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Parameter and state estimation techniques are discussed for an ellip- 
tic system arising in a developmental model for the antenna surface of the 
Maypole Hoop/Column antenna. A computational algorithm based 311 spline 
approximations for the state a d  elastic parameters is given and numerical 
results obtained using this algorithm are summarized. 

Results are presented from a Langley program directed towards 
developing computattonally efficient identification techniques for flexible 
systems modeled by partial differential equations with an emphasis on large 
space structures. Initial efforts have been directed towards extendidg the 
spline-based theory and computational techniques used by the first tw 
authors [11-[6] in solving identification problem with delay and partial 
differential equation e e l s  in one spatial variable to solve distributed 
problems in several spatial variables. Additionally, ir. order to support 
Langley's technology development program [ 7 ]  in large space antennae, a 
narameter aad state estimation algorith has been derived for a prototype 
distributed model of the Maypole (Hoop/Column). antenna reflector 
surface [8 ] .  Thz next section describes the Hoop/Colum antenna and pre- 
sents the identificotion problem being considered. The state and pazawter 
estimation approach is rhen outlined and rliscuased in  tne :.antext of the 
Hoop/Column application. Subsequent sections include mathematical details 
of the antenna application and numerical results. 



For the purpose of technology development, the NASA Large Space 
S:rstems Technology (LSST) program of f  ice has pinpointed focus missions and 
i d e n t i f i e d  fu ture  requirements for  la rge  space antennas for  communications, 
e a r t h  sensing, and radio astronom; [ 7 ] .  I n  t h i s  study, par t icular  emphasis 
is placed on mesh deployable antennas i n  the 50-120 meter diameter cate- 
gory. One such antenna is the Maypole (Hoop/Column) antenna shown for  the  
lOOm point-design i n  Mgures 1 and 2. This antenna concept Is being devel- 
oped by the Harris Corporation, Melbourne, Flor ida,  under contract  t o  the 
Langley Research e n t e r  [ 8 ] .  

The Hoop/Column antenna cons i s t s  of a kni t ted  gold-plated molybdenum 
wire r e f l e c t i v e  mesh s t re tched  over a co l l aps ib l e  hoop that suppl ies  the 
r i g i d i t y  necessary t o  maintain a c i r c u l a r  ou ter  shape. The annular 
membrane-like r e f l e c t o r  sur face  surrovnds a . te lescoping  mast which provides 
anchoring loca t i -ns  fo r  t h e  mesh center  sec t ion  (Pig. 1). Thq mast also 
provides anchoring for cables  tha t  connect the top end of the mast t o  the 
ou te r  hoop and the bottom end of the mast t o  48 equally spaced r a d i a l  
g raphi te  cord t r u s s  systems woven through the mesh surface [ 8 ] .  Tensions 
on the upper (quar tz )  cables  and outer  lower (graphi te  epoxy) cables  are 
counter balanced t o  provide s t i f f n e s s  t o  the hoop s t ruc ture .  The Inner 
lower cables produce, through the truss systems, d i s t r ibu ted  surf ace load- 
ing to  control  the shape of four c i r c u l a r  r e f l e c t i v e  dishes (Pigs. 1 and 2) 
on tLle U B L , . ~  sur facer  

After  deployment or a f t e r  a long period of operation, the r e f l e c t o r  
surface may require  adjustment. Optical  sensors are to  be locatc3 on the 
upper mast which aeasure angles of r e t r o r e f l e c t i v e  t a rge t s  plactd on the 
t r u s s  r a d i a l  cord edges on the antenna surface.  This information can then 
be processed using a ground-based computer t o  determlne a da ta  set of val- 
ues of mesh surface loca t ion  at se lec ted  targeb points.  I f  necessary, a 
new set of shaping (cont ro l )  cord tendione can be fed back t o  the antenna 
for  adjustment. 

It is des i rab le  to  have an i d e n t i f i c a t i o n  procedure which allows one 
t o  estimate the antenna mesh shape at  a r b i t r a r y  surface points  and the 
d i s t r ibu ted  loading from data  set observations.  It can a l so  be rinticipated 
t h a t  environmental stresses and the  e f f e c t s  of aging w i l l  alter the mesh 
mater ia l  propert ies .  The i d e n t i f i c a t i o n  procedure m u s t  also allow one t o  
address t h i s  i s sue .  

Considering the antenna t o  be f u l l y  deployed a n d ’ i n  s ta t ic  equi l ib-  
rium, a d i s t r ibu ted  mathematical model whick deocribes the an tema  surface 
devipt ion from a cbrved equilibrium configurat ion is under inves t iga t ion  
( f o r  preliminary f indings,  see [ 9 ] ) .  Using a cy l ind r i ca l  coordinate system 
with the z-axis along the aast, it is expected tha t  the resu l t ing  model 
w i l l  e n t a i l  a system 02 coupled second-order l i n e a r  p a r t i a l  d i f f e r e n t i a l  
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equat ions  i n  two s p a t i a l  var iab les .  The c o e f f i c i e n t s  of these  eqwrtions 
are func t ions  of the material p r o p e r t i e s  of the s t r e t c h e d  mesh. The d e r i -  
v a t i o n  and computer sof tware f o r  t h i s  model are st i l l  under dPvelopment. 
I n  the meantime, a simpler developmental (prototype)  problem has been 
solved which is d e s c r i p t i v e  of the  o r i g i n a l  problem. 

For the  developmental problem, t h e  loading is assumed t o  be normal t o  
the h o r i z o n t a l  plane coa ta in ing  the hoop rim, and tbe mesh s u r f a c e  is 
assumed t o  be descr ibed by the  s t a t i c  two-dimensional s t r e t c b d  membrane 
equat ion [ lo] with v a r i a b l e  s t i f f n e s s  (elastic) c o e f f i c i e n t s  and appropri-  
a t e  boundary condi t ions  f o r  th2 Hoop/Coluun geometry. Hathematical ly ,  i n  
polar  coord ina tes ,  we have 

where u(r,O) is the v e r t i c a l  displacement of the mesh f r o a  the hoop 
plane,  f ( r ,Q)  is t h e  d i s t r i b u t e d  loading f o r c e  per u n i t  area, and 
E(r,O) > 0 is the  d i s t r i b u t e d  s t i f f n e s s  (elastic) c o e f f i c i e n t  of the meoh 
s u r f a c e  ( f o r c e / u n i t  length) .  E f v a t i o n  (1) is to be solved over t h e  annular  
r e g i o n  Q = [ E , R ]  x [0,2a]. Appropriate boundary condi t ions  are 

a long  with the p e r i o d i c i t y  requirement 

where R i s  the rad ius  from the mast c e n t e r  t o  t h e  circular o u t e r  hoop, 
c is the  rad ius  f r a a  ti= mast t o  the beginning of the mesh sur face  (see 
F i g .  21, and uo i a  the coordinate  a t  r = E of the  meah s u r f a c e  below 
t h e  outer hoep plane. 

We f u r t h e r  assume t h a t  the  J i s t r i b u t e d  loading slo.ng with a d a t a  set 
of v e r t i c a l  displacements,  u ( r  8 ), at s e l e c t e d  p o i n t s  (r,,e,) on t h e  

mesh sur face  is known. Given t h i s  ‘-nform*+ion, the developmental problem 
is  t o  es t imate  the  material p r o p e r t i e s  of the mesh as represented by 
E(r,O) anti produce s t a t e  estimates of the eurcace represented by u(r,e) 
a t  a r b i t r a r y  (r,O) poin ts  within n. The procedure appl ied t o  so lve  t h i s  
problem is discussed i n  the next sec t ion .  

m i’ j 
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The first two authors and their colleagues have derived techniquec for 
approximating the solutions to systems identification and control problem 
involving delay equation models and partial differential equation models in 
one spatial variable and have used them in a variety of applications 
[ l l ] ,  (121. The Hoop/Column application requires an extension of the theory 
and numerical algorithms to elliptic distributed systems in several spatial 
variables. The approach, when specialized to the system identification 
problem, may be 6' marized as follows: (1) select a distributed parameter 
formulation containing unknown parameters for a specific system; (2) mathe- 
matically "project" the formulation down onto a finite dimensional subspace 
through some approximation procedure such as finite differences, finite 
elements, etc.; (3) solve the identification problem within the finite 
dimensional subspace obtaining an estimate .dependent upon the order o€ the 
approximation embodied in the subspace; (4) successively increase the order 
of the approxima+.ion and, in each case, solve the identification problem so 
as to construct a uequence oi parameter and state estimates ordered with 
increasing refinement of the approxiaatiun scheme; (5) seek a mathematical 
theory which providcs conditions under which t!e sequence of approximate 
solutions approaches the distributed solution as the subspace dimension 
increases with a convergent underlying sequence of parameter estimates. 

In applying this approach to the developmental problem, the stiffness 
function is parametrized in terms of cubic splines of fixed order; thir 
converts the estimation of E(r,6) into a finite dimensional parameter 
estimation problem. After writing the energy functional generic to the 
membrane equation, the Galerkin procedure is used to project the dtstti- 
buted formulatian onto a finite dimensional state subspace spanned by ten- 
sor products of linear spline functions defined over n. The approximate 
displacement (state estimate: thus obtained is expressible in terns of the 
spline basis fuwtions. The Galerkln procedure in this case yields alge- 
braic equations which def :ne the displacement approximation coordinates in 
tei- of the unknown E(r,8) parameters. In order to solve the approxi- 
mating parameter estimation problem, the parameters defining E(r, ct) are 
chosen so that Y -east squares measure of the fit error between the 
observed and predicttd (by the estimated state) data 3et is minimized. 
Finally, following steps (4) a d  (5) an algorith Is constructed to 
determine the order of the linear spline approximation above which little 
or no further improvement is obtained in the unknown quantities 88 one 
increases the dimension of the subspaces. Details of this system 
identification approach 3re ?resented in the following sections. 
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P r i o r  
dimensional 
cor?diticns 
dependent v 

to  applying the Galerkin procedure [13,14] t o  perform the f i n i t e  
approximation fo r  the  developmental problem, the boundary 

(2)  are converted t o  homogeneous form by introducing the new 
f a r i ab le  

Equation (1  ) then becomes 

with boundary conditions 

Iollowing the standard formulation (nee 113,141) f o r  the weak o r  
LI 

var i a t iona l  for- of (51, the  energy funct ional  E associated with ( 5 )  is 

where 0 is the gradient  i n  polar coordinates which, i n  the form used 
here,  I, equivalent t o  

H 

The function f is giber by 

h, rE( r ,e )u, 
f ( r , e )  - f ( r , e )  + - -  r l a  ar ( E - R )  

and the v e r t i c a l  displacement z ( r ,e )  of the mesh sur face  a w q  from the  
hoop equilibrium plane is a function sa t i s fy ing  the boundary conditions ( 6 )  
and posseszing f i r s t  der iva t ives  on S l  i n  the d i s t r i b u t i o n a l  sense (we 

(Sl) f 2). The f i r s t  va r i a t ion  6; of ; about denote t h i e  by 

the function y(r.0) is given by 
%,per 



= i2'lR {E(r,B)Vy V-r - [f(r,e)v + E(r,e)Z Vv]) rd rde  (10) 

where 

k =  (;I ($) 
(11) 

(0) and v is an a r b i t r a r y  function i n  Z - .Ho,per 1 .  

A 

Given a f i n i t e  d i l aen810d  subspace 2 of 2 ,  the Galerkin procedure 
A A 

defines  the approximation y as the so lu t ion  i n  Z of 

* a  

for  a l l  VEZ. 

For computational e f f ic iency ,  the bae ls  funct lons used for  t he  

representat ions of y i n  (12) are taken as tensor products of l i n e a r  

B-splines ( [ 1 3 ] ,  p. 27; [14:, p. 100). Thus v and y are i n  t h e  space 
spanned by 

a 

A A 

- a N w ,  , ( j  5 j . 
.*,N - 11, M where aM - ai(r) ,  (i = 1 ,..., M - 11, and i 

a re  standard l i n e a r  B-aplines with knots uniformly spaced over and 
! 0 , 2 n ] ,  respect ively,  modified t o  s a t i s f y  the appropriate  bocndsry 

condi t ions. The elements {a:} %re modified t o  s a t i s f y  homogeneous 
b o o  ' iry conditions while has been a l t e r ed  t o  satisfy- per iodic  

boundary conditions [ 151. 

f & , R ]  

8: 

26 8 



’pN we can write For yMsN(r,O) within the subspace spanned by v 
il 

Replacing j(r.0) in (12)  by yMSN(r,Q) from (14) and successively set- 

tiaig v(r ,O)  = vMBN(r,Q) for i = l,...,M - 1 and j = l , . . . , ! l  leads to 
a set of high-order linear algebraic equations for ths 

We avoid sparse matrix methods in s.olving the 

ij 
M * N  coordinates. 

M s N  eqdation by 
wij imposing a separability condition: 

As shown in [ 1 5 ] ,  condition (15) reduces the 
~0.1uti~i of the matrix equation 

wid M s N  calculaticn to the 

with 
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and 

where, in (17) - (22) ,  i , p  = l s . o o s H  - 1 and j,q * 1 ,..., N. 

Equation (i6) is rewritten i n  the equivalent form 

and solved by the Bartels-Stewart algorithm [161. 

In order to estimate, via a numerical scheme, the functional 
coefficients E1 and E2, we parametrize these functions so that 
idertification is performed over a finite-dimenaional parameter set. To 
this end, let 

are scalar parameters and where vk and 
cubic B-spline funct on8 defined 113, p. 611 over 
respectively, whose orders are independent of M and 

2 & and lJ are 
(€,R] and f 0 , 2 n l ,  
N. The basic spline 

functions are modified so that 
boundary conditions. uj and its derivatives satisfy periodic 

We turn next to the computer implementation of the identification 
scheme. 
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Appealing to the ideas found in previous sections, we now detail an 
algorithm for estimating thc coefficients V k ,  k - I,..., MI and 
j = 1, ..., N I ,  for E(r,8) that provide the "best fit" between 
estimations of the state u and observed data obtained from various 
sample poince on the surface. We may equivale3tly consider data for y by 
making the transformation 

for i = l , . . . ,  L, and j = I,.-. ,  LQ. 

A parameter estimation algorittrm may 'k organized into the following 
steps. 

1. Select an order of approximation for the cubic spline elements 
N1, used to ";is j = l B * * * s  

Ah, k = I , . .  ., M1 and 
represent E1 and E2. Set n = . 

2. Select M and N, .r: number of the linear spline basis elements 
used to represent UNSN (and P s N ) .  

3. Assume a nominal set of values for 

v - (vl, V*,...s 'MI) 
(27) 

and 

6 - p l ,  6* ,..., 6 . (28) 
\ N1) 

4. Calculate the ioefficient matrices in (23)  and solve for 
#sK( V ,  6). 

5 -  Calculate, from (141,  f19N(r4L,@j; \:,a) and evaluate 

6. Proceed to step 8 if J'*N(u,6) €8 sufficiently small. 
Otherwise, through an optimization procedure, determine a net pair 

( v , 6 )  which decreases the value of J . If no euch pair can M,N 
A I  

be found, go to step 8 .  
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A -  

7 .  Set ( v , & )  - ( V , 6 )  and return t o  s t e p  4. 

8 .  Preserve the cur ren t  values of JHsN and the corresponding 
( v , 6 )  yair a s  the h i t h  en t ry  i n  a sequence of these pa i r s ,  
ordered with increasing N and N. 

9 .  Proceed t o  s t e p  10 i f  s u f f i c i e n t  da ta  has been obtained to analyze 
the sequences. Otherwise, set G = n 4 1 and re turn  t o  s t e p  2 
with increased M and N. The current  values of ( V , 6 )  W i l l  bt 
used ig i n i t i a l  values fo r  the next optimizatdcm process. 

10. From ana lys is  of the numerical sequences, ee l ec t  t he  (M,N) en t ry  
which ind ica tes  the beet numerical r e su l t s .  The correspoading 
parameter estimate (u, 6)  pai r  y i e lds  E(r,B) which determines the 
material proper t ies  of the antenna'.mesh. The matrix d r N (  V ,  61, 
when used i n  conjunction with (141, determines a state 
approximation yMrN fo r  the shape of the  antenna surface.  

A convergence th iory  f o r  the i d e n t i f i c a t i o n  a l g o r i t h  may be found 
i n  [15 ] .  Numerical results are described i n  the next eecrion. 

Experimental data  fo r  the Hoop/Column antenna is not avai lab le  a t  t h i s  
time. Therefore, syn the t i c  da ta  is constructed t o  deaonetteee the 
preceding algorithm. 

As shown i n  Figure 2 ,  the parent r e f l e c t o r  has four separate area8 of 
I l luminat ion on its surface.  Each area is assumed t o  have tk same 
parabol ic  shape. For 0 < 0 < - and E 5 r 5 B- - - 2  



where 

ql(0) = stnO + cos0 . (31) 

The f u n c t i o n s  q2!0) and q3(0)  are cub ic  poljaomial f i t s  used t o  

ensure smoothness in regions of 0 near (3 = 2 , f ,  2 3n , 2n. Formulae f o r  
qZ(0) and c 3 ( 0 )  may be found i n  1151. The parameter k > 0, a 
s t r e t c h  f a c t o r  used t o  pe r tu rb  the  s u r f a c e  b e l o w  the  conic  (k = 0) shape is 
taken as 0.25. 

f 

For the complete s u r f a c e ,  we d e f i c e ,  f n r  E L r R, 

It is expected t h a t  the mesh w i l l  be s t i f f e s t  near  the o u t e r  hoop 
( r  = R) and around the  Fnr\er r a d i u s  (t = E), For t h i s  r e a v n  we choose a 
known value of E l ( r )  as 

where T is a cons t an t  dependent on the mesh material. The s t f f f n e e e  In 
t he  angular  d t r e c i o n  18 exrectod to  oe uniform with 

From d a t a  rrovld :8] f o r  the IO’l-meter point design,  a reasonable  

value f o r  (given i n  u n i t s  vGG is 

A 

T = 3.391 ; (35) 

s i m i l a r l y ,  other parameters are c a l c u l a t e d  t o  be uo = -7.501, E u P.2351~  
and R - 50m. 
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A 10 x 24 g r i d  of d a t a  p o i n t s  u+ri,€)j)  is c a l c u l a t e d  by - 
e . - a lua t ing  u(r,O) a t  p o i n t s  (ri,ej) wt th  

(37) 
n 0 0 [7.5" + (j - !) 15'1 E (j = l , Z ,  ... ,Le = 24) 0 

j 

Values of Qj correspond t o  d a t a  taken along every o t h e r  r a d i a l  cord 
t r u s s  sys t em with r e f l e c t o r s  assumed l o c a t e d  on t h e  gore edges. 
D i s t r i b u t e d  loads  are obtained bv 8 u b s t i t u t j . q  ( 3 2 ) - ! J 4 )  i n t -  (1) and 
e v a l u a t i n g  f ( : ,O ). . .  

I n  the  examples of the  i m c t l f i c a t l o n  p racess  to oe presented,  an 
equal  number of l i n e a r  s p l i n e  b a s i s  func t ions  are ueed in boLh r ~ .nd  8 
d i r e c t i o n s .  That is, M = N + 1 f o r  an i n c r e a b i q  sequence of N-values. 
The cubic  s p l i n e  appruximrtions ( 2 4 )  and ( 2 5 )  are ueed with f i x e d  
M1 - N1 - 4 t o  xepresent  E1(r) and E-;e). The L%L ver s ion  
( WSSQ) of the Levenberg-Harqusrdt dgorithm [ 17f is employed to minimi ee  
J M s N  given by (29). For t t e  f i r s t  choice of N; s d n a l  (v ,6)  parameter 
values t o  I n i t i a l i z e  the  Levenherg-brquardt  s lgo r i thm are obtained by 
f ind ing  those ( u t & )  coordinateb which came ( 2 4 )  and (25) t o  beet approxi- 

mate assumed ftli.ctions E1(r) and E2(2) chosen as guessed f o m  f a r  

E ( r i  83d t 2 ( e ) ,  r e spec t ive ly .  P,,L Iorger N, the latest previoueLy 

obtained set of converged c o o r l f n a t e e  I s  used as norn1-d parameters. 
PI. r i c a l  c a l c u l a t i o n s  are performed on a CDC Cyber 170-series d i g i t s 1  
. ;z.puta: using d e f a u l t  valuee 02 the IHSL convergence paramcters. 

0 0 
- 

1 

Two measurzs of i d e n t i f i c a t i o n  scherae performance are employed. The 
q u a n t i t y  

is uaed as a measure 02 state e s t lma t im accuracy. A a d i t i m a l l y ,  

2 74 



measures the relative e r r o r  between the t r u e  

and the estimatec. E ( r , O )  denoted by 

which is c a l c u l a t e d  from ( 2 4 )  and (25) using the  ( M , N I t h  l e v e l  of state 
a p p r o x i c - t i o n  obtained a t  s t e p  8 of the  computational procedure. In (391, 

1.1 ,c‘.~otes t h e  L2 norm on [6,R] x [0,2+1. RMPN provides a 
lneasure of parameter e s t ima t ion  accuracy. 

Convergence i n  the sense t h a t  

#,N + 0 

and 

as 

depends on the a b i l i t y  of t he  cubic  s p l i n e  approximates ( 2 4 )  and (25) t o  

a c c u r a t e l y  r ep resen t  E l ( r )  and E2(8). An exact pointwise f i t  can be 

obtained f o r  E (e) by choice of the 4 6-coe f f i c i en t s  in (25). However, 

E1(t) 

- - 
- 

2 - 
can a t  best be approximated t o  

r e l a t i v e  error by (24) and (27) with M = 4, Consequently, e n t r i e s  i n  the  

(RM’N, jMgN) (M,N) 
value. Less rea l i s t ic  examples i n  which (24) acd (25) e x a c t l y  f i t  s i m p l e r  

1 
sequence can be expected t o  cease decreasing pas t  some 



- 
E (r) and E (0) funct ions,  and and RnsN monotonically decrease 

with increasing ( M , N )  can be found i n  [15] .  Also, using the best cubic 

s p l i n e  f i ts  t o  E1(r)  and E2(8) obtained f r a  (24) and (25) t o  

def ine  E(r,e), along with the exact f ( r , e )  data ,  we observed that 

1 2 

- - 

jnSN - 0.087 

un i fomly  i n  ( l 4 , N ) .  T k  fol loving nurer ica l  remlts shcw that the  
parameter estimates from the  l d e n t l f l c a t l o n  procedure tend t o  Improve 

( reduce) t h i s  J An*N value at the expetme of RwJ 

Example 1: Estimate E2(8) holiing El(’) f ixed  a t  the best 

cubic  sp!i.re estimate of (r )  using ( 2 4 ) .  M n d  Fsraneterb tor the 

N = 4 
1 

s t a r t i n g  value are obtained by f i t t i n g  (25) to  

3 1 
2 E2(e) - 1 + -  COS e . 

Four 6-parameters are estimated and results s c r l t c d  below. 

N RnBN, % 8 t he ,  see 

4 0 . 0390 5.13 
6 0.0384 5.57 
8 0.0322 5.69 
10 0.0347 6.01 
12 0 0330 5.83 

8 
23 
86 
105 
132 

EssentiaLLy no improvement in state estirate vu obtained past N = 8. 
E;’N(6) tepded t o  3.591 instead of 

a t t r i bd ted  to  the I n a b i l i t y  J f  ( 2 4 )  to exact ly  f i t  xl(r). 

The 
The - 0.20 bias  is 

- 
E2(8) E 3-39?. 
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Example 2: Estimate El(r) holding E2(8) fixed at the best 

cubic spline estimate of E2(B) using (25). Nominal para~eters for the 
N = 4 starting value are obtained by fitting (24) to 

- 

Four +parameters are estimated aod results surmkarized below. 

N ;'~N, m RMsN, % 2 time, sec 

4 
6 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 

a 
0.0355 

0.0270 
0.0293 
0.0275 
0.0273 
0.0271 
0.0267 
0.0264 
0 -0260 
0.0267 
0.0250 
0 A203 
0.0259 

0.0343 
32.25 
24.5 
4.39 
13.17 

7.44 
7.59 
7.68 

7.91 
8.11 
7 -49 
7.58 
7.71 

8-08 

8.03 

22 
41 
75 
103 
130 
168 
222 
292 
370 
460 
578 
751 
847 
1050 

Prom a state estimation viewpoint, N = 28 provides the best 
accurrcy. Overall, considering state, parameter and ease of co8putatioa, 

N = 8 is best. Figure 3 shows the character of EYBN(r) for selected 

values of N. 
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Example 3: EstiMte both E1(r) and Ez(e). N d n a l  parameters 
are obtained aa before for N = 4 from 

s i n  e E p )  = 1 - - 0 

For each N, the f irs t  coefficient, 61 ,  is bcld fixed at its iaitial 
value. Seven parameters are estimated. 

N ItnBN, 6 the, Bcc 

4 
6 
8 

10 
12 
14 
16 
13 
20 
22 
24 
26 

0.0356 
0.0341 
0.0270 
0.0293 
0.0275 
0.0273 
0.0271 

0.0264 
0.0262 
0.0260 
0.0260 

0.0267 

32 . 24 
28.71 
4.42 

13.18 
8.09 
7.45 
7 059 
7.69 
8.04 
7.90 
8.12 
7.47 

40 
67 

168 
209 
236 
337 
411 
490 
567 
65 1 
768 
945 

Again, f r a  overall consideratioxm, N * 8 giver, the beet results. 
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In all examples we have been able to succeesfully estimate the surface 
shape of the model antenna. Similr.. results have been obtaiced where 
random noise (approximately 5% noise level) has been added to the data. 
These and other findings may be f o d  la Section VI of [ 151. 
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FEED ASSEMBLY 
(4 REQU I RED) 

FEED MAST 

UPPER MAST HOOP SUPPORT CABLE 

h O O P  SUPPORT CABLE 

Figure 1 .- Side View of Heypole (Hoop/Column) Antenna. 

Figure 2 .- Maypole (Hoop/Coltimn) Antenna Reflector Surface. 
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N = 4  

RMsN = 4.39% 2 -  FIN = 0.0270m 

11 I I I I 1 I I I 

2 RM*N = 7.58% jMIN = 0.0203m 

0 
I@ 1 5 2 0 2 5 3 0  35 40 45 50 

r, 
Figure 3.- Estimate E1(r) with E2(8)  fixed. 
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