the velocity were allowed to vary in the analysis. The structural mode frequency and damping were estimated as linear functions of dynamic pressure. The initial conditions were also estimated. A structural mode frequency of 7.94 Kz was chosen to start the estimatiur process. The comparison between the original data and the match obtained wi L. the maximum likelihood estimation method is shown in Fig. 35. The two time histories are in good agreement at the beginning of the maneuver and at the end of the maneuver, but they ase 180° out of phase at a time of approximately
0.3 sec . The match shown in Fig. 35 suggests that the maximulikelihood estimator has reached a local minimim but not the global minimum. Multiple minima are not normally a problen when obtaining the stability and control derivatives of aircraft with the maximua likelihood estimation method.

The reason for the multiple minima is demonstrated by the following simple scalar example. Let the noiseiess measured response be $z(t)=s i n\left(\omega_{0} t\right)$ and the estimated response be $\tilde{z}_{\xi}=\sin (\omega t)$, where ω is the only unknown coefficient. Then, by Eq. (4), the cost function becomes

$$
\begin{aligned}
J(\omega, T)= & \int_{0}^{T}\left[\sin \left(\omega_{0} t\right)-\sin (\omega t)\right]^{2} d t \\
= & t-\frac{i}{4 \omega_{0}} \sin \left(2 \omega_{0} T\right)-\frac{1}{4 \omega} \sin (2 \omega T) \\
& -\frac{2 \omega}{\omega^{2}-\omega_{0}^{2}} \frac{\omega_{0}}{\omega} \sin (\omega T) \cos \left(\omega_{0} T\right)-\cos (\omega T) \sin \left(\omega_{0} T\right)
\end{aligned}
$$

If T is chosen to represent 10 cycles, as shown in Fig. 35, then for an ω_{0} of 1 rad/sec, T equals 20π. In Fig. 36, the cost function $J(\omega, 20 \pi)$ is shown as a function of ω. The global minimum is at an ω of 1 rad/sec, as it should be, but there are many local minima at increments of approximately $0.05 \mathrm{rad} / \mathrm{sec}$. If a value of less than 0.97 or greater than 1.03 were chosen for starting estimate of ω, the algorithm would converge to a local minimum. If a value of between 0.98 and 1.02 were chosen, it would converge to the globsl minimum. Therefore, for this example where 10 cycles were observed, the starting vaiue of ω mist be less than 3 percent fron the correct anwser to converge to the global minimum.

Figure 37 shows a sine wave for the global minimum along with a sine wave with a frequency that varies 10 percent from the global minimum. The sine waves are in phase at the beginning and end, and 180° out of phase in the middle. These data sppear similar to those shown for flight dats in fig. 35. If only one or two cycles were used for the analysis, the problem illustrated in Fig. 37 would be minimized. This is apparent in Fig. 38 where only the first cycle of Fig. 37 is shown.

If T is chosen to represent only one cycle and ω_{0} remains equal to $1 \mathrm{rad} / \mathrm{sec}$ (as in Fig. 38), then T equals 2π. The cost function $J(\omega, 2 \pi)$ is preserted as a function of ω in fig. 39. The global minimu is correctly at an ω of $1 \mathrm{rad} / \mathrm{sec}$, but now the algorithn converges tc the glowal minimum if $\omega \pm s$ started within approximately 25 percent of the correct value.

Knowing the sensitivity of the algorithm when a record with many lightly damper cycles is being analyzed, the data of Pig. 34 can be reanalyzed starting closer to the observed frequency. Starting the maximum likelihood estimation method with an ω of 3.0 results in the fit shown in Fig. 40 . This is an acceptable fit of the data.

Based on the preceding results, if data are to be analyzed where many cycles of a structural mode are present, the structural mode frequency, u, must be clesely approximated before starting the estimation process.

Structural Modes in Space

In the process rf analyzing aircraft flight data, the authors have frequently observed results that clearly exhibit unmodeled dynamics. The unmodeled dynamics could be caused by many phenomena, such as higher-order aerodynamic modes or structural modes. These modes can usually be ignored and left unmodeled because they have no effect on the results of primary interest in the analysis. If the unmodeled modes cannot be ignored, then the system equations must be revised to include the unmodeled modes.

The authors have not yet found it necessary to model structural modes for data obtained in space in the process of obtaining control derivatives for the space shuttle. However, the structural modes have been observed. Figure 41 shows the response of the space shuttle to the firing of a roll jet and a yaw jet at an altitude of $430,000 \mathrm{ft}$. The space shuttle configuration and the location of the RCS jets are shown in Fig. 22. The changes in the rigid-body rates and lateral acceleration caused by the jet firings are apparent in Fig. 41. The structural modes are also excited by the jets, as evidenced by the increased ringing in each signal at the time of the jet firings. The roll jet firing has little effect on the rigid-body response for the yaw rate and lateral acceleration; nowever, the yaw jet results in a rigid-body response for all the signals chosen. This maneuver was analyzed to obtain control derivatives for the rigidbody response described by Eqs. (15) to (31). The resulting match between the measured and computed response is shom in Fig. 42. The estimated control derivatives are in good agreement with those obtained from the maneuvers. The unmodeled structural dynamic modes are evident, but it is apparent that the modes will have little effect on the rigid-body control derivatives. The differences between the measured and computed rigid-body responses (the residuals) for the time close to when the jets were fired are shown in Fig. 43. The data shown here are for a sample interval of 0.006 sec . Some persistent structural ringing is shown for the two rates and the lateral acceleration. However, when a jet is fired, the increased structural response is evident. The structural coefficients can be extracted directly from the residual as they were for the example in the previous section. It appears that there may be some contamination caused by the rigid-body response at the instant the jets fire. If so, this contamination can be eliminated in one of two ways: either analyze the portion of the maneuver a tenth of a secord after the jet fires, or adapt the equations of motion to include the structural dynamics in addition to the rigid dynamics. The structural dynamics depicted in Fig. 43 have not been analyzed, but the procedure is straightforward. The procedure used on this case was the same as that used on the example in the preceeding section. It is apparent, hovever, that more than one structural mode wiuld need to be included in the model.

All the analysis techniques discussed in this paper apply to the analysis of this space shuttle example. If state noise is included in the mathematical model, then the linear form of Eqs. (5) to (7) would be required. In general,

Abstract

if the structural partial differential equation can be expressed in the linear forr of Eqs. (5) to (7) (with or without state noise), the structural modes can be analyzed readi:, with the MMLE 3 progran (Ref. 17) in the time domain. If the analyst prefers, the problem can be expressed in the linear constant coefficient form and analyzed in the frequency domain, as described in Ref. 12. The relative advantages and disadvantages of time-domain analysis as compared with frequency-domain analysis are also discussed in that reference. If the equations are nonlinear, but in the form of Eqs. (1) to (3), then maximum likelihood estimates can be obtained in the time domain.

CONCLUDING REMARKS

Abstract

The computed simple aircraft example showed the basics of minimization and ti.e general concepts of cost functions themselves. In addition, the example demonstrated the advantage of low measurement noise, multiple estimates at a given condition, and the Cramèr-Rao bounds, and the quality of the match between the measured and computed data. The flight data showed that many of these concepts still hold true even though the dimensionality of the cost function makes it impossible to plot or visualize. In addition, the techniques used for the aircraft problem were shown to be applicable to the flexible structure problem.

REPERENCES

1. Iliff, K. W., "Aircraft Identificatior. Experience," AGARD-LS-104, 1979, pp. 6-1 to 6-35.
2. Goodwin, Graham C., and Payne, Robert L., Dynamic System Identification: Experiment Design and Data Analysis, Academic Press, New York, 1977.
3. Sorenson, Harold W., Parameter Estimation; Principles and Problems, Marcel Dekker, Inc., New York, 1980.
4. Klein, V., "On the Adequate Mode] for Aircraft Parameter Estimetion," CIT, Cranfield Report Aero No. 28, Mar. 1975.
5. Hamel, P., "Determination of Stability and Control Parameters From Flight Testirg," AGARD-LS-114, 1981, pp. 10-1 to 10-42.
6. Iliff, Kenneth W., and Maine, Richard E., "NASA Dryden's Experience in Parameter Estimation and Its Use in Flight Test," AIAN Paper 82-1373, Atmospheric Flight Mechanics Conference, San Diego, Calif., Aug. 1982.
7. Gupta, N. K., Hall, Earl W., and Trankle, T. L., "Advanced Methods of Model Structure Determination from Test Data," AIAA Paper 77-1170, 1977.
8. Trankle, T. L., Vircent, J. H., and Eranklin, S. N., "System Identification of Nonlinear Aerodynamic Models:" The Techniques and Technology of Nonlinear Filtering and Kalman Filtering, AGARD-AG-256, 1982.
O. Klein, V., and Schiess, J. R., "Compatibility Check of Measured Aircraft Responses Using Kinematic Equations and Extended Kalman Filter," NASA TN D-8514, 1977.
9. Bach, R, E., and Wingrove, R. C.. "Applications of State Estimation in Aircraft Flight Data Analysis," AIAN Paper 83-2087, 1983.
10. Mulder, J. A., Jonkers, H. L., Horsten, J. J., Breeman, J. H., and Simons, J. H., "Analysis of Aircraft Performance, Stability and Control Measurements," AGARD-LS-104, 1979, pp. 5-1 to 5-87.
11. Klein, Vladislav, "Maximum Likelihood Method for Estimating Airplane Stability and Control Parameters From Flight Data in Frequency Domain," NASA TP-1637, 1980.
12. Fu, K. H., and Marchand, M., "Helicopter System Identification in the Erequency Domain," Ninth European Rotorcraft Forum, Paper 96, Stresa, Italy, Sept. 13-15, 1983.
13. Maine, Richard E., and Iliff, Kenneth W., "Formulation and Implementation of a Practical Algorithm for Parameter Estimation with Process and Heasurement Noise," SIAM J. Appi. Math., vol. 41, 1981, pp. 558-579.
14. Balakrishnar, A. V., Commurication Theory, McGraw-Hill Book Co., c.1963.
15. Maine, Richard E., and Iliff, Kenneth W., "The Theory and Practice of Estimating the Accuracy of Dynamic Flight-Determined Coefficients," NASA RP-i077. 1981.
16. Maise, Rjchard, E., and Iliff, Kenneth W., "User's Manual for mMLE3, A General fORTRAN Program for Maximum Likelihood Parameter Estimation," NASA TP-1563, Nov. 1980.
17. Maine, Richard E., Aerodynamic Derivatives for an Oblique Wing Aircraft Estimated From Flight Data by Using a Maximum Likelihood Technique," NASA TP-1336, 1978.
18. Steers, Sandra Thornberry and Iliff, Kenneth W.: "Effects of Time-Shifted Data on Flight-Determined Stability and Control Derivatives," NASA TN D-7830, 1975.
19. Shafer, M. F., "Flight-Derermined Correction Terms for Angle of Attack and Sideslip," AIAA Paper 82-1374, 1982.
20. Maine, Richard E., "Proyramer's Manual for MMLE3, A Gerieral FORTRAN Program for Maximum Likelihood Parameter Estimation," NASA TP-1690, 1981.
21. Fink, Marvin P., and Freeman, Delma C., Jr., "Full-Scale Wind-Tunnel Investigation of Static Longitudinal and Lateral Characteristics of a Light Twin-Engine Airplane," NASA TN D-4983, 1969.
22. Iliff, K. W.; "Identification and Stochastic Control With Application to Flight Control in Turbulance," UCLA-ENG-7340, School of Engineering and Applied Science, Univ. Calif., Lon Angelea, Calif., May 1973.
23. Iliff, Kenneth W., "An Aircraft Application of Syster Identification in the Presence of State Noise," New Directions in Signal Processing in Communication and Contrul, J. K. Skwirzynski, ed., Noordhoff Interrational Publishing (Leyden, The Netherlands), c.1975, pp. 529-541.
24. Iliff, Kenneth W.; "Estimation of Characteristics and Stochastic Control of an Aircraft Flying in Atmospheric Turbulence," Proceedings of AIAA 3rd Atmospheric Flight Mechanics Conference, c.1976, pp. 26-38.
25. Chalk, C. R., Neal, T. P., Harris, T. M., Pritchard, F. E., and Woodcock, R. J., "Backgrounc Information and User Guide for MIL-F-8785B(ASG), "Military Specification - Flying qualities of Piloted Airplanes," AFFDLTR-69-72, Air Force Flight Dynamics Lab., WrightPatterson Air Force Base, Aug. 1969.

Table 1 Values of computed time history with no measurement norse

1	δ, deg	p, deg/sec
1	0	0
2	1	0.9754115099857
3	1	2.878663149266
4	1	4.689092110779
5	1	6.411225409939
6	1	8.049369277012
7	1	9.607619924937
8	0	10.11446228200
9	0	9.621174135646
10	0	9.151943936071

Table 2 Pertınent values as a function of iteration

L	$\hat{\mathrm{L}}_{\mathrm{p}}(\mathrm{L})$	$\hat{\mathrm{L}}_{\delta}(\mathrm{L})$	$\phi(\mathrm{L})$	$\psi(\mathrm{L})$	J_{L}
0	-0.5000	15.00	0.9048	2.855	21.21
1	$-0.30 C 5$	9.888	0.9417	1.919	0.5191
2	-0.2475	9.996	0.9517	1.951	5.083×10^{-4}
3	-0.2500	10.00	0.9512	1.951	1.540×10^{-9}
4	-0.2500	10.00	0.9512	1.951	1.060×10^{-14}

Table 3 Values of computed time history whth added measurement noise

1	δ, deg	P, deg/sec
1	0	0
2	1	$C .487552 .1781881$
3	1	3.238763570696
4	1	3.429117357944
5	1	6.286297353361
6	1	6.953798550097
7	1	10.80572930119
8	0	9.739367269447
9	0	9.788844525490
13	0	7.382568353168

Fable 4 Fertinent values as a function of iteration

L	$\hat{L}_{p}(\mathrm{~L})$	$\hat{L}_{\delta}(\mathrm{L} ;$	$\phi(\mathrm{L})$	$\psi(\mathrm{L})$	J_{L}
0	-0.5000	15.00	0.9048	2.855	30.22
1	-0.3842	10.16	0.9260	1.956	3.497
2	-0.3518	10.23	0.9321	1.976	3.316
3	-0.3543	10.25	0.9316	1.978	3.316
4	-0.3542	10.24	0.9316	1.978	3.316
5	-0.3542	10.24	0.9316	1.978	3.316

Table 5 Mean and standard deviations for estimates of Ip

$=$Sumber of cases, N	Sample mean, $\mu\left(\hat{L}_{\mathrm{p}}\right)$	Sample standard deviation, $\sigma\left(\hat{I}_{\mathrm{p}}\right)$	Sample standard derivation of the mean, $\sigma(\hat{L} p) / \sqrt{N}$
5	-0.2668	0.0739	0.0336
10	-0.2511	0.0620	0.0196
20	-0.2452	$C .0578$	0.0129

Tble 6 Estimate of τ_{p} and Craner-Rao bound as a function of the square root of noise proser

Square root of noise power	Estimate of L_{p}	Cramer-Rao bound
0.0	-0.2500	$-0.0-0$
0.01	-0.2507	0.00054
0.05	-0.2535	0.00271
0.10	-0.2570	0.00543
0.2	-0.2641	0.0109
0.4	-0.2783	0.0220
0.8	-0.3071	0.0457
1.0	-0.3218	0.0579
2.0	-0.3975	0.1248
5.0	-0.6519	0.3980
10.0	-1.195	1.279

Fig. 1 Maximu likelihood estimation concept.

Fig. 2 Aircraft axis system.

(c) Simplified aircraft nomenclature.

Fig. 2 Concluded.

Fig. 4 Comparison of measured and computed data for each of the first three iterations.

Fig. 3 Time history with no measurement nolse.

Fig. 5 Time history with maasurement noise.

Fig. 6 Comparison of measured and computed data for each iteration.

Fig. 8 Cost function $\left(J\left(L_{p}\right)\right)$ as a function $2 f L_{p}$ for no-noise case.

Fig. 7 Comparison of estimated roll rate fron no-nolse and noisy cases.

Fig. 9 cost function as a function of L_{D} for nolsy case.

Fig. 10 Comparison of the cost functions for the no-noise and noisy cases.

Fig. 11 Gradient of $J\left(L_{p}\right)$ as a function of L_{p} for nolsy case.

Fig. 12 Compariscn of NewtonRaphson and Gauss-Nf values of
the nolsy the second gradient
case.

Fig. 14 lacge-scale view of coet functun surface.

E19* 15 莫escricted wew at cost functua suntace.

U4.
2r|30.4.

19. 16 sochines of constant wost of i_{p} and is 2 tor the nomolse case.

Fi9. it petalled view ar cost farscion surtace for no-rouse case.

Pig. 19 Detalied view ar cost furcthon surtuce bor noisy mate.

Fig. 20 Isoclines of constant cast for region near minime for noisy case.

Fig. 2: Isoclines and uncertainty ellipsoid of the cost iunction for the noisy case.

Fig. 24 Examples of obtalning LyJ by siaple calculations for the shuttle data from Fig. 23.

Fig. 27 Hatch between measured and computed time histories as a function af iteration.

Fig. 27 Contirmed.

Fig. 29 Variations of $C_{n_{p}}$ with angle of attack with uncertainty levels.

Fig. 30 Match of flight data obtained in turbulence (state noise) and computed data obtained from maximum lik.al ihood estimator that does not ascount for turbulence.

Fig. 32 Power spectral density of $\hat{B} g$ obtaired from maneuver shown in Fig. 31.

Fig. 34 Structural mode oscillation observed on the lateral acceleration.

Fig. 36 Cost functional for 10 cycles of data as function of $\mathrm{frequency}$, proximity of local minima to global minimum.

Fig. 33 power spectral density of \hat{p}_{g} obtained from maneuver shown in Fig. 31.

Fig. 35 Match of measured and computed lateral acceleration obtained when maximum likelihood estimator converged to local minimum.

Fig. 37 Simple scalar example illustrating a local minimum similar to that shown for flight data in Fig. 35.

Fig. 38 Simple scalar example showing only the first cycle.

Fig. 39 Cost function for one cycle of data as function of frequancy, showing wide region of canvergence for global minimum.

Fig. 40 Acceptable match of measured and computed lateral acceleration.

Fig. 41 Dynamic response of space shuttle to firing of roll and yaw jets at an altitude of $430,000 \mathrm{ft}$.

Fig. 42 Maximum likelihood match of rigid-body response of the space shuttie.

Fig. 43 Differo $\cdots \cdots$, $\because n$ measured anai computed rigid-body response (residual) for : s: s: shuttle. Altitude $=430,000 \mathrm{ft}$; dyamic pressure ${ }^{0} 0$

[^0]: *Senior Staff Scientist.
 $\dagger_{\text {Aerospace Engineer. }}$

[^1]: The probiem of the flexible spact structure is most fully characterized as a distribucel parameter system with its associated distributed system control laws. The model wi?l vary dependi.ig upon changes in its confisuzation or its environment, such as selar heating. is in most cases, the preferred solution is the simplest successfu? approach. The lumped systen approach is much simpler and computationally far nore efficient chan the fully distributed paraseter system approach. For example, structural mode control base? on current state-of-the-art approaches has proved very successful. Admittedly, the aircraft structure is heavier than most spacecraft, but many aircraft structures are highly complex, consisting of many subeiractures within the main structure. To the novice, many of the spice structures currently heing investigated appear simpler thar modern, largo aircraft. If the lumped parameter system approach used for the aircraft pro en is found to be inadequate, it seens likely that distributed parameter estimation codes will evolve to whatever complexity is secessary to solve the flexible space structure problem.

