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ABSTRACT 

This Frpcr rdvarxes an approach for stat-e estimation and identification of spatinlly 
distributed parameters embed4ed in static distributed (elliptic) system models. 

The method of maximum likelihood 5 used to  .find parameter values that m u i m i z e  
a likelihood functional for the qstem model, or equivalentiy, that minimize the 
negative logarithm of this functional. To fiad the minimum, a Newton-Raphron search 
is conducted that from an hitid estimate generates a convergent sequence of 
parameter estimates. Central to the numerical search are a gradient functional and a 
Hessian operstor, which are respectively the f i r s t  and second function-space 
derivatives of the negative-log likelihood fpactionrl with respect to the parameter 
distributions being identified. For simplicityc a Gauss-Mar'rov approach irr used to  
approximate the Hessian in t e r m  of prodoctt of f i r s t  derivatives. The gradient and 
approximate Hessian are compnted by f i r s t  arraDdlzLg the negative-log likelihood 
functional into a form based on the -re-root factorization of the predicted 
covariance of the measurement process. The resulting data-processtisg approach, 
referred to here by the new term of predicted-data-corrrhnce rarun-root filterin& 
maker the gradient and rpproximete Hessian calculations very simple. Since the 
parameter estimates are only approximations to the actual parameter vaLOCs, there is A 
parameter estimation e m r  inherent in ohe estimation process. Ciamer-Rro bounds are 
obtained for the covariance of the estimation error in term8 of the informrtion 
operator associated with the likelihood functional. There error covariance boards are 
then used to outline methods for optimal input design. 

A closely related set of state estimates is also produced by the maximum likelihood 
method: rmocthed e s t b t e s  that are cptinul in a conditional mean tense and filtered 
estimates that emerge from the predicted-data-covrrhnce square-root filter. The 
terms 'smoothed' and "filtered" are used because the fonnrrlu which generate these 
estimates, when expressed in operator notation, are symbolically very similar to those 
used in filtering and smoothing for linear dynmnical rgstemr. A key sirrd.hrity is the 
presence of a predictor-corrector rtrocture conuinlag estimator gains that, as in a 
K a h n  filter, can be expressed in terms of the state estimation error covari.nces. In 
addition, a residual procem can be definedc in the usual way, as .the difference between 
the actual d r u  and the predicted data obtained from the filtered state estimate. The 
residu~b have properties nearty idattical to those of an hovationr process: the 
residuals are whits with a unit covariance; and the residuals and measurements can be 
obtained from each other by means of reciprocal linear transformrtionr. Because these 
tranrfonrutionr &re not Volterra (causaU, the residuala are not a boar fide bovrtions 
process. Even though they are not a true irpnovaUonr procem, the residuals are very 
useful- because they lead to itate a d  parameter estimathn scheme8 for elliptic 
systems that retain conceptually the rimpllcity of those obtained by the innovatiom 
approach to fllteriry, smoothing and identification for h e a r  dparmical systems. 
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1. INTRODtJCTION AND SUMMARY 

The elliptic models considered in thi8 paper can be cast a8 

where A is a formally 8elf-8djOht elliptic differential operator defined over the 8pati.l 
domain Q; B and C are approprhtely dimclruioned operaton that model the influence of 
the process e m r  o and the input f on the state w H is an operator that characterher 
the S U % ~ - ~ O - Q ~ ~ ~ ~ V ~ ~ . ~ O X U  nupi o and n are nhtte-nobe model errors formlag the model 
error vector t=[o,n]; a d  f is a deterministic iapPt. Bumpl6r of the application of rrrch 
models tc the problem of static ahape determirution of &me -ace renrcturer are 
contained in Ref. 111. 

The central aim here is *to develop n maximum-likelihood approacb to the 
estimation of the parameters 8 (there parameters could in general be spatially 
distributed) by using the data 9 and the qstem d e l  itdelf. It i s  awumed thrr the vpe 
vrhre eo of +he parameter 8 is a determinlrtic but poorly known quantity. The input f 
can be ralected to optimize the data generated for estkzation. A related but somewhat 
seconderg a h  it fo develop a m e t b d o l o ~  for compz#rtfon of the c o r r e m  8tAt.e 
estinuter. 

h Formula for the Negative-LoR L b U h o o d  Ram 

lt will be shown in Sec. 3 that thc neaative-lo8 likelihood functional is specified by 

when 

where 
Predicted-Drta-Cov~rhnce Sawre-Root Form of the Likelihood Ratio 

i d c a t e r  an innat product in the fixaction space to wbich the data belopllr. 

A number of alternative formal.? ior ths nS8atiVS-lOg likelihood functional are 
developed in Sec. 4. To wlve the above minimization problem, the mort convdenlt 
fonmP1. L: 
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(1.4) 

where 

Equation (1.5) can be viewed as specifying a filter, characterized by the operator L(8), 
that processes the data y and the suspected mean m(8) to  provide a ‘filtered’ state 
estimate de,. Thi8 filter L(8) wi l l  hereafter be referred t o  a8 the predicied 
data -covariance square-root filter because the key calculation required to  tptcify L(81, 
as in (1.61, is the evaluation of the square-root of the predicted-data-covariance 
operator [I+B(6)]. The equivalence between (1.3) m n d  (1.4) can be esublished by 
substitution of (1.5) and (1.6) into (1.4). 

Mcte for later reference that the definitions in (1.6) imply tbst K(8) and L(8) are 
related by 

[I+K(e)]-’ = I-L(8). (1.7) 

Furthermore, (1.7) implies that K(8) = Lle)+K(e)L48) = L(8)tL@)K(€3i. 

Gradient of the Likelihood Functional 

The gradient functional aJ /a ,  t o  be defined more completely in Secs. 5 and 6, is 
specified by 

where 

with 9 = y-m, and a L / a ,  am/* be@ the function-space Frechet derivatives of L and 
m. These equations can be obuined from (1.4) by faction-space differentiation with 
respect to  0. 

The gradient functional aJ(B;y)/a in (1.8) Ls the Frechet derivative [2) of the functional 
J with respect to the parameter 8. The derivative is a linear transformation (a8rumed 
to  be bounded) that map8 an adnxbaible parameter perturbation be into the 
corresponding perturbation 6J(0,be;y) of the likelihood functional by means of the 
equation 6 Jte,M;y) = [aJte;y)/a] be. Detailed computation of the function-space 
derivatives above i s  condncted in Sec. 6 arw a perturbation analysis of the 
eigemyatem of the covariance operator II - H@BB*O*H* obtained in Sec. 5. 
Note that in Sec. 7 it will be established that 
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so that the expected value of the gradient vanishes a t  the optim~l  parameter value 8,. 

Hessian of the Likelihood Functional 

Similarly, differentiation of (1.8) leads to 

tWae*taa/ ae), (1.11) 

and t o  its expected v r b  a t  &eo of M(0$ = B[a' J/a02]lexe , Le., 
0 

Furthermore, substitntion of (1.9) in the last term of (1.13) leads to 

Note that the expected valw of ?.he Hessian operator a'J/W2 evaluated at O=ec is a 

sum of two terms each of which is positive definite. Consequently, in 4 prababillrtic 
sense nude precbe by (1.131, the likelihood ftmctifmal is strictly convex in ths vfctnfto 
of the optimal value &eo. Note that by definit.bn Weo) in (1.13) is also the 
information operator arrocirted with the likelihuod functional. 

Newtori-R8~hson Search for the O ~ t i m r l  Parameter BSt iuute8  

Since the problem of minimhation of Jt0sy) in (1.4) has no clored-form solutio& it is 
nacesmry to consider iterative numerical search techuiques for o p t i d ~ ~ t i o n .  The 
following constitutes a function-upace Neuton-Paphtan iteratioa: 

(1.14) 

where 8n = aJ(#;y)/a is the gradient functional (1.8) evaluated a t  e=& and where 

i s  an approximation to the Hessian operator a a J / a 2  in (1.11). Thit approximation i s  
obtained from (1.12) by tsphcina the second term B[(aZ*/ae)@z/W)J with the rctrul 
value [CaZ*/a)tae/a)J obtained in a ri4sle realization. Under certain coaditiom, to be 
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examined in more detail in future work, the sequence en specified by (1.14) converges 
to  A 1 0 C d  InhbUXI of J(8;y), If the initid e s t h t e  used to  start the search 
sufficiently close to  the optimal value. 

Cramer- RAO Bounds and 0Ptimal Input Desim 

The above nametical search results in an estimate 8 of the actual parameter value eo. 
In Sec. 7, A C-R bound for the covariance B(8 8 *) of the estimation error €3 = 8-e0 is 
obtained from the inequality. 

P P  P 

where the information opera 31: M(80) is  specified in (1.131. The related mca-square 

estimation error is bounded by B(8 *8 1 L TrfM-'(e0)]. 
P P  

The informrtion operator M(eo) can a&o be wed t o  specify C i i t e r i A  for optimal input 
design. Perhaps the simplest optimal selection method to imglement i s  that which 
seeks to maximize Tt [M(e,)] with respect to  f ,  subject to  the constraint that f sati8fy 
Ihe normalization condition of f*f=l.  Thh method results in an optimrl f which is the 
eigenvector correspsnding t o  the largest eigenvaiue of a positive-definite matrix 
described in detail in Sec. 7. Other criteria for optimal selection based on calculation 
of M-'(80) may be more d i f f i d t  t o  implement but tmully lead t o  superior 
performance. 

mhe Corresponding State EIIthUteS 

Related to  the parameter es tSmsth  approach are the followiry two distinct state 
estimates (denoted by uo AM zo1: 

where C and g are Krlman-like gab2 (see Sec. 8) specified by 

G = 1 8in2%\@k*, g = (1-C08\)\@k*. (1.18) 

h these equtionr, Ot. are the eigenvectors of the operator EL - H@BB*QH*, so that 

Ai@k, with A; being the related eigenvalws. Also, \ and \ are defined by 

The #Ute  estimate uo s MWy) is defined as the conditional expectation of the state 
given the data y. Since uo is an optimal esttmrte of u base6 on the entire data set (as 
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opposed to a mbret), uo can be vieued a8 a best pnoothed ertimate. The other 
ertiuute, 2Q in (1.171, will be referred to u filtarea r u t e  eatbate. Th3 filtered 
ertim~te has no known probabilbtic intefpreution rimilrr to uo - B(W) above. 
However, in spite of the apparent lack of probaMllrtic mmlplt, thir ertirrute is rueful 

in Sec. 8 that zo in (1.17) .ob I, the estimate emerging from 
the predacted-data-covrrhnce 8 ~ 1 ~ r e - m o t  filter, are related by 3 - €bo. Hencel xo is 

a born fide estfnute of the entire state ,  whereas % - &o ir 8 parti.1 ertimate defined 

8@U9h# tb 8r-t A d  Hetrira Crk&tfW (1.8) md (1.11). It dl bo 8h- 

only a t  the observation locations. 

Kahaa-Ue Gains rad Error Covarhnces 

The 8riPr G a d  g in (1.17) can altemtively be specified in term8 of the 
covariance of the state ertirrstion error inherent in-uo and to, Le., 

G = PH*, 
where 

The corretponding mean-rqurre state ertiuution error is 

B[(u-uo~*(u-uo)] = Tr [PI, B[(u-xo)~u-aol] I Tr @pel. (1.211 

Pufthcrmore, Y a d  p are related by 

Since the term pHfHp io rum-negative, the mean-s~~rrs estimation e m r  auocirted 
with the smoothed e r t h t e  uo is 069er hreer than thrt of the ffltared estimate to. 

Pilterina a d  Smoothiq 

While uo a d  p0 have been defined s o w  that independently in (1.171, they are 
related by: 

u = Z  +pH*e, (1.23, 
0 0  

where 

k the residual process defined a8 the difference between the data 9 and the 
obreroad-state eotimrta fro. The symbol 9 in (1.34) denotes  the^ mean-centered data 
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process 9 = y - H W f .  It will be shown in Sec. 8 that (1.22) and (1.23) constitute a 
generalization to  elliptic rystemr of the forwrrd/backward weep m e W  for solution 
of smoothLng problem in linear dpnrmical rystemr. 

The Residuals as b Pseudo-humvations Process 

The residuals in Bq. (1.24) have two propexties that are rimil~r (but not identical) 
t o  those of an innovations process: 

E(ee*) = I, (1.25) 

e = (I - L) j jc f = (I + E)e. (1.26) 

Eq. (1.25) reflects W B ? -  *I8 Of the ~ 8 h d S .  Bq. (1.26) rate8 th.t th8 rS3idUal .nd 
mean-centered data pmccrser e and 9 can be obtained from each othbr by mea01 of 
reciDroca1 transfomtions, i.e., (I + ~ 1 - l  = (E. - L) as in (1.71. ~ ~ e n e s s  of the 
innovations and reciprocal rektionships between hnovatFonr and measurements are the 
two central features of the innovations approach to least-rqumrer estimation for linear 
dpLlmica1 systems. Bqs. (1,251 and (1.26) are similrr to these conditions. Howeverc 
there is a key difference: the transformation8 (I t XU md CI - L) in (1.26) are Predholm 
operators whose domain is the entire measurement space. Thlr is in contrast to the 
Volterra (causal) operators in the hnovatiorrr approach for h e a r  dpPImtca1 systems. 
The notion of causality ft not even used in this paper, although such a notion can be 
defined for certain classes of elliptic systems [L]. Becaore of thir difference the 
residual process it not a bo- fide inmovationr proceu. Emever, the resislul process is 
stili useful in 0 b t . W  the relatively simple foz'xdat in (1.8) - (1.26) for filter& 
smoothing and identification. 

Pwer Outlinq 

This section has a t  a su.nriury level addressed miry of the fundamental iur;er involved 
in the mrximum likeltaod approach *to est,imation. The mbsequent section€ of the 
prpar c o n t a i  a more coraglete dercr'rption of the above mdts. 

Sectiong. Development of the mrthemrtical framework -- inclnding integral 
operator models, a priori covrrbnce analysis with white-noise ?nodel erron, Fredholm 
resolvenu, and eigenfuaction expaarionr -- required to arrive at  formrrlr (1.3) f w  tho 
likelihood functional and t o  evaluate the corre8podxug ftmction+prce gradient in (1.8) 
b d  the rpproxim8te Htrrkn Ln (1.15). 

Section3. Deriv&oioa of the negative-log likelihood functional in (1.31. Thir 
functional is the negative logrrithn of the Ukem9d ratioc urociated with the 
detection of a Gaussian s-1 in additive Gaturkn mise, trditiok.lly encountered in 
the theory for cornmuaication and signal detection. 

Sectiou4. Development of alternative forxxmlas for the likelihod ratio, some of 
which are more convenient t o  use than (1.3) in implement4 the numerical search for 
optirnizatioa -- in p a t t i c S r ,  development of the predicted-dau-covrti*nce 
)auare-root filter form i1.4) upon which tha NsWton-Rapbr~ search L brsed. 
Add~tiltrul farm8 of the likelihood ratio which mre of interest in their own right 
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(although not subsequently used in the paper) are: a smoothing form exprerrred in terms 
of the best man-squats state estimrter an eigearprtem erpans!.n form bared on the 
eignenvalues and eigenvectors of the operator B-H@BB*@*H* in (1.3); a trigonometric 
operator form with which most of &e mrnipuhtionrr involved in the mrximum likelihood 
approach can be visualized using their similarities to simple trigonometric formulas fo- 
scalars. 

Sections. Development of a first-order perturbation annl9sis t o  evaluate the 
infinitesimal changes in the eigensystem of the operator R=H@BB*WH* in (1.3) due kr 
similarly small changes be in the parameter distributions bekrg identified. This is the 
central calculation required to compute the function-space gradients a J / a ,  Wa, 
a L / a  and a m / a  ‘JI (1.8) and (1.9). 

Section 6. Calc~~lation of the gradient functioml a d  approdmrte Hessian of the 
likelihood functional based on the pcrturbstion analysis of SCC. 5. There are the two 
calculations whlch are central to  Smplcmentatiod of the Nawton-Paphton search a d  
which have been used as a bash for computer programs to implement the mucmtUa 
likelihood approach. 

Section 7. Parameter estimtion error covariance ana&& a d  Cramer-Rao boundr 
based on explicit formulas for Zhe Hesrhn (informrtlon) operator in (1.13). Outline of 
un optimal input design approach based on us@ tbc! Crrmer-Rro l?ousid as &n OptiaUrUty 
criterion. 

Section8. Aarlyrir of the filtered and smoothed state enfmrter embedded h the 
parrrmeter estimation approach. Amlysir  of the predicted-dau -covaiirncc square-rtmt 
filter resulting in Kalmm-IlLe formula9 for the filter grin, esrhuticm of the sta te  
estimation error covariance, and rehtdoXUhip8 betwoen filtensd md smoothed e s ~ t 8 ~ .  

Section9. 
the n\\a.efical search for the optimal esthates.  

S w m a r y  a d  explanution of ca1culBtfonr required for hnp1exnentatiOn of 

Section 10. Conclusions and directions for future work in tba r x a a  of development of 
as: iptotk propeflies of the e r t h a t t s  a d  of optimal @ U t  de8igL 

The aim of this section is to dcvemp L set cf onircehneous results that will be useful in 
subsequent sections in conductw detailed derivation of: Zhe negative-log likelihood 
functional in (1.3) eo be minimiaed, the corresponding function-space #radiant in (1,8h 
and the approximate Hesrirn operator in (1.15). The main result8 of the section can be 
summarized as follows: 

e conversion of the pareid differential operator model in (1.1) to an 
equivalent integral operator formulation. TLnir in’cegrrl operator 
formulation is introduced because it simplifies the statement and solution 
of the estimation problem in (1.1) - (1.3). 
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0 evaluation of the observed state covariance operator B=H@BB*@*H* In 
(1.31, under the assumption that E = [c,n] is a spatially distributed 
white-noise process with a unit covariance operator. Related to evalurtim 
of this covrficrce operator B is the similar evaluati- of the mpacted 
mean m = d@Cf in (1.3). 

0 evaluation of the dual observed-state covariance operator Q=B*@*H*H@B 
- which can be vie;.;ad as &he covariance of the outrut of a system model 
dual to (1.11, unde the rrrmmption that t h i 8  dual apstem is driven by a 
white-noise process. 

e def*inition of two sets of eigenvectors qk and qk of R and Q above, with ).; 
being a set of common eigenvalues. 'ihese two sets of vecwrn can be used 
to  expand functions in the input space H1 and the outpm space Hg. 

* 
definition of i Y e  vectors \ and pi in the state rpace ti2 and its dual IT7., 

related to tJrk and 9, above by 5 = Xi14bBWk rile pk = XiL@*H%k. 
two sets of vectors \ and pt satisfy a boundorg-value problem 4hLar  t o  

those traditionally encountered as necessdlry and sufficient coxLdJ.ions for 
optimality in quat atic optimal control rad estimrtion problem subject GO 

linear constrair .I. 

8 analysis cf the basic relrti.onship betwsen R and Q above and thslr 

corresponding Fredholm resolvents 'P a d  S defined a8 P = I-(I+R1-A and 

s = I -(1+~)-'. BxpArrton of the operators EL, Q, P and s in terns  of a e  
eigenfunctions et qk defined above. 

0 development of trigonometric operator f o m  for B and P. There 
trigonometric forms allow dsvelopment of ir' westing trigonometric 
alternatives ta  (1.3) in evaluating the likelihood IP' ,tmul. 

W d e  the section concentrRtes on the development of a mathematical framework to be 
used kn subsequent sections, uuny of tine above result8 (such as tht trigommettic 
operrtor fannulns for the covarbnce operaton) are of interest in their OWD a h t ,  
sornewbt indepenlent!j cf thetr wbmquent epplication. 

Hilbert Space Notation 

There are three Hilbert aprcer of gximary interest: Lhe'lqFut llpscc HI to wMc% 
the process error o ~ n d  the aeterdnbt ic  hput  f b5long; the state space H2 conutning 

the state u; end the measurement space H3 where the data y a d  tho obsewrt i~n error 
n belong. The h e r  ptoduct between two arbitrary elements u a d  v Ln the space Hi is 
denoted by <u,v>i or by tho simpler notation u*v = <u,v>~. Similarly, uv* denotes a 

Hilbert space outer product. 
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Conversion to htenral Operator Mdcd 

It is convenient for subsequent developments to convert (1.1) to an equivalent 
integral operator formuhtion. 'Po this end, define the Green'r function #WE) of A at 
the sdution of 

wher.: 6 is the impulsi-!e deita function, and where the mbscript x in Ax donotes that 

the spatiril differentiations embedded in A are performed witb respect to x (a8 opposed 
t o  being performed with respect to I ) .  Define then the mcegral operator 9 whore 
kernel is the Green' 8 function, i.e., 

for all admissible functions v. Note that 9 is the integrrl operator such that A@ = I, 
-where I is the appropriately dimensioned identity. 

With these definitions a t  h.&, it is possible to recut  11.1) and (1.2) as 

where m(8) is the *suspected mean" 

Equation (2.3) can be c&st inro tte € c l l ~ - ~ i n g  even more compact no*c;stion 

Predicted-Data Mun unl Covariance 

The evalartion of the predicted mean rrd covariance of J ,  needed as a preliminary 
step to arrive at (1.3), k based on the key asmmption that the mode1 error vector t .I 
[o,n) is a zero-mean spatially distributed white-mise process whose covariance 
operator E(ct*) is the identity, i.e., 

where I is the appropriately clmsnrioned identity. Note tht tW dnunption tr not a t  
all rertrictiwe, because the more ~eneral  c u e  where the model emn t = [o,n] are 
correlated (with a nonidentity covfirirnce operator) can be hadled within the came 
formulation hv rebetion of the operator B in (1.1). It is assumed here that BB* is 
bounded a d  trace-clast, with kernel bWt)  s a t b f y ~  I, b(.hM. <-. 
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Remark 2.1 The process J is a random field with mean and covarhnce specified as 

E(y) = mW, E((p-m(8)] I(y-m(8)]*1 = I+ R(8), (2.7) 

where R ( 8 )  = H(8)~8)B(8)B*(8)9Y8)H*(8) .  Thrt E(y1 = m follows from (2.5) and the 
fact that E is zero-mean. The second of Bqs. (2.2) follows from the following sequence 
of operaticns: E[(y-m)(y-m)*] = B[hcc*b*] = hE(cclh* = hh* = I+B. A more detailed 
development of the above resuk is contained in Ref. 11). 

Remark 2.2 
field with mean and covariance tptcifiea by 

The process u in (1.11, r3preeenting the s u t e  of the system, ir a n d o m  

Note that the ttrte covariance 
(2.8) are related by 

and the 'observed-state" covariance B in (2.7) and 

Remark 2.2 The state covariance ii tatitfie8 the partial differential equation 

ARA* = BB*, (2.11) 

A result which can be established by pre-multiplication of # in f2.9) by A and 
subseqwtlt post-multiplication by A*. 

Bemark2.4 
integral operator 

The state covariance operator @ can be represented as the following 

Biv = I, rCx/f) V ( E h g ,  (2.12) 

where the kernel rW[) satirfies 

and where b(x/E) is the kernel of BB*. This result c m  be established by means of the 
following sequence of operations. Consider an admissible function P (adminible in the 
seme that i; can be operated on by the operaton A&A* and BB* in (2.11) 80 that 
ARA% = BB*V makes sense). In t e r n  of the corregonding kernels r and b, this last 
equation be comes 

(2.14) 

I '  where the f i r s t  eqwlity is valid because by definition A * is  the formal adjoint cf A 

Since 8q. (2.14) must be valid for all rdmirsible v, then (2.14) implies (2.13). 
c 
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Remark 2.5 The state covariance kernel r in (2.12) CUL be expremed u 

* 

c w PROCESS 

where @ t the Green's fwmioa of A, d b i s  the kernel ol BB*. Tbia redt can be 
established By -re- (2.9) in term of the operator kernat 9 amt b of 0 .ad BB* 
rrd by robsequent reverul of the order of integration. 

Hu SERVED 

(2.16) 

8 ERROR 

where the spmnution is taken over the dbmrbace locationt. 

Q, &E 
, i L 

5 D U M  '. 'STATE '' r! OBSERVATION, ,,. 
ERROR 

L - 
8. h BSERWD 

!UALsiAlE 
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The primal system model is based 00 (2.31, with o, u and €Io dmt ing  the process eftor, 
the system state, and the observed ata te  respectively. For this IILD4e1, = E(uuq i s  the 
covariance of the s t r t e ,  ui& R = HgH* is the correspodhq~ covariance of tht 
observed state. It  is assumed €or the sake of this dircpuion that the determfnirtic inpat 
f in (1.1) has been set to aero, SQ that the swpectd mbm rn in (2.3) i8 zero also. With 
this assumption, it i s  not necessary to show m in the block -am in PQ. 2.1, .ab tbe 
rehtionthig between the priMl and b 1  models is ilhwrated more easily. Ths bp.i 
system model is chancterittd by the dud operators If+, W and B*, by the &as1 or 
adjoint sta te  A, rad by the observed dud state B * L  It  i s  usumed that the &A model 
is  driven by a tmit-corarbnce nhite-noire process so that B(llpq = I. Thir lnppt process 
n drivhq :he dual model can be thou@a of u being the obrervation error process in 
(2.3:. For this dual model, 0 = B(hA*) a d  Q = B(B*XA*B) are respectireiy the 
covariances of the state h and the o'oreroed s t a t e  BfL Upon dtiplication of A in 
Fie. 2.1 by A*, the following p a w l  differential equation8 remlt to describe the dud 
model 

A*k = H%. (2.16) 

Note that the dual state covariance 0 = .ad the dnal obrerred-state 
covariance Q = BW*H*H@B are nkted by 

Q = B*QB. (2.19) 

In the same spirit used to rmve at (2.11)-(2.16), it is now possible t3 develop the 
folloning properties of the operator Q rod its corrtspodiq~ kernel q. 

Remark 2.7 The dual-state cotrrhnce oper8tot 0 ratbfier 

A*QA = H*Hl (2.20) 

a result which can be obtained from 0 = @*H'H@ in (2.17) upon maltiplicatioa 
by A*( *)A. 

Remark 2.8 In termt of its kernel q, the opentor 6 can be expressed 88 

& = I, cl(w'fMt'Mtr, (2.21) 

where q satisfies the differcn*&l equation 

and uhere h(f/x) i s  the kernel of H*H. Thsr nsolt can be established by an amroach 
quite 8imil.r to that used in arriviq at (2.13). Thc 8-1 v denotes a ~ a h  an 
admissible function defined to be admissible if (2.21) makes sense. 

EenurB 2.9 The kernel q ( E M  of can be expressed as 
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(2.24) 

where the muaxnation is  t.&m met the ret of tsnrorlocatiom. 

with % being the con- e&smectort. Note *ht, In cuas where H hu a 

finite-- * rat, the operator R is  an N-by-N xmtzix with a finite marrhrr of 
euenvectorr. In the more @merd c u b  u&re obs m e  of H k Mfnftalbimsarf0ll.L 
thm R is pmrlly compact a d  s+O u b-. In both of these cues, the f o m  
Mercer expansions bold for E and its kernel r 

Furthermore, the normalized eigemecton + form an ortbmrzml buL for the 

observation space %. Tbir impbt that C %%* - I, where I i a  the identity in %. 

Closeiy related to the buit @k abme us the dud racton vk defined u 

~euurk3.11 
obraned-state corerlance Q = BW%W@B, Le., 

n;C vectors qL defined by (2.27) are +.&e s~mvectoit of the dual 

W k  (2.28) 

332 



This result can be established by premultiplication of (2.27) by H@B and use of the 
condition R@k = '.:ek. Note that, if the dimentian of the 4 m t  space HI ir m a t e r  
than that of the output space Hg, then the qk do not span the input space. They do, 
however, span the ranee subspace of the operator BWrH*. Conrcqucntly, they curnot 
be used to expad vectors in the null space of HaB. 

Remark 2.12 The vectors *k are a t o  related to ak by the equ8t.i- 

(2.29) 

a nsalt that can be obtaiped from (2.27) upon pl'eomltipllc8tion the operrrtor H@B 
use of the condition R% = 

Remark2.13 
can be expressed as 

The dual-state corariurce operator Q .rd its corn- kernel q 

a set of equations which are 8rulog;Ou to (2.26). Thb redt can be obtained from the 

observation that Q = B*a*H*H@B = B W H *  (C *kqk*. Use has 
been nude of the condition E ek%* = L 

HaB = C 

The vectors +k span the ohsenration space %. while the vectors vk do not 
span the input space H1, they do span the range of B W .  So far, no at- hu 
been made to obtain vectors that can be used to e r p d  functions in the state space 5 
or in its dual space Ha*. To this d, define 

The Vector \ b b the $Ut& space thr, 8 d ) O b t  V8fbbh8 pk UC b th!! dorl 

space. In general, neither one of these two vectors however spuu the state space 'fa. 

EL-& 2.14 T b  vectors xL d p am oitborro-1 with m&Ct to H*H 8Ild BB* 
respectively, Le., 

%*H*Hx, = 0, 

= 1, 

- 0, 

- 1. 

(2.32) 

(2.33) 
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Then, substitution of (3.34) in (2.36) implies (2.35) 

Note the similarity between this problem a.3 those tnditFonrllp encmterud u 
necessary ( a d  at times sufficient) corditirJIpr for optimaliw in -tic optimal 
control and estimation problemr for lfneu ryrtams. 

In terms of the zorrespcding kernels r a d  p, tbase equation8 become 

(2.38) 

for the case with continuously dinributed data. In cases with discrete data, P and P. 
are matrices whose general elements P and Ptm are related by k.m 

(2.39) 
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In both cf there equations (2.38) a d  (2.39). the unknown i s  the Predholna rerolvent P, 
whereac the obrerved-rkte covariance kernel EL i.8 known. 

Remark 2.17 
result, which can be stated a8 

The integral operator EL and iu Predholm rarolvent P commute. This 

R P  = PR, (2.40) 

is a direct consequence of (2.37). 

Remark 2.18 Equations (2.37) also imply that 

P = ( I + R ) - ~ R  = R(I+R)-', R = (I-P)-'P = PGPI-'. (2.41) 

Remark2.19 (2.411, it is portible to define the 
resolvent S of the dual-state covariance operator Q by the rehtiomhip (I+Q)-' = L S  
which implies 

In a manner analogou8 to (2.37) 

Q = S + Q S ,  Q = S + SQ, SQ = QS, (2.42) 

and 

s = ~I+Q)-'Q = Q~I+Q)-', Q (I-SI-~S = sa-si-'. (2.43) 

Remark 2.20 The Fredholm rerolvent.8 P and S can be expressed at 

These expansion8 can be ertablbhed by 8 u b r t b ~  (2.26) and (2.30) into (2.37) and 
(2.4 1). 

TriRonometric Operator Fonnr 

Remark 2.21 The predicted-data-covariance operator (I+E) can Le exprerred br 

I + R = I +  TAN'a = SBC'a, 

where TAN'a and SBC2a are the operators 

(2.46) 

(2.4?) 
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and tan ~ 1 :  is defined by tan % - kk. Note aho for later teference that 

Proof: A # 8 c = & k n  'a @ @ < thereby e r t r b l i r ~  (2.47). Use 

of the formal expresrion I = & ekek*for the identity I implie8 tibat cf+JL) = & (l+flln2\) 
+k+k*, which leads to (2.46). B q u t i w  (2.48) are obkhed from (2.46) and (2.47) by 
performance of the square-root operation. 

Lecall that R = 

Pemvrk 2.22 
operator R can be expressed as 

;he Predholm resolvent defined as P = I - (I+R) -'of the covariance 

where SIN2a is the operator defined by the expaasion 

- Proof: This r e d t  can be established by substitution of tan2% = k: in (2.44). 

Remark 2.23 BqtmUoar (2.47) and (2.48) togethar i m ~ i y  that 

P = B(I+R)-' = TAN2a[I+TAN2a]-' = TAN2= [SBC'a]-' I SIN'a, (3.51) 

a trigonometric operator identity that can be viewed as a 8eneraUation of a h i l a r  
identity involving scakrr. 

3. DBPIVATION OF THB LIKBLXHOOD PUN c m o w  
Based on the ndt8 of the preview section, it is now pouible to derive the 

likelihood functioarl in (1.3) to be minimind. Since the development required to 
achieve this is fairly lengthy, it k convenient to SrUrpMrjre in advance the pivotal steps 
involved in the derivation: 

0 the integral operator mode! 7 = m + HBBo + n in (2.8) is f i r s t  coverted into an 
equivalent 'spectral" foxm yk - 5 + Akak + 'fr( ivhere yk - ek9, oL = 

wk+o, 5 = +k*' n are the correspaidirq wectral coefficients. 

the spectral coefficient8 pk of the d r u  y are a reqwnce of independent 

Gaursirn raudom vaxiables with muan B(yk) - a+ covariance CY; - 1 + A; and 

probability denrity pk(yk;8) - T 
-'/BCY-1 

8- [-(yk-tnQ"/2a;] 
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0 a "finite-dimensional' Ukelkhood ratio is then defined 88 the prduct  O f  8 
finite number N of terms involving the probability dsmities p (y ;e) above. k k  

an 'infinite-dimensional" likdihood ratio is Gbtained by let- the number N 
of spectral coefficients approach infinity. The related negative-lo8 
likelihood functieM1 in (1.3) is obuined by taking the negative logarithm of 
the functional that. results from the limiting process. Of come, 1 8  cases 
where the data b finite-dimensional (obtoitad by means of a finite number of 
discretely located measurements), the limiting procerr involved in this krt 
step is not necessary. In tBi, case, the 'finite-dimensional' likeUhood 
function obtained tE the previous step i s  the fumxion to be minirniaed to 
obtain the parameter estimates. 

The remaindc 
result& 

of this rection contains a more detailed derivation of the foregoing 

Recall that 

y = m t H @ B o + n ,  (3.1) 

where m = H@Cf and f ir tbe input. A8 outlined sbove, the f i n t  stpp toward evsfartfng 
the likelihood function ir to convert (3.1) into an eqnivalent 'spectral' form by wing .he 
eigenvectors +k a d  Wk, Le., 

Substitution of (3.2) and (3.1) and premultiplication of (3.1) by +k* lead8 to 

Result 3.1 s , % and % are independent Gau88hn random varlrbler with mean a d  
covriu*icc given by 

MEAN COVARIANCE 

where f = yk - 9 Hence, yk is a sequence of independent Gawrira random vafbbler 

with mea= p4: and covariance 1 t 1;. 
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N Let 9 J [yl, ...,yN] be an N-dimearionrl vector conriot&g of the f h t  N rpeetral 
coefficients yi ob the data 9. Becalue yk are independent Go an random variables 

with mean % and covariance a; = 1 + Lk, their corretpoodiqj probcbiUty dsaritSar 

pk(yk;B) = wJ%iAexp (-7;?2ai) can be dt ip! icd  to obtain the pnobaMlltg density 

p(y ;6) of tbe composite Ebdimemfonrl vector ]I , Le., 

a 

N N 

In order to obtain a likelihood funetionrl for ,ta4 identification problem with the 

would be in the Unit a probability density ftmcdoxul (PDF) for tha mcew p. 
Unfortuartely, thia limit -9 not erirt bccarrro the ri@it ride of (3.4) ma9 not comcqa 
as N*, and con8equently s PDF for tha procerr y csrmot be defined !a tbir nunnet. 

function-rpace ptoCe88 9 a8 the d8t.v it WOUld bt derirrble to &M W 8ad O h &  nzIt 

However, this can be circumvented by divibn# by 

This results in 

N which can be viewed 88 a likelihood ratio cOnrirtin8 of the PDF of the proceu 9 with 

the “8k3tu1BU ok and 5 nonzero, divided by the r i m h r  PDF of yN Vrith ?he 8-l8 ok 
and 5 set t o  zero. The term likelihood ratfa rrred to dercribs (3.6) i8 COarbtant with 

terminology common in the thecry for detection of Caorrtm rl~pult in additive 
Caurrirn noise [SI. 

bl N 
Uth0W.h the limit8 of p(9 ;e> m n d  p0(9 ;a) appsrriry rerpectivsiy in (3.4) and (3.5) -7 

not erirt when taken inde;.endcntly, the limit of their ratio in (8.6) ia a well-defined 
quantity npecified by 

338 



This Is the desired erpression for the l i k e b o d  ratio that the n w t m u m - k  h o d  
method seeb to maximize. It  can be interpreted as the likelihood ratio far the 
detection of the "slgnrl' m t H@Bo in (3.11, in the preeance of the noisy Gaussian signal 
n. Insteed of maximizing h(y;8) directly, it k more convenient to minimize the 
negrtive-log likelihood factional defined as J(8;y) - -log [h(yi(31], or, more a@licltly, 

Note thvt for the special case with no deternjnirtic bp&ti .=m=O in (3.11, and the 
negrtive-log likelihood in (3.8) r4ucer  to 

where P(8)  = I - [ItR(t))]-' is the previauly defmed (in Sec. 2) Fredholm resolvent uf 
the prcdicted-drta-covariance operator B. 

Tbe first tern. ib both of these h s t  two equations can be cart into an equivalent and 
somewhat more convenietlr form 'q -=e of the identity [4] 

Substitution of (3.10) in (3.9) leads to 

which has been recorded previourly a8 (1.3) a d  conatitutbr the central aim of thi8 
section. 

B eorientrtion 

The method of mximurn lihlihood, a8 defined here, results in cstinrtes that 
minimize J(8;y) in (3.11). Thb minimization problem can be viewed (IS A function-space 
nonlinear programming problem subject to the 8ystern model conatraint.8 that 

soiurion tG this problenl erlrt.8, it i8 nece8sary to u8e .numerical method8 for 
optimization. However, &ere o u t  alterartivs formulrs for the I l l e lbod  retio tlut 
are more convenient to w e  in the imgiementation of the wmericrl znethods. Such 
formulas are developed in the following section. 

~ ( 8 )  = M(e)9(e)*(e)B*(e)~*(e)~*(e) and m W  = ~(e )@(e)c (e ) f .  Since no closed- form 
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SPECTRAL 

SQUAPB-ROOT 
PILTBP 

TPIGONO&X3TPIC 
OPERATOR 

In the above table, the bas?c tonrmlr t expressed in termr of the suspected mean m a d  
covariance ItB = I t H@BB*@*H* of the data 9. The smmtthg form i s  specified in 
terms of the optimal smoothed estimate uo = E(P/y), representing the c o d i t b a d  mean 

of the statc u given the data y. The twctral fonmrlr ir obtdaed by mjbstitation in (1.3) 
of the eigensywm expamioar P = %ek*, y - zyk+ umi m = E%+ where 1; 
and % are the eigenvalues and ebeavactors of the obseired-state covariance operator 
B. The -re-root filter formalr, p r e w  recordsd in (l.4?, t b u d  on the 

frctorizrtion of the predicted-data-covariance operator u (I+B) - (I+PI%+R;’ and 

ô u the definitions z = Lp t (I-Lhn and (I+K)=(I-L)-’ - Q+P<”. P h U y ,  the 
trinmmetric werator formula ir obkiped from the square-noot filter expression by 
use of the identities ItR - SBC2a and L = I-COSa develogjd in Sec. 2. 

Although the derivation of the above erpreaioru ha& to 8ienific.nt insigh &Soat the 
structure of the likelihood functional, it ir not with3.n the $oops of the paper to 
inver’ig8te all of there alternrtivet to the same level of detail. The formula i m o w  
h e  predicted-data-covariance smare-mt filter appears to ba the most comuabnt to 
implement the numerical rearch for the mtimrl estimates. ’Llhir section, however, rimt 
to first develop the results suxmuriaed ahve. 

Formula8 Bued on the Optimal Smoothec %ate BsUmaea 

B c d t  4.1 The negrtiue-log likelihood function81 can be 4 premed 8s 
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where uo = E ( e )  is tbe ccOGitioru1 erpectrtion of the state u dven the data 9, and G is 

the estimator gain. 

Proof: It will be rrhoun in Sec. 8 that uo in (4.2) is the corditiot.1 meen .nd that G in 
(4.3) is the cornrpoxuling estimator gain. Therefore, for  the sake of the discussion 
here, a m m e  that (4.2) and (4.3) valid. Multiply uo in (4.3) by H and use (4.3) in the 
resulting equation u) obtain 

= HGy t ( I -HGh,  (4.4) 
H'O 

where m = H W f  is as before the suspected mean of the &A 9. However, recall the 
identity HG = HgHWtHEH*)-' = 1 - atH@H*)-' so that I-HG = (ItI3EHq-l - (XtR1-l. 
Hence, substitution of th is lrst identity in 14.5) le& to 

Thit is the central result required to establish the equivalence between (4.1) a d  23.11). 
To thir id, substitute (4.6) into the sccoad term on the at 8ide of (4.11, and observe 
the equivalence with (3.11) by irispeetion. 

where B ( d  I 9 C f  and B(o/p) are respectively the ~ p a c o n d i w  and coadiuarvl expected 
values of the state u. 

Proof: 
the last two t e r m  cm the tight side of (4.1) .ob use of the eqaritioa m = H W f .  

This re8ult can be establirh4d u a corobry to the Result 4.1 by combhhg 

Both of these results express the likelihood fum%.iorul in term of a q.rrmuty uo in (4.2) 
which ia the conditioar- arpectation B(Wy) of the state given the data yo This quantity 
L also known to be the best linear mean-square ert!xtuts as well as the optimal 
least-squarer s t inute .  The coincidence of  the best mean-square est!mte and the 
optinul least-squares est&te, both of which can be computed by the conditional 
expectation formu& (4.21, is explored at  length in Ref. 111. 
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-- Result 4.9 The negative-log likelihood functional c m  be expressed u 

where yk = tpk% and 5 = tpk% are the spectral coefficients of the data .rd thc 

suspected mean m, uu i  A i  a n  the eigenvduts of P. By substitution of \ - in 
(4.81, this equation can be c u t  u 

Proof: 
(3.6) a d  letting N-. Use of the identity Lk = y in (4.8) le& to (4.9). 

Bquation (4.8) can be established by taking the megatire log of MyN@) in 

R e d t  4.4 The negative-log likelihood ratio c m  be expressed u 

(4.10) 

(4.11) 

(4.12) 

as the difference between the data yk a d  the 'filtered' eaimate 9 Observe that ek = 

C O ~ Q L ( ~ ~ - ~ Q  by substitution of (4.11) k (4.12). sllb+titpte tbfr lut eqmtion into the 
second term on the right side of (4.9) to  obtain (4.10). 

The formdr for the likeellhood fpnctionrl in (4.10) can be viewed u the 'spectral' 
version of the predicted-data-corate quare-root formula described below. 
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where use has been made of the fact that (I+R)-' t (I-Lq (I-L). 

Result4.6The operators L .Ild K can be represented in t e r n  of the following 
eigensystem expansions: 

where "+ = tm-')ck. and ek are the eigenvectors of EL. 

(4.18) 

-'/a in and then evaluate the as yet undetermined coefficients \ from L = I - U+R) 
(4.15). To this end, premultiply L in (4.15) by %* and p0mnukipl.y by $bk to obtain 

L, = 1 - (1t)LL) 2 -va = l-co- which is  the desired remlt. 
A 

Similarly, to obtain the desired expansion for K, seek to determine thc coefficients 
in 

K =  1 $ek@k* vrfth \*$bk*K@k. (4.19) 

(4.20) 

where 
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Proof: Recognize that (4.17) implies that 

and use these identities in (4.13) ami (4.14) to obuin (4.20) .Id (4.21) respectively. 

(4.24) 

and as before uL = tan-’$ with $ be- the eigemdue8 of R. 

Selection of Preferred Formark for NIDDlhllc.1 S d -  tiom 

In principle, all of the above forrrmlu for the likellbood f imcthd  J(8v) can be OICd u 
a point of departure to compute the g.diant aJ/ae .ad the correspomlbg Hessian 
a’~/a ’  - .lpd to thereby obtain the necessary iugtedients to implemunt the 
Newton-Rapbon search for optimtutiap. Ths c.lcol.tionr finohed in the mrzlperical 
search can vary significantly, however, dapeadfry on nMch of the form8 i s  d u a 
%tam point. It it therefore of hterest to c h t  a det.ileb tmssc@tion cf the 
relative advant.8es a d  diudvurta8e8 of the vuioor method8 to implement the search 
that arise from the vrricms form of the likelihood functimd. Such an invertbation it 
currently in p r o 8 f i ~ ~  a d  will be mporttd on in future work. In thir paper hanever, the 
formula selected to compute the gradient .ab Hessian is  that bued on the 
predicted-data-covariance sQ\ure-tOot filter in (4.13). 

5. COVARIANCE BIGBNSYSTBM SBNSITlvrrr TO SMALL PA-R CHANGBS 
As a prelim(nrfy to the evaluation of aJ/ae .od a’ J/ae2 involved in the uumerical 

search for optimization, it is necessary to conduct an aztdyrir of the perturbationt 6kk 
~ n d  Mk of the eigenvalue8 and eigenvectors of R = H@BBWcH*, with rerpcct to 

344 



variations de of the parameter dirtribption 8. Such an uulysis will provide tbe 
mathematical tools that will be used in subsequent sections to evehate all26 .ob 

a‘J/a’. 

where the dependence on 8 of EL, % rod Ak hu been explicit. The u U x u t c  objective 
of this section is to develop udyt ica l  formnlu for c.lcpl.tiqj the first-order 

parameter distributions 8. 
wflarb8tiOllS 6Ak .pd % O f  )ck d $ with reSpt?Ct t0 tnUU C u e 8  68 fn the 

It is assumed here that the Prechet differential [Z] of \ at 8 and that it can 
be computed by 

nhen y it 8 8cal.r .ab 60 it admissible pertprbation of e. ~ q ~ r t i o o  (5.2) it .c- 
the formul. typically used for comppt.rion of the Gateaux differential. However, it ir 
assumed here that both of thew derivative8 exist .nd coincide .od that thcrefore (5.1) 
can be used to calculate the Prechet derivative. 

Since Ak is Prechet differentiable (admittedly by assumption, u an investigation of 
the technical conditions required for differentiability it not within the scope of this 
paper), its differential &hk(e;&O1 can be expremed u 

where ckk(81/aB is a W e d  h e a r  functional ref$& to a8 the Prechet derivative of 
)Ct at e. The t r a n r f o ~ . i o n  aA,/ae can a h  be viewed u a function space gradient of 
Lk at 8. Similarly, the eigenvector differential @ p ; E ” )  L defined a8 

where [a~$~(e)/aBJ is the Prechet derivative, assumed to be linear a d  m e d .  

Calculation of 6A. and aFL. 136 

Recall that the ek in (5.1) are orthononarl 80 that 
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which can t e  takeu u the point of departure fzr calculation of bAt uu i  a\-. 

Result 5.1 The Prechet differential 6 1  (8;60) can be expressed u 

where 6A(9;68) is the differential of A defined u ._ 

- Proof: Performance of first-order perturbation on (5.61, ard use of the colditFon 
f$k*& k= 0 leads to 

It can be observed from (5.10) th*t e v r h u t h  of 6@ ia the central calculation 
required to determine 69. In ofder to simplify aotatiapI without loss of generality, it 
has been assumed in ami- at  (5.10) that B .nb H do not dvperd on 8. In mort 
practical cases, this assumption ia satirPied because the poorly known parameters occur 
in the operator A. 

TO compott ti@, as nguited (s.10)~ mcau tht A(eme) = I, thet  AN + 
A(6cD) = 0, .ad 

Substitution of (5.11) fa (5.10) leerds to 
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Finally, use of the def'nitions p = A i A  and 5 = '.;'@13qk in (5.19), and 
substitution in (5.91, implies (5.7). In performiag this last step, it has been assumed that 
A = A* is formally self-aajoint, a c d t i o n  that is valid on most problems of practical 
interest. 

k 

Discussion and Additional Assurrr~tions on A 

The above result, although a step in the right direction, is s t i l l  ioII1cwh.t 
intermediate because the differential &Ak in (5.7) is expressed in term of the yet to be 
determined differential 6A. To proceed f-er, it is convenient tc make two additional 
assumptions (typicaliy satisfied in practice): 

0 A(8) is linear in 8 so that A(B1 + = Ate,, + for two admissible 

distributions e a d  e2. 1 

0 A(8) can be factored as Ate) = DW)D, where D .ad its correspondir@ formal 
adjoint D* ma9 in general be matrix differential operators. 

Based on these assumptions, it is now possible to derive the following more explicit 
formulas for &Ak and aAk/%. 

Result 5.2 The Prechet derivative a\ (e)/= of \ is 

Proof: Since A has been assumed to be linear and factoriz8ble 

where the last equality is a consequence of a process aarl0g0~8 to integration by parts. 

where a)Ck(8; *)/at3 is an element of X*(Q). Futhetmore, @Ak@; *)/a01 can be evaluated 

from 
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Proof: The -orour derivation of this reat is not as yet available. The remlt i s  
accepted somewhat formally on the bash Uut  a bounded h e a r  frmctioxul can be 
represented by an element in the dual *%o the qace  in which the functional is defined. 

Calculation of 4%. and *e 
Result 5.4 The Prechet differential % (8;68) of $ can be expressed as 

(5.18) 

m#k 

where 6P is the differenthi of the observed-state covariance operator B. 

Proof: Since Pak = Ai+k, 

( 6 2 j ~ $ ~  + R- = 2Ak(6Ak% + (5.19) 

Now, seek an expansion for &Pk in term8 of the orthononarl barb @m, Le., 

(5.20) 

where cLm are scalar coefficients to be determined. Note that the orthononarlity of 
@k implies that cLL = 0, so that hk does not have a component in the direction of % 
To evaluate cb, premultiply (5.20) by em* to obtain 

Use of the conditions @ m * ~  - \:em* and chn = +m *&k and rearrmement of terms 

leads to 

Substitution of (5.22) in (5.20) leads to (5.181, thereby establlrhiry the remlt. 

Equation (5.18) is similar in nature to (5.9) in that it expresses the desired 
differential in term8 of the yet to be determined quantity 6B. 

P e d t  5.5 The Prechet differential %(&be) of $ can be expre888d as 
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- Proof: Substitute (5.12) in (5.18) and use the definitionr for pk and 1 ~ .  

Bquation (5.23) i s  valid w i t b t  -Ling the rdditionrl urpmptioa that A(8) is 
linear in 8 and factorizable as A(8) = D*(8)D. If there two assumption8 are now made, 
the following result can be obtained. 

Result 5.6 The Prechet derivative aQI (e)/= is specified by 

(5.24) 

- Prodfi This result follows by rubstitution of bA(0) t DY6e)D in :5.23). 

Closely related to Mk is the differential 

of the outer product akak*. 'The corresponding Prechet derivative a(~@~@~*)/a is 
evaluated in the following result. 

Result 5.7 The Prechet derivative [a($$ *)/a] L specified by 

Proof: Use (5.24) to evaluate the r&ht ride of (5.25) m d  recall that 6(+k@k*l = 
[a@kfpk*)/aelae. 

Discussion 

The results obtained above provide the key tools required to evaluate the 

function-space gradient aJ/M and Hessian a2J/# of the likelihood functional. The 
most useful formulas are (5.17) for the derivative a A k / a  of the eigenvalue by, (5.24) 

for th,: derivative &#k/a of the eieenvector ek, and (5.26) for the derivrtire 

a(@k@k*)/a of the outer product (@ 9 *I. There formula8 wil l  be used repert.edly 2c 
k k  

the following rection. 
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6. SPECTRAL REPRESENTATIONS FOR THE GRADIBNT, AP PROXIMA TB HBSSIANL 
AND NEWTON-RAPHSON SEARCH 

Implementation of the modified N e ~ t ~ i ~ - R ~ p h r ~ n  rearch for the optimal parameter 
estim~ter requires calculatiom of the aJ/ae a d  of an apprordmrtion to the 

H ~ S S  I operator a 2 ~ / a 2 .  These calculaticnr are be8t achieved pra the 
predicted-data-covariance rm~are-mt filter in Remlt 4.5 that expreuer the likellhoal 
functional AS 

where z(8)  = L(&y t [I-L(8)] m(8). Function space differentiation of (6.1) with respect 
to  8 leads to the gradient functional 

and to the approximate Hersibn operator 

upon which the Newton-Raphson numerical rearch is to be bared. An updated estimate 
en+ 1 = en - is obtained by specification of the parameter change an defined as 

The min objective of this section is to replace the ophrator .:i'a+bzu (6.2) aml (6.3) 
with a set of equivalent tmtrfx eqp.tiaru mora c m e n h t  i:r cahhtlanr. Th4 
fundamental approach to bc used c m i r U  of reprerentin# the . c g ~ t i o n  space derivatives 
a L / a ,  am/= a d  a z / a  - which have oply been derived in t e r n  of operator symbols in 

of the obsented-state covariance operator R. 
(6.2) and (6.3) - h tr?m O f  specific O - m l  b a  defined by the abem?Cton @k 

SPectral Reorerentation for the @- 

Result 6.1 The Prechet derivative &/a of the predicted-6.u-covariance 
square-root filter L can be represented ss 

k m  
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Note that ab defhes a matrix whore diagonal elements are provided by (6.6) and 

whose corresponding nodiagonal elements are given by (6.7!. 

- Proof: Observe L = ( l - c o ~ a ~ h $ ~ @ ~ *  implies 

Substitution of thb equation in ah = +k*taL/Mwm and use of orthonormality of t$k 

lead to 

where a A , / a  and *k/= are the function-mace derivatives evaluated in (5.18) a d  
(5.25). Substitution of there two equations from ‘sec. 5 in (6.9) leads to (6.6) and (6.7) 
thereby establishing the result. 

Result 6.2 The Frechet derivative am/* of the suspected mean m(8) is reprerented by 

(6.10) 

a d  @Cf in (6.11) denotiq the suspected value of the r a t e  u. 

- Proof: Since m = H W f ,  then 6m = Hb@Cf = -H@A(:Q) @Cf, where the t r t  equality 
follows from the condition 5Q = -@A(68)@. Defhe now ‘6mIk a8 the k* rpectral 
coefficient of 6m, Le., 

where as before p = AiL@*H*@r Use of the identity pk*A(68)@Cf = -Dpk * D ( @ C W  

in (6.12) results in (t,mIk = (am/aelk 66. with (Walk given by (6.11). 
k 

Result 6.3 In the 8peckl :&IC in which the deterministic irrlprrt f ir asrmaed to be a 
k c t o r  f = [f .,..., f,] of M inputs applied a t  the dircrete locatbm E, ,  ALL rltenutive to 
(6.11) in evaluating (&I&@), id 

m= 1 
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where @(x/[I  is the Green's function of the system model operator A. 

Result 6.4 The gradient &/a = ( a L / S ) p t  (I-L) tam/ael of the filtered state e s t k u t e  z 
can bc represented as 

where the spectr.1 coefficients (&/a), = ak* (&/a) are given by 

(6.15) 

with ab specified in (6.6) m d  (6.7) a d  

Proof: Substitute a L / a  and WS lrom (6.5) a d  (6.10) into &/SI = ( a L / a q  t 
(1-L) (am/%) and then compute the spectrd coefficients (&/a), in 'C.14) from 

taz/ae,, = 9k*(az/ae). 

Result 6.5 The gradient g(e;y) in (6.2) can be represented AS 

where ex: = ak*e &re the spectral coefficients of the residual process e = y-z, a d  

(aZ/a), ate given by (6.15!. 

Prod: Substitute a L / a  in (6.51, &/a in (6.141, e u & ek$bk And I t = 

E secak+k@k* into (6.2) a d  use orthonormality of ak. 
Equation (6.17) provides ?.he means to  ewluate the likelihood fuacticnrl gradient, one of 
the key ingredients bf the Newton-Paphson iteration. Tb4 Approximate Hersha 
operator M(8;y), which . the other major element required to implement the search, 5s 
evaluated below. 

x e d t  6.6 The &pptuxiotc Herrhn M(e;y) in (6.3) is an integral operator whose kerne! 
M(rJ[) i8 specified by 

(6.18) 
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t h  where zlk = = @k*taz/a) is the k spectre1 coefficient nf &/a. 

Prcof: Substitute (2.26) and (6.14) into (6.3) aad use ?&e orthonomadty of e,. 

Implementation cf an iteration step in the Newton- 2aphson search requires calculktion 

of 68" = M-'d;y)g(Bn;y), representing the incremcntal change in the parameter 

estimate. Inversion of M(On;y) is therefore required a t  every steF of the -eerch. Thi3 
iinersion is achieved by solving an integral equation as outfined in the follcwing result. 

Result 6.7. 
of the following integral equation 

The incremental parameter change 60" can be computed as the so1ut;on 

where M is the approximate Hessian :.ernel in (6.181, and g (XI is Lhe value of the 

eradient a t  the spatial location x. The subscript n in Mn and gn denotes that the 

corresponding quantities are evaluated a t  the n 

n L 

t h  n parameter estimate 8=8 . 

Proof: Observe that 

in cermq of the kernel M to obrain (6.19). 

= M.ilgn implies Mnb# 1 gn, and express this last equation 

n 

7.  PARAMETEX ESTIMATIOK ERROR, CBAMBB-RAO BOUNDS AND OP-L 
INPUT DESIGN 

The objectives here are t o  obtain a C-I2 b o a  for the covariance of t?e pavmeter 
estimation error and to Segh an investigation of the problem of optimrl input detign by 
using the C-R bound as a criterion fgr optimrl input selection. 

Recall that the covariance of an unbiased estimate 9 satkfier the inequlitv 

whert M(Oo) t, the information opextor utiinrd as 

(7.2) 

The corn>sponding mean-square estimation error Et0 '@@ 1 sc.tu'*.;? i : 4 :  related 
inequality 

P P  
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It can be observed that the key calculation required to obtain the C-B bound is the 
computation of E[a'J/a'; as outlined below. 

-- Craxm,-Rao B ~ u n d  for the B s t m t i w  Bmr 

Result 7.1 The incormation operator M(e0 1 is specified by 

(7.4) 

where h = H@EE*@*H+ is the data-covariance operator, @LBO) is the derivative of 
L = I - (I+R)-''', and tam/a0) is the derivative of the datn mtan m=H@Cf. 

Proof: Differen-tiate g(@;y) in (6.2) to obtain 

Take the expecte+ '*E in (7.5) .bo-.+ evaluate a t  0 = eo, rod simplify to obkin 

Finally, use 

Result 7.2 In spectral form, the inform~tion operator M(e0 1 i s  specified by 

i )  in (7.6) to  amve a t  (7.4). 

(7.7) 

- PrcDf: 

Inspection of (7.4) reveals Jut the informatior operator Weo) consists of the sum of 
two terms bct5 of which are positive definite. In the f i n t  term, the daU-COV8il.nce 
operator (I+R) appears a8 m %ei&bting" that is multiplmd by the tenritiivty filter 
aL/=. Note parenthetically that in fact L b 8elf-adjokt 80 that L o C*. The recond 
tern-. on the other hand, will be shwm to be a quadretic ftmztion of the input f. 

"esult 7.3 Assume that f = [i , . . .&I i s  a vector G f  M inputs applied at  the 1VI discrete 
locations Cm. Tie inlormation c3eratsr M(Bo) b an integral operator whose kernel 
M(IC/€) can be e-mzased as 

Use an approach similar to  tbrt used :3 arrive a t  (6.18). 



(7.8) 

where 

T a d  where bk(E) is the M-dimensional vector 

(7.9) 

(7.10) 

(7.11) 

with being the Green's function of A in (1.11. 

Proof: 
t a L / a )  in (6.51, and for a m / a  in (6.10) into (7.4) to  obtain (7.3) and (7.13). 

Sutstitc?e the eigeruystern expansions for R in (2.261, for L in (4.171, for 

The second term in (7.8) b a qurrdratic form in the input sign~l f. This property can be 
used as a basis for optimal input der- 

Optimal  Input Design 

The La'ormcrtion operator can be used to state criteria for optimal input design. 
While several posrible criteria exist, the one that it easiest t o  use is perhaps the 
maximization of Tr M(e0): 

(7.12) 

where 

The optimal input fo. which is the solution to the above optimbrtLn pioblem, is the 
eigenvector corresponding to the largest eigenvalue of the M-by-M matrix V. 

Other criteria for optimrl input selcctim include: minimiaatim of Tr @I-'), which 
woulE, correspond to minimia h g  tht Cramer-Rao b d ;  and minimization of 

M-'), where A- fs &e m~ximum eigenvalue of M-'. While these k s t  two 
cnterir could be superior to  (7.121, they both have the dimdvantrrge of requirixlg 
inversion of the operator M( However, the requirement for such an b.rt.rsion may 

not be a reriou, additicorl dzawback because a similar calculation is required to 
implcment the Newton-Raphsoa search outlined in the previous sections. 

L a x  
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VanisWng Bias of the Gradient 

Closely related to the rbove analysis is an investigation of the bias in the 
parameter estimate 8. The central result is as follows. 

Result 7.4 The expected value of the gradient functional g(8;y) vanishes a t  8 = eo, Le., 

(7.14) 

Proof: Observ- that &/EX3 = taL/X3* + (I-L) tWXN, .nd recall that $ = (I+K)e. 
Substitute this in (6.2) and take the expected value. Finally, use the whiteness of the 
residual process, to be established in (8.46). 

8. FILTERING, SMOOTHING AND THE RESIDUAL PROCESS 

The central aim of this section is to con-uct an analysis of the smoothed estimate 
u and of the filtered state estimate zo that emerges from the 

predicted-data-covariance square-root filter. This analysis leads to the fobwing 
major results: 

0 

0 The smoothed estimate uo is opthml in a condition41 mean sense. 

0 The formulas that generate uo aud zo have a predictor-corrector ~tnrctpte in 
which the f b l  state estimate is the m m  of: a prediction term-bued on 
application of h c w n  inputs to the system model; and a comctiua term based 
on the difference between the actwl  and predictud data. The key ehment in 
these formulas k an estimator gain th.l provides the relative weigh- 
between the two terms. 

0 The covariance of the state estimation error inherent in both esthates can 
be evaluated by mean8 of equations which, if written in operator notation. 
resemble those encountered in tilte- a d  smoothin& for linear dprumicnl 
systems. 

0 Investeation of a residual process associated with the filtered state esUmste 
zb that has properties nearly identical to those of an innovations process: the 

residuals are a white noise process with a unit covariance; the residuals and 
the measurements can be obtained from each other. by means of recQrocal 
linear transformations. BecaLe these t r a n s f o m t i o ~ ~  are not the 
residuals are not a bonr fide innovaticma process. However, they are as 
useful in cierivinq filtering, smoothLng and identification sohtions for elliptic 
syst .ms e$ the innovatioar process is  in deriving simL1.r solution8 for h e a r  
dynamical systems. 
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Development of relationships between the filtering a d  smoothiag estimates 
thrt can be thought of as extensions to  elliptic systems of the 
forwrrdmackwrrd sweep method for solution of filtering a d  smoothing 
problems in linear dynrmical systems. 

Development of spectral representations for the predicted-data-covarirnce 
square-root filter rad the optimal smoother in terms of the eigenrpstem of 
the state covariance P = QBBW*. This leads to sixuple ways to implement 
filtering and smoothing solutions on a computer. 

Smoothed and Filtered Bstimates 

The smoothed and filtered s t a t e  estimates uo & x d  go have been defined in (1.17) as 

2 = @Cf.+ g(y-H@Cfl, (8.1) 
0 -  

u = OCf t G(y-HQCfl, 
0 

where G and g are Kalmm-like g a b  specified by 

The estimate uo it referred to as a smoothed estimate because it i s  the 
minimum-variance estimate of the s t a t e  given the entire data ret. This is established 
by the followinp resalt. 

Result 8.1 The smoothed estimate uo in (8.1) i s  the ccmiitional mean u t B(&y) of the 
state given the data. Purthermore, the estimator grin G in (8.2) can be expressed 
altermtively as 

G = RH*(I + H&H*)-', (8.3) 

in t e r n  of the state covarirace P = OBB*@'. 

- Pro3f: Recall the general form& 

derived in 141 for the conditioprl expected valae of a 2ero-mern random process D @wen 
the related zero-mean random procerr v. Note that thir formula require8 crlculatim of 
the *cross-covariance* operator B(m9 and the auto-cottlirfrace operator B(w*). 
Define now the meru-centered state 5 = u-@Cf = @Bo ard the mean-centered data f = 
Hii+n. By this definition, 6 and f are zero-mean. Therefore (8.4) can be used directlp 
to coapute u' = B(5/& Le., 

0 
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which indicates that to  evaluate $, it is necesstiry to first  evaluate the covariance 

operators B f i i * )  and BCm*:. These calcal.tions are: E(*-*) = B(QBoo*BW*) = 
@BB*@* and E(W) = E [(Hiitn) (Htitn)*] = I + HgH*. Use of this in (6.5) lea& to 

I 
. 5 G  ' l H  L 

This together with the definition of 0 .ad 9 in terms of P a d  y implies (8.1). The 
equivalence between the two different exprerrionr for G in (8.2) a d  (8.3) is established 
by use of the spectral expansion= in Sec. 2. In particular, use expuuLoar (2.46) - (2.47) 
for I + B and the definition for 3 in (2.311. 

As established by this result, the estimate no h.8 a very well defined probabilistic 

interpretation. I t  is not presently known if the Atered estimate a. has a similar 
interpretation. Nonethelex, this estimate phys a very si@ficant role ia the filte-, 
smoothing and identification methodology for elliptic t]lrtemr d e r  develcpmeat here. 
Its role is analogous to that of the filtered ertinute erne- from a X a b n  filter in 
the case of dynamical system. This is further invertipted below. 

Predictor- Corrector Structure 

To examine this structure, c-mtider the equation for uo in (8.1) am3 Wustrated in 

Fig. 8.1. Use of the deterministic inpat f"] and the system model @C"' leads to a 

predicted estimate "I. The difference procem y-HWf '41 ir then formed d operated 

on by the estimator grin C Is] to obtain the correction term G(y-H@Cfl 16'. F ~ P A ~ ,  
the correction term is added to the predicted estimate to obtain the Opumrl estimate 
u The equation for the filtered ertinutt zo in (8.1) also has a predictor-comctor 

struciure. The key difference between the twc equations in (8.1) is thst the e8thutor 
gains are different. A relatimh@ be'ween there two different 8 . h  C and 8 
explored later in this section. 

0' 

SYSTEM MODEL 

MEASUREMENT DATA DIFFERENCE 
PROCESS Y 

Fig. 8.1 Predfctor-Corrector Form of the Smoothed State Brtinutor 
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Estimation Error Covariance and Kalmm-lh  Gains: Smoothiq 

Since uo rad zo are only estimates of the actual state u, it ir of interest to  
investigate the inherent estimation error u = u-u and z = u-iO. In particular, the 
aim is to determine the estimation error covariance. d e r  the rsgumptim that the 
actual model errors o and n in (1.1) and (1.2) are white-noire processes. 

P e d t  8.2 

u-uo is specified by the folloning alternative formulrs: 

P 0 P 

The covariance 9 = P* - Mu u *) of the state estimation error u I 

P P  P 

T; = (1 - GHIPa - GH)* t GG*, (8.7) 

- Proof: To show (8.71, observe that u = OCf t @Bo and u0 = OCf + Gty - HWE) 
implythatu = u - u  i 8  P 0 

u = (I - GH)OBo - Sn. (8.11) 

Hence E(u u *) = B[T[-GHk#Boo*B~* (I-GH)* t Gnn*G*] = CI-GHI&(I-C,H)* t GG*, 

where w e  h ~ s  been made of the fact that t = [o,n] irr a white-noise process with 
covariance Nee*) = I. To show (8.81, observe that (8.7) implies 

I; = i$ - GHS - ~ H + W  t cc t H ~ H ~ G * .  

P 

P P  

f8.1:) 

Substitution of G = n'H* (I t HgH*)-' in (8.12) leads to (8.8). To show (8.91, observe 
that (8.8) can be expressed as P' = 6 (I-GHP = CI-GEnE by prbq G - RHWI t HPHq-' 
in the last two t e r n  of (8.12). To establish (8.101, substitute P = @BB*Q* in (8.8) and 

ut the identities B q * H *  atH@BB*O*H+)-'H@B = CI+B~*H*HQB)-'B*O*H*HQB = I - 
(I+ B*Q*H*HQB)'-'. 

Result 8.3 The operator HPH* is the Predhlm re80lVe~t of HgH* 80 thrt 

Proof: Compute HPH* from P' in (7.8) to obtain H@H* = HaH* [I - (I+HgH*)-'J. Use 
th? identity (ItHilH*)-'H&H* P I - (ItZIeH*)-' twice in thh kst equation to obtain 
(8.13). 

The rim now i s  to use (6.13) in (8.2) to obtain an alternative expression for the 
estimrtor gain. 
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Result 8.4 The estimator gain G = EH*(I+HgH*r' can also be expressed 8s 

G = FH*, (8.14) 

where P = E(u u *) is the covariance of the smoothed state estimation error u 
P P  P' 

Result 8.5 The mean-square smoothed state e s t h t i o n  error is given by 

E(u *u 1 = Tr [F]. 
P P  (8.15) 

Proof: This follows from the definition of P' as P = B(u u 4). P P  - 
Note that many of the above formulas are very similar in form to the ones 

traditionally encountered in K 8 h n  filtering for dyxumical systems. For instance, Bqs. 
(8.3) and (8.14) are very timilar to those used to Compute the grin G for a K a h n  filter 
in which R and are the covariances of the estimation error associateb_ with the 
predicted and corrected state estimates. Note also that (8.8) implies that P is always 
smaller than E, which implies that the covariance of the estimation error after the 
observation y has been accounted for i s  smaller than the emr  covariance before the 
estimate correction occurs. 

Estimation Error Covariance and Kahn-like Gains: Filteriq 

The aim here is to  obtain results similar to  result8 (8.2) - (8.5) above, but that are 
applicable to  the filtered estimate zo. 

0 
Result- 8.6 

is given by 
The covarhnce E(z z *I af the filtered sktc estimation error z = 0-2 P P  P 

E(z Z *I = (I-gH) Qia-gH)* + Bg*, (8.16) 
P P  

where R = @BB*@* is the state covariance, and 8 is the filter cain in (8.2). 

Proof: Note that u = 9 C f  + @Bo. This and (8.1) imply that 

z = (I-gH) @Bo-gn, (8.17) P .. 

w h w e  use has been made of y-H@Cf = HQBo + n in (8.1). Calcul-tion of B(z z *I, 
P P  

..,, rb .17)  and the conditions B(oo*) = 1 and B(nn*) = I, leads to (8.16). 

TIUS result applicable to  the filtered estimate is A I A A ~ O ~ O U S  to  (8.7) of the smoothed 
estimates. To obtcrin results that are analogous to (8.8) - (8.10) requires, howzver, a 
f + w  preliminary definitions and results. The need for these preliminaries arises fzom 

altimate desire t o  find A spectral decomposition for the state covariance R = 
'-, *a*. It is straightEorward to obtain the spectral representation for the 
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observ’d-state covariance H6H*. However, f- a 8im’l.r decompo8iUon of is not 
as simple. The primary reason for thir lack of simplicity ir that the vecton = I 
A?B*@*H*~P. may not necessarily span tbe entire space H. TMS is particularly true in 
cases in which the dimension of the input space HI is greater than the dimension of the 
obsenration space Hg. In order to consider this case, assame that the operator H@B has 
finite-dimensional range. Thi8 comtpondr to the situation where there are only a 
finite number hJ of se’3jors and the observed-state covariance P = HQBBW*H* is an 
N-by-N matrix. Asswne also that the input space is either infinite-dimensional or 
finite-dimensional with dimemion bl greater than N. This second assumption 
corresponds t c  cases where the uncertainty is distributed a t  M discrete locations or 
throughout the entire spatial domain Q. 

1 1 

Result 8.7 The identity operator I mapping HI into itself can be dtiompored as 

1 = 1  t I I ,  (8.18) 
0 

where 

= I - B*@*H+R-~H@B, I, = -J @*H*P-’H~B, (8.19) Io 

and B = H@BB*@*H* is the obsemed-state covariance. In addition, Io is in the 
null-space of the operator 

R ( - 1  = H@B(.)B*@*H*, (8.50) 

mappine the space of bounded linear traatfonnrtioat on H1x H1 into the space of 
N-by-N matricca. Furthermore, Io and I, are orthoroar1 comlements so that 

I * I I=Tr [ I  I ]PO. (6.21) 
0 0 1  

- Proof: This result and ita comrpolding proof are illustrated graphically in Fig. 8.2. 
Bq (8.18) follows from (8.19). Subrtitutb of Io in (8.19) into (8.20) shows that P (Iq) = 0 

so that Io is in the null space of EL(* 1. That Io and II are orthogonal complement8 
follows from substitution of (8.19) in (8.21) by calculation of Tr [Io I*] wing (8.19). 

-- B e d  8.8 The i - . y operator I mapping 5 into itrelf cab be expressed as 
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SPACB OF BOUNDBD LINBAP TRANSFORMATIONS 
FPOY INPUT SPACB INTO ITSBLP 

n 

.'NULL SPACE OF I \  R (  1-  HcDB ( 1 B W  H* 

Pig. 8.2 Orthogonal Complement Decomposition of the Identity in H1 x H1. 

- 
The above result simply reflects the fact that the do not span HI, because (by 

assumption) there are only a fiaite mznber of them, and this number is smaller than the 
dimension of the hput space. 

Result 8.9 The state covariance E = @BB*@* can be decomposed 80 

i 

where - 
uo = 9 1 3 1 ~ ~ 4 ~  6 

(8.23) 

(8.24) 

Furthermore, 

H B ~ H *  = 0, ~5~ = 0, i i o ~ *  = 0. (8.25) 

Proof: 

A-'@Bt) . To show (8.251, mbstitute I fmm (8.19) hto (8.24) a b  (8.25). 

To show (8.291, substitute I from (8.23) into P(1) = @B(DB*9*, a d  use x - 
j -- 

1 j 0 
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-- Besuit 8.10 The dual state covariance 0 = @*H*H@ can be expressed as 

N 
6 = 1 A2 p . p . *  

1 I 1  
j= 1 

where p. = AyLQ*H*@.. 
I I  J 

N Proof: Since the cp. span the observation space Hg = B , th-;l 
1 

(8.27) 

v:here IN denotes the identity in RN x RN. To obtain (8.261, substitute (8.27) in Q = 

@*H*I €I@ and use definition of p.. 
1 

N 

Define now the quantities 

N N 

j= 1 j= 1 
r = i? t (seca.-l) x.x.*, q = 1 (seca.-l) p.p;* 

0 1 1 1  1 1  
(8.28) 

and note the following key identities. 

Result 8.11 The state covadaoce a = @BB*@* and r defined in (8.28) are related by 

= r t r*trH*Hr. (8 .29)  

Furthermore, 

I t H s H *  = (ItHrH*) (I+Hr*H*). (8.30) 

- Proof: Substitute r from (8.28) and H from (8.231 into (8.29). Use the orthonormality 
of x. with respect to  H*H. This establishes (8.29). Equation (8.30) follows from (8.29) 
by forming ItHBH* from (8.29) and rearranging terms. 

Result 8.12 

1 

The dual state covariance 3 in (8.26) and q ’.? ,0.28) satisfy the identity 

6 = qtq* t qBB*q*. (8.311 

Furthermore, 

I t B*QE = (ItB*qB) (I+B*qB). (8.32) 
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f 
- Proof: 
with respect to BB*. This establishes (8.31). To establish (8.321, form I t B*QB using 
(8.31, and rearrange te rns  b the resulting equation. 

Substitute 6 in 13.26) and q in (8.28) into (8.31). Use the orthonormcrlity of p 

These are the preliminary resclts needed t o  evaluate the covariaace of the estimation 
error associated with the filtered state estimate zo. 

Result 8.13 T k  filter gain g defined in (8.2) can be expresssed alternatively as 

where r is defined in (8.28). 

Proof: Substitute r from (8.28) into (8.33) an$ use goH* = 0 .ad ej* -- rj*H*. T h i ~  

recovers g in (8.2). 

Note the simil~rity between (8.3) a d  (8.33). ThAe equation in (8.3) expresses the 
smoother gain G in tenns of the rta%e covariance R = (DBB*O. Bq. (8.33) i s  a similar 
equation for the filter gain in t e r n  of r. The operator n in G CAO be interpreted a8 the 
state covariance. No 8imll.r probaListic interpretation for r L known. However, its 
introduction L- very useful because it allows development of fotmulrs fo? the eatimotion 
error covariance AC; for the filter gain that very Cl08eiJ7 resemble those obtained for 
LiiS suloothing solutions. 

Result 8.14 
is 

The covariance Bfz z *) of the filtered state estim~tion crrw z = IS-z P P  P 

E(z 2 *) = p + p*, (8.34) 
P P  

where p = p* is s3acified by the 8lternrtive formul.8 

p = ( i -g~)r(~-gm* + gg* (8.35) 

p = r-rH* ( I t H r i W - k ,  (8.36) 

p = (1-gH)r = r (I-gH)*, (8.37) 

p = ( ~ 2 )  a' t (l-cosa x x *. (8.38) 

To establish (8.34) A& (8.351, substitute (8.29) in (8.16) and use the identity 

0 i ) i  

- Proof: 

(I-gH) rH* = tH* ,i t HrH*)-'= g. (8.39) 

To establish (8.361, observe that (8.35) implies that 

p = r-gHr - rH*g* t g(1 + HrHr)8*. ,d.40) 
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Substitute g = rH* (I 
the second term of 
(8.38), substitute t in 

+ HrH*)-& in (8.40) to obtain (8.36). To obtain (8.37) observe that 
'8.36) c a t  be exprerscd rltemtivdy a8 6th and rH'g*. To obtain 
(8.38) into (8.36) and we orthonorrmlity of 9 

j* 

Result 8.15 
estimate is given by 

The mean-square e s t j ~ . ~ t i o a  e m i  asrocirted with the filtered state 

N 

j= 1 

E(z *z 1 = Tr Ip t p*] = Tr 1s J + 2 1 (1-cora 1 x *x.. P P  0 j j l  
(8.41) 

- Proof: This result follows from (8.34) azid (8.38). 

Result 8.16 The filter grin 8 can be e~tprersed a8 

where p is related to the filtered state est im~t ion  error covariance by B(z z - p + p*. 
P P  

This equation is analogous tc (8.14) in that it exprewer an ertimrtor gain in t e r n  of 
the covariance of the state e s t h t i o n  error. 

Result 8.17 The operators 1 + HrH? and I -HpH* are reciprocal, i. e., 

- Proof: 
8 = pH*. 

Recall (1 + €IrH*)-' = I-Xg = I-HpH*, where the lwt eQpIUty bldr  becrtue 

Note that thfs r e d t  impUer that the operator HpH* is the Predhotnr resolvent of 
MrH*. The identify also Lmmedp.tely inrpltsr whitenerr of the reridwb process a8 
investigated in more detail below. 

Pseudo-Innovatiom Pro~ertios of the Re E i d W l 8  

Define the reridwl procsaa in the -1 WAY, AI the dffforsrr between the actual 
measurements and the predicted data emerging from the prsh-eted-dru-covrrirnce 
square-root filter, Le., 

= Y - H z ~  (8.44) 

Thfs ptocerr tunrs out to have two key propertSm8 that 8 n  marly identical to those of 
an inaovatixu pmcerrr: the reridub are white mtB a pnit covrri.ncei the tesidub 
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and the measurements can be obtained from each other by m01m of reciprocal 
relationships. Theac twa properties are estabbhed in the following rerults. 

Result 8.18 
i.e., 

The residual process defined in (8.44) k white with A unit covariance, 

-. Proof: Observe from (8.1) that  e = CI-Hg) (y-H@cfl. Hence, Nee*) = CI-Hg) (1; HqH*) 
(I-HgP = I. This last equality follow8 from B[(y-H@cf) (y-H@Zf)*] = I + HEH* and from 
(8.42; and (8.43). 

Result 8.19 The residuals e - y-Hzo and the tnern-centered measurement process 
ji =y-H9Cf can be obtained from each other by me- of mcigroc~! linear 
transformmiom, i.c., 

where 

(I t HrH*) -' = (I-HpH*). (8.47) 

- Proof: Eq. (8.47) has been ertrblbhed in (8.43) A& is  restated hem only to  
emphasize its relatiomhip to t h e  poperties of .;he nsidud procers. Bq. (8.1) WUes 
e = (1-Hg)y. 

W e  the smoothed rad Cutered ertimrter have bean defined s0medA.t independently 
of tach ather, these ebtim~ter &re h fact very Cl08eb related. f t  i s  possible to 'Wn 
one in terms of the other, a8 outlined io the followiry remlt. 

Bemlt 8.20 The smoothed and filtereo e8tbnAtes to and so are related by 

u = z o +  ee, 
0 

18.48) 

where 

e -y-Hzo (8.49) 

is the residual process, and 8 Ls the predicted-data-c~varirnce rqture--.obt filter gain. 

- Proof: Observe that (8.1) a b  (8.3) imply l a o =  @Cf + CH* (I + HPH*)'' (y-HOCtI. 

Use of (8.46) leads t o  uo = OCP + aH* (I*HrH*)-'e S U r l y ,  zo in (8.1) a d  n in (8.33) 

lead to zo I <bCf + rH*e. Hence, ~ ~ - 2 ~  = [&H* (I+LK*)- -rH*]e. Use of the identity 
(8.29) in ' i s  bznpUe8 that uU,-ao I l e ,  which ir the ds;ired result. Note that (8.481 can 
be r:* *: r n In the altenutive form 



Clcsaly related to  the above reltkonship between filtered and smoothed stote estimates 
is a relationship between the ccrresponding covariances of the state esthution errors. 
'This is developed below. 

Bemt 6.3& The filtered state estimation c -or  z = u-z a d  the residsal process 

e = y-Hz are related by 
P 0 

0 

P' 
e = n t H z  (8.51) 

where n is the measurement error. 

Proof: 

P5sult 8.22 

u = u-uo can be expressed as 

Note ttdt e = y-Hzo = Hu+n-Nzo = Htu-zo) *n = Hz + n 
P -- 

The covafiam-e 2 = B(u u *) of the smootbeci stqt? csti;nrUon error 
P P  

P 

where p + p* = E(z z *) ?? the covariance of the filtered state estimabon zrror z = 

u-z Furthermore, 
P U  P 

0' 

Proaf: Use (8.52) to obtain 

E(ez *) = B(nz *) t !iE(z, 7. *) = H h z  *) + H(p+g*). P P 3 P  P 

Now use (8.17) t o  compute B(nz *I, Le., 
F 

Nnz *) = -g*, 
9 

(8.54) 

(8.5:' 

since !Uno*) = 8 bj assumption. Substitution of (8.55! 1& (8.54) a d  use of 2 I 1 i P  leads 
to  

Since u - u-u the2 3 = z - ge from (8.48). Hence, P 0 P P  

Now use ,8341, (8.43, (8 45) and (8.C6) to  r%ta,itr (8.52). Eqiution (8.53)  follow^ 
immedirte!v from (8.52) by fohming I - HPH* am. rearranging tenas {TI %li-: temlting 
expressior. Nota that (8.52) implies that the g a b  C . ld 8 sre related by 
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The k s t  three resulk can be viewed as a generalization to elliptic systems of 
relationships encouatered in filterino, ax& smootbing for dylumical systems. For 
example, Bqmtion (8.481 is a generalization to elliptic system$ of the foxwardmrckward 
sweep methd for tolution of two-point boutxhrg-value problems. This method in 
general terms states that the smoothed states estimates can be obtained as a remlt of a 
two-stage process: fornard filteriq by means of a Kalmrs filter to obtain a filtered 
state estimate and a residua1 ptocew a d  backward smoothif16 to process the re8iduah 
and obtain a smoothed state estimate. This two-stage data procetricg approach has 
been extensively stadied for b e a r  dyn~mical systems. Bqs. (8.48) and (8.491 have 
exactly ?.he same structure. This structure is illustrated in Pig. 8.3. 

The o k ~ a l l  diagram illustrates how the data yl" and the detenninirtic inpnt +2J are 
processed t o  arrive at a smoothed estimate IS'". The estimation procem contirtr of two 

stages: a FILTERIN". stage that remlts in a filtered estimate z!' rtd a residual 

pro~ess'~]. This f i l t e m  stage ir characterized by a predictor-corrector structure 
where a predicted is f i r s t  produced and then corrected by a correctLon 

n e  results of the film- stage are then p r o c e d  by the SMOOTHING 
stage. Central to both the filum and smoothing sugar is the lain J81. ~ h 4  
foregoing structure b nearly idendcal to that of the forward/b.ckuud sweep method in 
linear dyrumical systems. There are, however, some key differences. One of the 
differences is that the filtem s t a ~ e  in the c u e  of d y n 8 d C . l  tystemr L bued on the 
Balmrn filter, whereas in the elliptic case under consideration here, thir filter i s  
replaced by the predicted-data-covariance -re-root filter. Another key difference 
is that  the K a h n  filter b causal whereas the predicted-data covariance square-mot 
filter is not, i.e., the filter gain g ir a Fredholm operator as opposed to be- a Qolter~a 
operator. In the same vein, the s m o o e  stage for dynamical ryrtemr is backward (in 
time) or anticaural. In the elliptic system case, however, the smoo- stale L also 
characterized by Predholm operators. The notion of causality ir not even introduced 
here althowh it is possible to do th is for cerufr c h w s  of elliptic rprtemr 111. 

- .  0 

Fig. 8.3 Filtering and Smoothing 
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Spectral B epresentatiaat: Smoothing, Piherim, and the Reriduh 

The a h  here are: to obtain spectral representations for the filtered and tnnoothed 
estimates uo and a. and the corresponding error covariances P and pi to explore the 
predictor-corrector structure of the spectral represenktiont of the filter ud 
smoother; a d  to investigate the pseudo-innovations properties of the spectral 
representation of the residul process. The term "spectral representation' meuu the 
use of an expansion in t e r m  of the eigeaspstem + of R and of the related function8 

j 

= AF'B*@*HWi, xi= AY'QBw. and p. = A?@*H*.. 
? I f  I 

Result 8.23 The smoothed state estimate uo can be represented u 

u = @Cf + sin'a. (9. - m.) x., (8.59) 
0 1 1  I f  

where 9. = a.9 and m. = @.*m are the spectral componentr of the &t. y .nd the 
. I  I I 1  

sup-cted mean m = H W f .  The related observed-state estixxute Huo is specified by 

= m + HG (y -d ,  Huo = (I-HG) m + HGy. (8.60) 
HuO 

i In spectral form, Hu = 1 P @. where 
0 0 1  

2 i = cor$j 9 + s i n h y  (8.61) nj = m. + sin ai (yj-?), uo i J' 0 1  

P = 3t + 1 sin'a x xi* HPH* = s i m ' ~ ~ q ~ p ~ * .  (8.62) 

Furthermore, the corn- mean-square ertimrticm erron B(u So 1 = TdF] and 
E'u *H*Hu 1 = Tr [HPH*] are 

0 i j 4  

P P  

P P 

B!u *u 1 t Tr [go] + sin'aj xj+Xj, B h  %*Hu 1 = rinaai (8.63) 
P P  P P 

Proof: To establish (8.591, substitute y = Zy Cp and m t C m p j  in (8.1). To show 

(8.60) mulitply uo in (8.1) by H and recall that m = H9Cf. To ert~bli3h 8.61, multiply 
(8.60) by tbj*. The equation for P in (8.621 follows by substitution of (8.23) iu (8.8) and 

use of the conditions H i o  I CoH* = HgoH* = 0, The equation for HFH* in (8.62) 
. Bq (8.69) follow8 from (8,621 a d  the orthoaorpuUty follows trr J: P axxi w e  of 

i f  - 

i-9 
of 4j. 
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Result 8.24 The filtered sta te  estimate a. can be represented by 

z = W f  + 1 (1-cosa.) (y.-m.) x., 
0 t I f t  

The related observed state estimate z = H z o  is 

z = m t Hg(y-m), z = a-H@ m + Hgy. 

(8.64) 

(8.65) 

In spectral form, z = 1 2.4. 
1 1  

ai = cosai 7 + (1-Cora v (8.66) f , j *  
2. = m. + (1-cosa.) (y.-mJ, 

1 1  1 1 1  

Let z = 2-zo denote the estimation error. The e&timrticn error covari.ncet B(2 z +) = 

p +, p* a d  MHz 2 *H*) = H(p + p*)H* can be represented as 
P P P  

P P  

p = (%) io + (l-cos~r 1 X.X *, HpH* = ( ~ - C O M  1 + *. (8.67) i l i  i i i  

Furthermore, the corn- mean-rquan estimation errors a n  

E(z *z 1 = Tdp + p*), B(2 *H*& 1 = Tr [H(p + p*)H+J, 
P P  P P 

where 
(8.68) 

Tr [p] = ('/a) Tr [go] + 1 (1-corn 1 x , Tr [HpH*] = 1 (I-cosa 1. (8.69) i 17 i 

- Proof: (8.1). Bq. (8.65) 
follows from multiplication of (8.64) by H and use of m = H W f .  Bq. (8.66) is  obtained 
from (8.65) upon multiplication by 4 *  and use of the orthonormrrlity of 4 The 
equation for p in (8.67) has be- tstabbhed in (6.38) and is repeated hem only for 
convenience. The r e c d  of Bq. t u )  follonr from PIC of the identity +j - 7. Bq. 

(8.68) follows from the definition of p = p* in (6.381. Bq. (8.69) is  establish& by 
perfonaing the trace operation on (8.67). 

To show (MI, substitute 9 = &y rn = Cm p )into 2 

j I' 

Result 8.25 The residual process e = y-Hz can be represented as 
0 

e = 1 ej+j, ei = ej*e. (8.70) 

The spectral components e. are independent random vrriibler with zero-mean and unit 
covariance, Le., 

f 
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Furthermore, the spectral components ei and yi of the residual and difference processes 
e = y-Hzo and J = 7-m are related by the reciprocal rel~tionsbips 

- 
e = cosa yi = seca. e.. (8.72) i i i' 1 1  

- Proof: To show (8.711, observe 
that Eke . )  = @i* %(e& @. and then use (8.45) and the orthono~l i ty  of @ Equations 

1 1  1 j- 
(8.72) are the spectral representations of the reciprocal relationships (8.47). Note that 
(8.72) can also be established by the simple trigonometric identity (l/cosai) = secai. 

Eq. (8.70) is valid because @ iare orthonoxmal in H 

9. NUMBRICAL SBAPCH CALCULATION SUMMARY 

Since the development of the estimation. approach is  rather l e e ,  it i s  
convenient to summ~rize the steps that are requited to implement the rmmerical search 

It is assumed that the process starts with a Lnown input f, a set of data y rad an 
initial parameter estimate en. TO conduct an itentiom in the nnmerical search requires 
that the following steps be performed: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Compute the suspected mean and covariance m = H@Cf ukd R = H@BBW*H*. 

Compute the eigenvalues 1; and ebenvecton +k of R. 

Conduct a spectral a ~ l y s i r  of the data and of the suspected mean to obtain the 
spectral coefficients yk = @k- and % = ak* 

Use Result 6.5 to evahaau the gradient a J / a  of the likelihood functiolul. 

Use Results 6.6 a d  6.7 to compute the Hessian Mn .Id to determine the 

incremental c b w e  wn of the parameter estimates. 

Obtain o new parameter estimate 8 n+l = en - 6e'L, mhvn to 8t8p 1 above, ard 
iterate t h r o w  steps 1 to 6 =til conver8ence is achieved. 

If Cramer-Rao bounds and/or an optimrl input are deshedhre (7.6) - (7.13). If the 
covariance of the s t a t e  ertimatiom em; L de&d w e  Pemlt 8.2 and/or 8.13. 

The calculations involved in condwting a single iteration in the nuximum-likelihood 
parameter estimation approach are summarized in block diagram form in Fig. 9.1 A 
single iteration consbu of all of the compuktiml step8 required to obtain an updated 

pwameter estimate @+'by procersing the avribrble data, the known deterministic 
input, a d  the curreat parameter estimate en. 
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Fig. 9.1 Calculations Required for S u e  Iteration in Modified Newton-Raphson Search 

To simplify the description of these computations, the steps performed in a single 
iteration have been grouped into the following four major blocks (delineated by the 
broken lines in the diagram): 

a SQUARE-ROOT FILTER block that processes the mearurernea data 9 and 
the external input f to obtain a filtered estimate 2 and a correrpoading 
residual process e, defined as the difference between the data and the 
filtered state estimate. The square-root filter implements the equations a = 
Ly + (I-L)m and e = 9-2. The central compnution in the square-root filter 

block is that provided by the operator L = I - CI+R)-'h defined in terms of the 
square-root of the predicted-data-ccuvariurce (f + R). ThcI operator appears 
in two disthct places in the diagram: in the data filter, wbae primrig 
function is t o  process the m%amrementr 9; and in the mean filter, whore 
main function Is to  process the suspected me- m. The suspected mean is in 
turn obtained from the known extenul input by meam of the input-output 
model. 
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0 a SQUARE-ROOT FILTER SBNSITMTY block that processes the 
measurement data y and the detenainistic input f to obtain the filtered 
estimate sensitivity &/a. Thit block implements the equation &/a = 
(aL/a)(y-m) + ( I - L H W a ) .  The computation of the sensitivity a L / a  is the 
main calculation performed in this block. 

a GRADIENT-HESSIAN SYNTHESIS block that forms: the function-space 
gradient a J / a  of the likelihood h c t i o r u l  by mean8 of the equation aJ/W = 
Tr((aL/aXI+K) - tWS)e*J; a d  the function-space approximate H e e n  by 
means of the equation M = Tr [(aL/aeWI+BWaL*/a)] + (&&Woa). Note 
that the qu~ntity that is actually evaluated in th is block is the kernel MWt) 
of the Hessian operator. This kernel is a fmrctiot of two spatial variables x 
and f defined over a "square" domain (r/f)cQ I Q, where Q is u before the 
spatial domain of definition of the system model. 

a NEWTON-RAPHSON ITERATION block-whose input is  the gradleat and the 
approximate Hessian and that generates as an output the updated parameter 
distribution 8'' for the next iteration. The central calculation in th is block 
is the solution of the integral equation M~& = that rernltr in the 

parameter estimate W t e  ti#. 

After specification of the parameter estimate en+', the square-root filter L& .pd its 

sensitivity a L t & / a  are redesigned by lettin# 8 4 , and the steps outlined above 
are repeated in order to conduct the next step in the iterative process for optimization. 

n n+l  

The predicted-data-covariance smare-root filter processes the data y and the 
suspected mean m to produce a filtered s t a t e  estimate 2 and a set of re-idruls e - y-2. 

This is done by mean8 of the equation a = Ly + ( I -Lh,  where L = A-(I+R)-'~. Thir 
equation, while providing a very succinct symbolic description of the splure-root filter, 
does not by itself provide a recipe to conduct comzmutfonr. In order to provide such a 
recipe, it is convenient to  use the corretpordky gpectral form 5 = (1-co-l~~ + 
COSQLPLL, which expresses the spectral amplitudes \ - ek% of the filtered state 
estimate z as a linear combbtiW of the &ta and suspected mean rpectral amplitudes 
yk and Such a spectral form of the predicted-6.u-covariance square-root filter is 
illustrated in Fig. 9.2. 

The diagram in the figure illustrates the main calculation8 involved in the square-root 
filter. On the upper branch of the diagram, a set of data"] y =.[yl,...,y J is assumed to 

be avahble at  N discrete location8. A spectral -lyrir[21 ir conducted on this data to 
obtaia the data spectral amplitudes'3J Iy' ,...a 1. These spectral amplitudes are 
then multiplied by the coefficients (1-cosq) in the data filteJ4], r ed -  in the t e r m  

(l-cosa$. On tho lower branch of the diagram, the detenainirtic inputs ft6] are 

N 

N 
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processed by e inputJoutput qstern to  obtain the suspected mean 
m = [m ,...,%] A The spectral amglitudet mk * m[g]of the suspected mean are 

then computed and subsequently multiplied by the coefficients C O ~  in the mean 

filter[''' t o  produce the terms cos(qmL Ill1. This last term is then added t o  

(1-cosap ' in"] red-  in the filtered state spectral amplitude8 #21 and the 

residuals e:']. Note that the physical state ertiaute a d the residual e can be 
recovered from at. and ek by means of the sumfmt.ion8 2 = &2 + and e = &eht$k, 

1 * *k 

k k  
akhough for SimpUCitJ? this h8t t r U h 8 f O ~ t . h  b nOt 8h- Oa the diagram. 

112 13 

Fig. 9.2 Spectral Form of Predicted-Data-Covariance Square-Boot Filter 

The foregoing remark8 have scmtinized the spectral form of the rqprre-root filter 
ct,wtion z = Ly t (I-Lhn. The immediate aim z~oyo Sr to conduct a 8imft.r detailed 
analysis of the spectral representation of the -re-root filter rmitivity equasiou 
WaS 5 (i3L/20b t ;I-L) Cam/ae,. The spectral form of t h i 8  eqtution ir m t e d  in Bq. 
(6.15) and illutrated in the block diagram in Pi& 9.3. The overall p h r y  
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function of the square-root filter sensitivity is to process the N mean-centered data 
spectral amplitudes"1 rad the M determinirtic inputs[21 in order to obtain the spectral 
amplitudes oft3] of the filtered state estimate sensitivity ad*. An intermediate 
calculation embedded within th is overall process involves processing of the 
mean-centered &U spectral amgUtuder y"] by means of the N-by-N matrix, with 

general elements ah, representing the data filtsr sensitivity ~L/w[']. Other 

intermediate steps involve: processing of the deterministic trrpatr fm [21 by the 

filter 17] to obtain the terms C O ~  tam/aeIk [el . 

input/output model sensitivity muir bb "1 to generate the suspectad mean spectral 

amplitudes (am/ae), I61; a d  dseqrrent processing of these coefficients by the mean 

Fig. 9.3 Spectral Form of Sqarre-Root Filter Sqitivity 

IO. CONCLUDING REMARKS AND FUTURE DIRECTIONS 

The 'a of erthmtion for elliptic qsthrmr is so full of interests research 
problem that, in spite of all that this paper has covered, much more remains to be 
done. There are some of the problem that lie ahead: 

0 Conduct of an asymptotic statistical property analysis that explorer the 
convergence of the parameter estimates as the uumber of Obrtnratioar 
increases. 
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Development of approximation approaches thrt rQomusly urive a t  
f inite-dimensional approximations to  the infinite-dimensional solutiorvl 
advanced here. 

More complete investigation of the optimal input design problem. In 
particular, development of "spectral' domain design approaches which would 
do for elliptic systems what the frequency domain methods achieve for linear 
time - invariant dynamical systems. 

Development of more precise mrthemrtical arguments to  justify 
function-space differentiation, eigensystem expansions, covariance 
calculations, likelihood-ratio derivations, etc. 

Investigation of alternative (to the square-root) factorization of the 
pradicted-data-covariance that could result in easier calculation of the 
function-space derivatives necessary for the Newton-Raphson search. 

Numerical experimentation with the filtering, S~OO- and identification 
algorithms to gain further insight into the state and parameter estimation 
approaches and solutions [SI. 

As a final remark, this paper is a concrete example of the power of the functional 
analysis approach to estimation advanced in Ref.  [4]. Because of the conceptual 
simplicity of the method, it has been possible to  solve in th is  paper problem that would 
have defied solution by any other method. It has also made it possible to conceive areas 
for future research that would otherwise have been left unidentified. 
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