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ABSTRACT

This paper advances ap approach for state estitaation and identification of spatially
distributed paramsters embedded in static distributed (elliptic) system models.

The method of maximum likelihood is used to find parameter values that maximize
a likelihcod functional for the system model, or equivalently, that minimize the
negative logarithm of this functional. To find the minimum, a Newton-Raphson search
is conducted that from an initiel estimate generates a convergent sequence of
parameter estimates. Central to the numerical search sre a gradient functional and a
Hessian operator, which are respectively the first and second function-space
derivatives of the negative-log likelihood functional with respect to the parsmeter
distributions being identified. Por simplicity, a Gauss-Markov approach iz used to
approximate the Hessian in terms of products of first derivatives. The gradient and
spproximate Hessian are computed by first arranging the negative-log likelihood
functionsl into a forra based on the square-root factorization of the predicted
covariance of the measurement process. The resulting dats-processing approach,
referred to here by the new term of predicted-data-covarisnce square-root filtering,
makes the gradient and approximate Hessian calculations very simple. Since the
parameter estimates are only approximations to the actual parameter values, there is a
parameter estimation error inherent in the estimation process. Cramer-Rao bounds are
obtained for the covariance of the estimation error in terms of the information
operator associated with the likelihood functional. These error covariance bounds are
then used to outline methods for optimal input design.

A closely related set of state estimates is also produced by the maximum likelihood
method: amocthed estimates that are cptimal in a conditional mean sense and filtered
estimates that emerge from the predicted-data-covariance square-root filter. The
terms "smoothed” and “filtered" are used because the formulas which generate these
estimates, when expressed in operator notation, are symbolically very similar to those
used in filtering and smoothing for linear dynamical systems. A key similarity is the
presence of a predictor-corrector structure containing estimator gains that, as in a
Kalman filter, can be expressed in terms of the state estimation error covariances. In
addition, a residual process can be defined, in the usual way, as the difference between
the actusi dats and the predicted data obtained from the filtered state estimate. The
residuals have properties nearly iderntical to those of an innovetions process: the
residuals are white with & unit covariance; and the residuals and measurements can be
obtained from each other by means of reciprocal linear transformations. Because these
transformations are not Volterra (causal), the residuals are not a bona fide invovations
process. Bven though they are not a true innovations process, ihe residuals are very
useful, because they lead to state and parameter estimation schemes for elliptic
systems that retain conceptually the simplicity of those obtained by the innovations
approach to filtering, smoothing snd identification for linear dynamical systems.
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1. INTRODUCTION AND SUMMARY
The elliptic models considered in this paper can be cast as
AON(O) = B(B)w + C(O), (1.1)
y = H(G)u(O) + n, (1.2)

where A is a formally self-adjoint elliptic differential operator defined over the spatial
domain 2; B and C are appropriately dimensioned operators that model the influence of
the process error @ and the input f on the state u; H is an operator that characterizes
the state-to-observations map; © and n are white-noise model errors forming the model
error vector £=[w,n}; and f is a deterministic input. Examples of the application of such

models tc the problem of static shape determination of large space siructures are
contained in Ref. [1].

The central aim here is i0 develop & maximum-likelihood approachk to the
estimation of the parameters © (these parameters could in general be spatially
distributed) by using the data y and the svstem model itzelf. It is assumed that the true
value 90 of the parameter O is a deterministic but poorly known quantity. The input {

can be sclected to optimize the data generated for estimation. A related but somewhat

secondary aim is 1o develop a methodology for compatation of the corresponding state
estimates.

A Formula for the Negative-Log Likelihood Ratio

It will be shown in Sec. 3 that the negative-log likelihood functional is specified by

J(©;y) = Y2 Tr log [1+R(©)] + ¥ [y-m(O))¥[1+ R(G)]-'[y—m(e)] - Y2 y%y, (1.3)
where

m(6) = HIO)YD(O)C(O) and R(O) = HIOYN(OIB(B)B¥O)DHOIH*(O).

The integral operator 9{(O) is related to A(O) by A(B)Y(O)sl, with I the identity. The
symbol O% denotes the integral operator adjoint to @ so that OXO)A¥O)=I. It will also
be shown in Sec. 3 that m(©) and R(O) are re:pectively the “"suspected” mean and
covariance of the data y, under the assumption that the model error vector e=[w,n] is a
spatially distributed white-noise process [1) with a covariance operator B(cc®)sl equsl
to the identity. To simplify Bq. (1.3), the following notation has been used:

yty= <yy>, and [y-m(0))*{1+ R(©)]) *(y-m(©)) = <ly-m(©)), [1+R(O)]~ ‘[y-ln(e)]>‘.

where <, ->’ indicates an inner product in the function space to which the data belongs.
Predicted-Data-Covariance Square-Root Form of the Likelihood Ratio

A mamber of alternstive formmlae for the negative-log likelihood functional are

developed in Sec. 4. To solve the above minimization problem, the most convenient
formula is:
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J(6iy) = Tr log[1+K(©)] + % 2%(8)2(6) ~ 2%(O)y, (1.4)

where

z(0) = L(O)y + [I-L(B))Im(8), (1.5

o/ Y
L©) =I-[I+R(O)] ", K(©) = [I+R(O)] -1 (1.9)

Equation (1.5) can be viewed as specifying a filter, characterized by the operator L(O),
that processes the data y and the suspected mean m(B6) to provide a “filtered” state
estimate z(0). This filter L(0) will hereafter be referred to as the predicied
data -covariance square-root fiiter becausc the key calculation required to specify L(6),
as in (1.6), is the evaluation of the square-root of the predicted-data-covariance
operator [I+R(6©)]. The equivalence between (1.3) and (1.4) can be esteblished by
substitution of (1.5) and {1.6) into (1.4).

Note for later reference that the definitions in (1.6) imply that K(©) and L(O) are
related by

[L+K(©) * = I-L(6). (.n
Furthermore, (1.7) implies that K(8) = L(6)+K(B)L{6) = L(6)+L{6)K(E).

Gradient of the Likelihood Functional

The gradient functional 9]/99, to be defined more completely in Secs. 5 and 6, is
specified by

9] /38 = Tr{(AL/30)1+K)) + (z-y)¥(3z/30), (1.8)

where
9z/99 = (0L/30)y + (I-L)¥Om/3e), (1.9)

with ¥ = y-m, and 3L/96, dm/30 being the function-space Prechet derivatives of L and
m. These equations can be obtained from (1.4) by function-space differentiation with
respect to O.

The gradient functionsl 3J(0;y)/30 in (1.8) is the Frechet derivative [2] of the functional
] with respect to the parameter ©. The derivative is a linear transformation (assumed
to be bounded) that maps an admissible parameter perturbation &0 into the
corresponding perturbation 8J(6,80;y) of the likelihood functional by means of the
equation 8J(6,60;y) = [3](6;y)/00] &6. Detailed computation of the function-space
derivatives above is conducted in Sec. 6 using a perturbation analysis of the
eigensystem of the covariance operator R = HOBB*¢*H* obtsined in Sec. 5.

Note that in Sec. 7 it will be established that

E[0](Biy)/30
[87(Osy) ]e.eo = 0, (1.10)
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50 that the expected value of the gradient vanishes at the optimal parameter value O,
Hessian of the Likelihood Functional

Similarly, differentiation of (1.8) leads to

317362 = Tr [(3°L/38%) (1+K) + (AL/30) (3K/30) ] + (z-N*(d°2/30%) +

(32/90)%(39z/ IB); (1.11)

and 1o its expected value at 86 of M(© ) = x{a’;/ae’ne:e )i
(o]

B[92])/903) |96 o Tr [(3L/30) (1+R) (3L*/30)] +. B{(3z/36)%(2/30)]. (1.12)

Furthermore, substitution of (1.9) in the last term of (1.12) leads to
B{32]/9@3]) |g.@ = 2Tr [(L/3O) (1+R) (AL*/30)] + [(I - L) (dm/30))*
o
[T - L) (dm/30)]. (1.13)

Note that the expected value of the Hessian operator 9%71/30* evaluated at 00 A is a

sum of two terms each of which is positive definite. Consequently, in a probabilistic
sense made precise by (1.13), the likelihood functional is strictly convex in the vicinity
of the optimal value 9-60. Note that by definition weo) in (1.13) is also the

information operator associated with the likelihood functional.

Newton-Raphson Search for the Optimal Parameter Estimates

Since the problem of minimization of J(©;y) in (1.4) has no closed-form solutioa, it is
nacessary to consider iterative numerical search techniques for optimization. The
following constitutes a functicn-space Newton-Raphson iteration:

n+l n -1
9 2@ - Mn gn. (1.14)
where g, = ane“;y)/ae is the gradient functional (1.8) evaluated st 6:6“; and where

My, = Tr [(L/36) (1+R) (BL*/36)] + (32*/30) (92/30)|g.0 (1.15)
3

is an approximation to the Hessian operator 82]/89a in (1.11). This approximation is
obtained from (1.12) by replacing the second term RB[(3z*/30Xdz/00)) with the actual
value [(32%/00)3z/08)) obtained in a single realization. Under certain conditions, to be

322



examined in more detail in future work, the sequence e" specified by (1.14) converges

to a local minimum of J(B;y), if the initial estimate used to start the search is
sufficiently close to the optimal value.

Cramer- Rao Bounds and Optimal Input Design

The above numerical search results in an estimate © of the actual parameter value 90.
In Sec. 7, a C-R bound for the covariance n(epep*) of the estimation error ep = 9—60 is
obtained from the inequality.

EO 6 maM '®©), (1.16)
PP o

where the information opera or M(Go) is specifigd in (1.13). The related mean-square

estimation error is bounded by B(© %0,) z TriM" l«30)1.

The information operator M(eo) can also be used to specify criteria for optimal input

design. Perhaps the simplest optimal selection method to implement is that whick
seeks to maximize Tr [M(eo)] with respect to f, subject to the consiraint that f satisfy

ithe normalization condition of f*f=1. This method resuits in an optimal f which is the
eigenvector correspending to the largest eigenvalue of a positive-definite matrix
described in detail in Sec. 7. Other criteria for optimal selection based on calculation

of M“(GO) may be more difficult to implement but ususlly lead to superior
performance.

The Corresponding State Estimates

Related to the parsmeter estimation aspproach are the following two distinct state
estimates (denoted by v, and zo):

u, = Bluw/y) = OCf + G(y-HPCH), z, = OCf + gly-HOCH), (1.17)
where G and g are Kalman-like gains (see Sec. 8) specified by
= 2 = - *
G= Y sin akxkcbk*. g=1r (1 cosak) xktbk . (1.18)

In these equations, ¢k are the eigenvectors of the operstor R 'a HOBB*®H¥, s0 that
R, = x;¢k. with x; being the related eigenvalues. Also, a, and x, are defined by
tang, =\, andx = x;’@nmo*nwk.

The staie estimate u = B(u/y) is defined a3 the conditional expectation of the state
given the data y. Since v, is an optimal estimate of u based on the entire data set (as

323



opposed to a subset), u, cen be viewed as a best smoothed estimate. The other
estimate, z, in (1.17), will be referred to as e filtered state estimate. Th: filtered
estimate has no known probabilistic interpretation similar to u = B(u/y) above.

However, in spite of the apparent lack of probabilistic meaning, this estimate is useful
in simplifying the gradient and Hessian calculations in (1.8) and (1.11). It will be shown

in Sec. 8 that z, in (1.17) and 3, the estimate emerging from
the pred.cted-data-covariance square-root filter, are related by z = Hzo. Hence, z o is
a bona fide estimate of the entire state, wheresas z = Hzo is a partiai estimate defined
only at the observation locations.

Kalman-like Gains and Error Covariances

The gains G snd g in (1.17) can alternatively be specified in terms of the
covariance of the state estimation error inherent in'no and ’o’ i.e.,

G = PH¥, g = pH¥, (1.19)

P= El(u-u ) (u-u )*), p+p* = Bi(u-3) (u-3 )*]. (1.20)
The corresponding mean-square state estimation error is

E((u-u )¥u-u )] = Tr 128 Bl(u-2 )%(u-2 )] = Tr [p+p*). (1.21}
Purthermore, P and p are related by

P = p+ p - pH*Hp. (1.22)

Since the term pH*Hp iz non-negsative, the mean-square estimation error associated
with the smoothed estimate u, is never larger than that of the filtared estimate z o

Filtering and Smoothing

While v, and z, have been defined some shat independently in (1.17), they are
related by:

U, = zo + pH¥e, (1.23)
where

e-y-Hzoa(I-HpH*)i-(I-L)i (1.24)

is the residual process defined as the difference between the data y and the
observed-state estimate Hz o' The symbol ¥ in (1.24) denotes the mean-centered data
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process y = y - HOCf. It will be shown in Sec. 8 that (1.22) and (1.23) constitute a
generalization to elliptic systems of the forward/backward sweep method for solution
of smoothing problems in iinesr dynamical systems.

The Residuals as s Pseudo-Innovations Process

The residuals in BEq. (1.24) have two properties that are similar (but not identical)
to those of ar innovations process:

E(ee®) = I, (1.25)
e=(-L)y, ¥y = (I + Ke. (1.26)

Eq. (1.25) reflects whit- ness of the residuals. Bq. (1.26) states that the residual and
mean-centered dats processes e and ¥ can be obtained from each othar by means of

reciprocal transformations, 1.e., (I + K¥ ' = (I - L) as in (1.7). Whiteness of the
innovations and reciprocal relationships between innovations and measurements are the
two central features of the innovations approsch to least-squares estimation for linear
dyramical systems. Bqgs. (1.25) and (1.26) are similar to these conditions. However,
there is a key difference: the transformations (I + K) and (I - L) in (1.26) are Fredholm
operators whose domain is the entire messurement space. This is in contrast to the
Volterra (causal) operators in the innovations approach for linear dynamical systems.
The notion of causality is not even used in this paper, although such a notion can be
defined for certain classes of elliptic systems [}]. Because of this difference the
residual process is not a bona fide innovations process. Fowever, the residual process is

stili useful in obtairing the relatively simple formulas in (1.8) - (1.26) for filtering,
smoothing and identification.

Paper Outline

This section has at & summary level addressed many of the fundamental issues involved
in the maximum likeh ..od approach to estimation. The subsequent sectiont of the
paper contaiu & more complete description cf the above results.

Section 2. Development of the mathematical frameviork -- including integral
operator models, a priori covariance analysis with white-noise model errors, Fredholm
resolvents, and eigenfuncticn expansions -- required to arrive at formuls (1.8) for the
likelihood functionsal and w0 evaluate the corresponding function-apace gradient in (1.8)
and the approximate Hessian in (1.15).

Section 3. Derivation of the mnegative-log likelihood functional im (1.3). This
functional is the negative logarithm of the likelihood ratio, associated with the
detection of z Gsussian signal in additive Gaussian noise, traditionally encountered in
the theory for communication and signal detection.

Section 4.  Development of alternative formulss for the likelibood ratio, some of
which are more convenient to use than (1.3) in implementing the aumerical search for
optimization -- in paiticular, development of the predicted-data-covarisnce
square-root filter form (1.4) upon which the Newton-Raphscn search is based.
Additional forms of the likelihood ratio which sre of interest in their own right

325



(although not subsequently used in the paper) are: a smoothing form expressed in terms
of the best mean-square state estimate; an eigenzystem expansi-n form based on the
eignenvalues and eigenvectors of the operator R=HOBB*®*H* in (1.3); a trigonometric
operator form with which most of tke manipulations involved in the maximum likelihood

approach can be visualized using their similarities to simpie trigonometric formulas for
scalars.

Section 3. Development of a first-order perturbation anslysis to evaluate the
infinitesimal changes in the eigensystem of the operator R=HOBB*Q*H* in (1.3) due to
similarly small changes 80 in the parameter distributions being identified. This is the

central calculation required to compute the function-space gradients 3]/96, 9z/90,
dL/90 and Om/36 in (1.8) and (1.9).

Section 6. Calculation of the gradient functional and spproximate Hessian of the
likelihood functional based on the perturbation analysis of Sec. 5. These are the two
calculations which are central to implementation of the Newton-Raphson search and

which have been used as & basis for computer programs to implement the maximum
likeiihood approach.

Section 7. Parameter estimstion error covariance analysis and Cramer-Rao bounds
based on explicit formulas for the Hessian (information) rperator in (1.13). Outline of

en optimal input design approach based on using the Cramer-Rao bound as an optimality
criterion.

Section 8. Analysis of the filtered and smoothed state estimates embedded in the
parameter estimation approach. Analysis nf the predicted-dats-covariance square-root
filter resuliting in Kalman-like formulas for the filter gain, evalustion of the state
estimation error covariance, and relationships betwuen filtered and smoothed estimates.

Section 9. Summary and explanstion of calculations required for implementation of
the numerical search for the optimal estimates.

Section 10. Conclusions and directions for future worl in the arcas of development of
a3’ iptotic properties of the estimates and of optimal input design.

2. PRELIMINARIBS: Notstion, Integral Operator Modei, Covariance Analysls,
Predholm Resolveats, and Bigenfunction Bxpansions

The aim of this section is to develop s set cf miscellaneous resulis that will be useful in
subsequent sections in conducting detailed derivation cf: the negative-log likelihood
functional in (1.3) t0 be minimized, the corresponding function-space gradient in (1.8),

and the approximate Hessian operator in (1.15). The rmain resul;s of the section can be
summarized as follows: .

] conversion of the partial differential operator model in (1.1} to an
equivalent integral operator formulation. This integrai operator
formulation is introduced because it simplifies the statement and solution
of the estimation problems in (1.1) - (1.3).
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. evaluation of the observed state covariance operator R=HOBB*D¥*H* in
(1.3), under the assumption that ¢ = [u,n] is a spatially distributed
white-noise process with a unit covariance operator. Related to evaluation

of this covarizcrce operator R is the similar evaluati~n of the suspected
mean m = HOCS in (1.3).

° evaluation of the dual observed-state covariance operator Q=34%Q*H*HOB
- which can be viei'sd as the covariance of the output of a system model

dual to (1.1), unde the assumption that this dual system is driven by a
white-noise process.

. definition of two sets of eigenvectors ¢k and "k of R and Q above, with X;

being a set of common eigenvalues. ‘‘hese two sets of vectors can be used
to expand functions in the input space Hl and the outputl space H3.

- ‘
° definition of .2 vectors x, and 1 8 in the state rpace h’2 and its dual H?,

. = -1 = -1 * -
related to ¢k and ¢k above by Xy kk ¢B¢k and Py ‘kk ® H%k. Thase
two sets of vectors x, and Py satisfy a boundary-value problem simlar to

those traditionally encountered as necessary and sufficient cond.tions for
optimality in quad atic optimal control rnd estimation probleme subject
linear constrair ..

° analysis cf the basic relationship betwezen R and Q above and their
corresponding PFredholm resolvents P and S defined as P = I-(I+R)"" and

S =1-(1+Q) ". Expairsion of the operators R, Q, P and S in terr:s of the
eigenfunctions ¢k and "k defined above.

° development of trigonometric operator forms for R and P. These
trigonometric forms allow dcvelopment of ir*«resting trigonometric
alternatives to (1.3) in evaluating the likelihond 1u- _ticunal.

Whaile the section concentrates on the development of a mathematical framework to be
used in subsequent sections, wnsny of toe above results (such as th. trigonometric
operator formulas for the covariance operators) are of interest in their own righi,
somewhst independently cf their subsequent epplication.

Hilbert Space Notation

There are three Hilbert spaces of primary interest: the'inpnt spsace !-I1 to whick
the process error & and the deterministic input f helong; the state spsce H2 contsaining
the state u; and the measurement spece Hs where the dets y and the observaticn error
n beiong. The inner product between two arbitrary elements u and v in the space Hi is
denoted by <u.v>i or oy the simpler notation u*v = (u.v>i. Similarly, uv* denotes a
Hilbert space outer product.
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Conversion to Integral Operstor Mcdel

It is convenient for subsequent developments to convert (1.1) to an equivalent

iniegral operator formulation. To this end, define the Green's function ¢(x/f) of A as
the sulution of

Ax &(x/E) = 8(x-F), (2.1)

wher: & is the impulsive deita function, and where the subscript x in Ax dunotes that

the spatial differentiations embedded in A are performed with respect to x (as oppoused

to Yeing performed with respect to {). Define then the integral operator ¢ whose
kernel is the Green' s function, i.e.,

v = J'Q S(x/EWiENE, 2.2)

for all admissible functions v. Note that ® is the integral operator such that A® =,
where [ is the appropriately dimensioned identity.

With these definitions at hand, it is possible to recast (1.1) and (1.2) as

y = m(6) + H(O)Y™(6)B(©)w + n, (2.3)
where m(0) is the "suspected mean”

m(0) = HIOYDO)C(IE. (2.4)
Bquation (2.3) can be cast into the fclicwing even more compact notation

y = m(B) + h(O)¢, (2.5)

whe.e € = [w,n] is the model error vector [1], and h(6) is the operator h(B) =
LUOYDO)BOB 1 1).

Predicted-Data Mean and Covariance

The evaluztion of the predicted mean and covariance of y, needed as a preliminary
step to arrive at (1.3), is based on the key assumption that the model error vector ¢ =
[0:n] i3 a zero-mean spatially distributed white-noise process whose covariance
operator B(e€*) is the identity, i.e.,

Blce® =1, (2.6)

where 1 is the appropriately dimensioned identity. Note that thir .szumption iz not at
all restrictive, because the more general case where the model errors ¢ = {w,n] aze
correlated (with a nonidentity covariance operator) can be handled within the same
formulation hy selection of the operator B in (1.1). It is assumed here that BB¥* is
bounded and trace-class, with kernel b(x/§) satisfying [ Q b(x/x)Ax <00,



Remark 2.1 The process y is & random field with mean and covarisnce specified as
E(y) = m(©), E{[y-m(0)] {{(y-m(O)]}¥} = 1+ R(O), 2.7

where R(0) = H(O)D(B)E(Q)B*O)DHOIH*(O). That E(y) = m follows from (2.5) and the

fact that € is zero-mean. The second of Egs. (2.7) follows from the following sequence

of operations: E[(y-mXy-m)¥] = EBlhee*h*] = hE(ce)h* = hh* = I+R. A more detailed
development of the above result is contained in Ref. [1].

Remark 2.2 The process u in (1.1), rapregenting the state of the system, is & random
fizld with mean and covariance specified by

E() = ¢Cf, B[(u-@CEfXu-PCf)¥] = R(©), (2.8)
where

R(©) = O(B)B(E)BXO)OXO). . 2.9

Note that the stzte covariance R and the "observed-state” covariance R in (2.7) and
(2.8) are related by

R(©) = HR(G)H*. (2.10)
Remark 2.2 The state covariance R satisfies the partial differential equation
ARA* = BB¥, (2.11)

a result which can be established by pre-multiplication of R in (2.9) by A and
subsequent post-multiplication by A¥.

Remark 2.4 The state covariance operator E can be represented as the following
integral operator

Bv = J'Q r(x/E) w(E)E, (2.12)

where the kernel rix/£) satisfies

Axr(x/E)AE = b(x/{), (2.13)

and where b(x/{) is the kernel of BB*. This result can be established by means of the
following sequence of operations. Consider an admissible function v (admissible in the
sence that it can be operated on by the operstorsr ARA* and BB¥* in (2.11) so that

ARA*v = BB*v makes sense). In terms of the corresponding kernels r and b, this last
equation becomes

AXUQr(x/E) [AE‘V(E)]dE} = J'Q [A‘r(xfE)Azl wW(EMdE = j'Qb(x/E}v(E)dE. (2.14)

where the first equality is valid because by definition AE* is the formal adjoint of A I3
Since Bq. (2.14) must be valid for all admissible v, then (2.14) implies (2.13).

329



Remark 2.5 The state covariauce kernel r in (2.12) can be expressed as

ox/E) = IQ _rQ H(x/m) o(ryB) $(B/E) dndB, {2.15)

where ¢ is the Green's function of A, and b is the karmel of BB¥. This result can be
estabdlished by expressing (2.9) in terms of the operator kernels ¢ and b of & and BB*
and by subsequent reversal of the order of integration.

Remark 2.6 In the special case, of interest in many applications, where the process
error o is discretely located at the M locations [nx..... “I]' and the sensors are placed

at the N locations Mx"“"N]’ then R = HOBB*®¥*H* is a matrix whose general element
R.lj is specified by

M
Rii = ¥ «‘x/"!) O(ﬂ,./f ,). (2.16)
=1
where the summation is taken over the disturbance locations.
The Dual-Model Covarisnce Operators
Closely related to R and R above are the "dual” operators defined as
Q(6) = BHOYDHOIHHO)HIOINOIB(O), Q (0) = PHOIHKO)H(OYINO). 2.17
Note that Q and Q can be obtsined, from R and R respectively, by making the
substitutions ®-+®* and B-H*. This observation can be used as the basis for defining the

dual system model, illustrated in Fig. 2.1, whose state and output have covariance
operators cpecified by Q and Q above.

w_PROCESS PRIMAL U M
~—mor- ] 2 1 ® mw o " [STATE

Be A
n OBSERVATION . | ouAL Igsssmo ,
“mroR 1] ™ @ f"sr—m"_L B IDUAL STATE

Figure 1.1. Miustration of Primsal and Dual Mudels
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The primal system model is based on (2.3}, with &, u and Hu deroting the process etror,
the system state, and the observed state respeciively. For this model, R = E(un®) is the
covariance of the state, while R = HRH¥* iz the corresponding covariance of the
observed state. It is assumed for the sake of this discussion that the deterministic input
f in (1.1) has been st to zero, so that the suspected mean m in (2.3) is zero also. With
this assumption, it is not necessary to show m in the block diagram in Pig. 2.1, and the
relationship between the primal snd dual models is illustrated more easily. The dual
system model is characterized by the dual operators ¥, &% and B¥, by the dusl or
adjoint state \, and by the observed dual state B¥\. It is assumed thet the dual model
is driven by a unit-covariance white-noise process 30 that B(nn®) = I. This input process
n driving the dual model can be thought of as being the observation error process in
(2.3). Por this dual model, § = B(OAA®) and Q = B(B*\\%B) are respectiveiy the
covariances of the state \ and the observed state B¥*A. Upon multiplication of \ in

Fig. 2.1 by A¥, the following partisl differential equations result to describe the dual
model

A%\ = H*n. (2.18)

Noté that the dual state covariance Q = O¥H*HO® and the dual observed-state
covariance Q = B*Q*H*HOB are relsted by

Q = B*QB. (2.19)

In the same spirit used to arrive at (2.11)-(2.16), it is now possible to develop the
following properties of the operator § and its corresponding kernel q.

Remark 2.7 The dual-state covariance operator Q satisfies
A*QA = H*H, (2.20)

a result which can be obtsined from Q = O*H®*H® in (2.17) upon mnuitiplication
by A¥()A.

Remark 2.8 In terms of its kernel q. the operator Q can be expressed as
Qv = [ a/EvEME, (2.21)
where g satisfies the differentisl equation

AEq(E/x)Ax = h(E/x), (2.22)

and where h(£/x) is the kemel of H*H. This resuit can be established by an approach
quite similar to that used in arriving st (2.13). The symbol v denotes again an
admissible function defined to be sdmissible if (2.21) makes sense.

Remark 2.9 The kernel q(f/x) of Q can be expressed as

q(/x) = !Q J'Q & E) h(wB) ¢(x/B) dn dB, (2.23)
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where h is the Fernel of H*H. This result can be established in & manner analogous to
that used in arviving at (2.15).

Remark 2.10 In the specisl c- ¢ most typical in applications, where the range of H

and B is finite-dimensionsl, the. Q = B*OF*H*HOB is 2 matrix whose general element
Qii can be expressed as

N
Q= I amsE) qx/my), (2.24)
k=1

where the summation is taken over the set of sensor locations.
Spectral Representations

~Recall that R = HOBB*®*H* is the observed-state covarisnce operator in (2.7).
The eigenvalues of R are defined ss the nontrivial solctions of

R, = x"&. (2.25)
with ¢k being the corresponding eigenvectors. Note that, in cases where H has »

finite-dimensionsal range, the operator R is an N-by-N matrix with a finite number of
eigenvectors. In the more general case where the range of H is infinite-dimensional,

then R is usually compact and \;—oo as k+es, In both of these cases, the following
Mercer expansions hold for R and its kemnel r

R= L Mo smd  rwba L x;q»t(x»:m (2.26)

Furthermore, the normalized eigenvectors ’k form an orthonormasl basis for the
observation space Hs This implies that £ "kot‘ = ], where [ is the identity in li3

Closely related to the basis °k above are the dus! vectors 'k defined as

-3
B‘Q.H%k' (2.27)

which can be viewed as the result of apptyin;anin;m.cpktéthedulsyuemmodel
(2.18) and then "balancing” the cutput by dividing by the eigenvalue kk’

Remark 2.11 Tke vectors 14" defined by (2.27) are the eigenvectors of the dual
obzerved-state covariance Q = B*Q*H*HOB, i.e.,

2
Q¥ = A ¥, (2.28)
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This result can be established by premultiplication of (2.27) by HOB and use of the
condition R¢k = k;q:k. Note that, if the dimension of the input space Hl is greater
than that of the output space Hs. then the *k do not span the input space. They do,

however, span the range subspace of the operstor B*®*H*. Conscquently, they cannot
be used to expand vectors in the null space of HOB.

Remark 2.12 The vectors *k are also related to ¢k by the equation

-1
¢, =\, HOBy,, (2.29)

a result that can be obtained from (2.27) upon premmitiplication by the operstor HOB
P 2
and use of the condition R°k = )'k¢k‘

Remark 2.13 The dual-state covariance operator Q) and its corresponding kemel q
can be expressed as

Q=L thwwt  q= I W awld (2.30)

a set of equations which are analogous to (2.26). This result can be obtained from the
observation that Q = B*Q*H*HOB = B*O*H* (L ¢k¢k") HOB = £ X; vkvk*. Use has
been made of the condition E okc»k“ = L

The vectors Qk span the observation space Hs While the vectors 'k do not
span the input space Hl' they do span the range of B*®O¥H*. So far, no attempt has
been made to obtain vectors that can be used to expand functions in the state space Hz
or in its dual space Hz*. To this end, define

- -1
x, = lk OB#k. Py = )‘k O'H%k. (2.31)

The vector xk is in the state space whereas the adjoint variables pk are in the dual
space. In general, neither one of these two vectors however spans the state space £

Remark3.14 The vectors X, and p, are orthonormal with respect to H*H and BB*
respectively, i.e.,

x *H'Hx =0, p BB =0, Xk #m, (2.32)
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These results can be established by the following sequence of operations: x.k‘H*me =
‘ = = = i

(ka) me k%m and pk“BB‘pm (B"pk)‘B*pm 'k.'m . Since ¢k and 'k are

orthonormal, then (2.32) and (1.33) follow.

Remark 2.15 The vactors X *k and Py X, are related by
This result follows readily from the definitions in (2.27), (2.29) and (2.31).
Remark 2.16 The vectors x, and Py satisfy the boundary-value problem:

A 0 x 0 BB* x
k 1 k

. (2.35)
0 A* A H*H 0 |-
pk J k pk

This result can be established by coperating on x. in (2.31) by A and on p, by A* to obtain
Xy x

-1 -1
lek = kk ka and A"pk = "k H'ok (2.36)
Then, substitution of (2.34) in (2.36) implies (2.35)
Note the similarity between thizs problem a. 4 those traditionally encountered as
necessary (and at times sufficient) conditions for optimality in quadratic optimal
control and estimation problems for linear systems.
The Fredholm Resolvents of the Covariance tors Q ¢

The PFredholm resolvent of R is defined as that integral operator such that
(1+R)" " = I-P, a relationship which immedistely implies that

R=F+RPand R =P + PR (2.37)
In terms of the corresponding kernels r and p, these equations become

r(x/8) = p(x/E) + .I'Q rix/np(w{)Mdn (2.38)

for the case with continuously distributed data. In cases with discrete data, R and P
are matirices whose general elements Rk @m and Pk.m are related by
‘]

N
k,m + ¥ Rk'an o (2.39)
n=1

R =P

k,m
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In both cf these equations (2.38) and (2.39), the unknown is the Fredholm resolvent P,
whereas the observed-state covariance kernel R is known.

Remark 2.17 The integral operator R and its Fredhclm resolvent P commute. This
result, which can be stated as

RP = PR, (2.40)
is a direct consequence of (2.37).

Remark 2.18 Equations (2.37) also imply that

P = (I+R) 'R = R(I+R) %, R = (I-P) ‘P = P(-P) ~. (2.41)

Remark 2.19 In a manner analogous to (2.37) - (2.41), it is possible to define the
resolvent S of the dual-state covariance operator Q by the relationship I+Q) " = I-§
which implies

Q=5+Q5,Q=5+8Q,8Q=4Qs, (2.42)
and

S=(+Q Q= QU+Q Y, Q= (I-S) S = SA-5) . (2.49)

Remark 2.20 The Fredholm resolvents P and S can be expressed as

2, « 2 2 2
P=Y [\k/(u\k)] ¢k¢k“. S= ¥ [Xkl(l-blk)]vkvk", (2.44)

2 2 T 2 2 T
px/E)y= ¥ l\k/(h\k)] ¢k(x)¢k(f). s(x/8)= ¥ [N\ {(h\ Q] ?ém k(E). (2.45)

These expansions can be established by substituting (2.26) and (2.30) into (2.37) and
(2.41).

Trigonometric Operator Forms

Remark 2.21 The predicted-data-covariance operator (I+K) can ve expressed as
I+R =1+ TAN?a = SEC’a, (2.46)

where TAN?a and SEC’a are the operators

TAN’a = § un’ak¢k¢k* = R, SBc®a= [ seczak¢k¢k*. (2.47)
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and tan ay is defined by tan a, = )‘k' Note also for later 1eference that

H 1
(tR) = SECa = [ seca, 6, 0,%, R A o TANa = T tana, &, b, ¢ . (2.48)
Proof: LecallthatR=E N\ f? @=Lt ] 9 ¥ thereby establishing (2.47). Use

of the formal expression [ = ¥ ¢k¢k*for the identity I implies that (I+R) = E ( l+un’ak)
¢k¢k*. which leads to (2.46). Bquations (2.48) are obtsined from (2.46) and (2.47) by
performance of the square-root operation.

Remark 2.22 ihe Fredholm resolvent defined as P = I - (I+R) ~‘of the covarisnce
operator R can be expressed as

P = SIN“a, (2.49)
where SIN’a is the operator defined by the expansion
2 = 2 * . 2 2
SIN“‘a = ¥ sin G.k¢k¢k pX [Xk/(l'&)«.k)]d’kd’k*. (2.50)

Proof:  This result can be estsblished by substitution of un’ak = ).; in (2.44).
Remark 2.23 Equations (2.47) and (2.48) togethar imply that

P = R(I+R) * = TAN?a[I+TAN?*a])* = TAN?a [SBC?*a] ™" = S™N?a, (2.51)

s trigonometric operator identity that can be viewed as a generalization of a imilar
identiry involving scalars.

3. DERIVATION OF LIK 00 (o

Based on the results of the previous section, it is now possible to derive the
likelihood functional in (1.3) to be minimized. Since the development required to

achieve this is fairly lengthy, it is convenient to summarize in advance the pivotal steps
involved in the derivation:

. the integrsl operator model 7 = m + HOBw + n in (2.3) is first coverted into an
equivalent “spectral” form Yy = my ¢ xkuk + o, where Yy = ¢k“y. ©y =
wk*o, o, = ¢k* n are the corresponding spectral coefficients.

. the spectral coefficients Ty of the dats y are a sequence of independent

2214+22snd

Gsussian random variables with maan B(yk = m,, covariance % X

Yy -

probability density pk(yk;e) =W o, °Xp [~(yk—mk)z/20;]
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. a “finite-dimensional” likelihood ratio is then defined as the product of a
finite number N of terms involving the probability densities pk(yk;e) above.

. an "infinite-dimensional" likelihood ratio is cbtained by letting the number N
of spectiral coefficients approsach infinity. The related negative-log
likelihood functional in (1.3) is obtained by taking the negative logarithm of
the functional that results from the limiting process. Of course, in cases
where the data is finite-dimensional (obtsined by means of a finite number of
discretely located measuremsnts), the limiting process iavolved in this last
step is not pecessary. In this case, the “finite-dimensional® likelihood
function obtained ir the previous step is the function to be minimized to
obtain the parameter estimates.

The remainde of this section contains a more detailed derivation of the foregoing
results, )

Recall that
vy=m+ HOBo + n, (3.1)

where m = EOCf and f is the input. As outlined above, the first st-p toward evaluating
the likelihood function is to convert (3.1) into an equivalent "spectral” form by using .he
eigenvectors ¢k and wk' ie.,

V=L 9 by ©=1L oW, n= L od, mImo. (3.2)
Substitution of (3.2) and (3.1) and premultiplication of (3.1) by ¢k* leads to
Yy = m, ¢ kkwk +o,. (3.3)

Result 3.1 N & and n, are independent Gaussian random variables with mean and
covariance given by

MEAN COVARIANCE
-2 2
E(ok) = B(nk) =0 B(yk) ala+ )‘k
2 P2
l!(yk =m, B(ok) = B(nk) =1

B(’kym) =0 myk

where ?k = yk - my. Hence, Yy is & sequence of independent Gavssian random varisbles

with meat: m, and covariance 1 + k;.
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Let yN = [yl.....yN] be an N-dimensional vector consisting of the first N spectral
coefficients Yy of the data y. Because Yy ore independent G2 - .n random variables

with mean m, and covariance a; = 1 + A2, their corresponding probability deunsities
et § 2

A
pk(yk;e) = W /'ak exp (-9;/20k) can be multiplied to obtain the piobability density
p(yN;G) of the composite M-dimensional vector yN y Le.,

N N
) N " 'J/
ply ;0 = 1 Py(9,i0 = TI ak‘w ‘exp (-y;na;). (3.4)
k=1 k=]

In order to obtsin a likelihood functionsl for the identificstion problem with the
function-space process y as the data, it would be desirable to 13t N+co and obta. what
would be in the limit a probability density func.onal (PDP) for the »icocese y.
Unfortunately, thiz limit may not exist because the right side of (3.4) may not converge
as N-+oo, and consequently s PDR for the process y cannot be defined ‘n this manner.

However, this can be circumvented by divitﬁn; by

N
_1
pg(yN;G) =00 /'exp (-y;/?,). (3.5)
x=1
This results in
N [-¢ v 200y
e - °m ’ *
P yk 4 k
AN =T — . (3.6
%
k=1

2 2
(1+\ ) exp (-y /2)
1 4 ® yk

which can be viewed as & likelinood ratio consisting of the PDF of the process yN with
the "tignals* o, and m_nonzero, divided by the similar PDF of y'* with the signals o,
and m, set to zero. The term likelihood ratio used to describe (3.6) is consistent with
terminology common in the thecry for detection of Gaussian signals in additive
Gaussian noise [3].

Although the limits of p(y’ 16) and p (' 1S} appearing respectively in (8.4) and (3.5) may

not exist when taken inde;endently, the limit of their ratio in (3.6) is a well -defined
quantity specified by
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expl(-2) (y-m)*T+R) *(y-m)]

10) = . 3.0
| 8
[det(T+R)]} 4 expl(-1)yiy]

N

Afy;0) = lim Aly

This is the desired expression for the likelihood ratio that ihe maximum-likelihood
method seeks to maximize. It can be interpreted as tde likelihood ratio for the
detection of the "signal® m + HOBw in (3.1), in the presance of the noisy Gaussian signal
n. Instead of maximizing A(y;0) directly, it is more convenient to minimize the
negative-log likelihood functional defined a3 J(O;y) = -log [Aly;Q)], or, more explicitly,

J(6;y) = Y2 log dec [I+R(O)] + % [y-m(O)]*(1+ R(G)l_lly-m(e)] - ' y%y, (5.8

Note that for the special case with no deterministic input, .=m=0 in (3.1), and the
negative-log likelihood in (3.8) r=duces to

J(0;y) = 2 log det [1+R(O)] - /2 y*P{@)y, (5.9

where P(6) = I - [I+R(©))" is the previcausly detiped (in Sec. 2) Fredholm resolvent of
the predicted-data-covariance operator R.

The first term in both of these lsst two equations can be cast into an equivalent and
somewhat more convenient form i “33e of the identity [4)

log det [I+R(©)] = Tr log [1+R(O)]. (3.10)

Substitution of (3.10) in (3.9) leads to

J(8;y) = ¥ Tr log [I+R(6)] + ¥ [y-m(O))*(1+R(©)]) [y-m(©)] - ¥: y*y, 3.11)

which has been recorded previously as (1.3) and constitutss the central aim of this
seciion.

Reorientation

The method of maximum lik2lihood, as defined here, results in estimates that
minimize J(0;y) in (3.11). This minimization problem can be viewed as a function-space
nonlinear programming problem subject to the system model constrainis that
R(6) = H(0)P(O)XO)B*(O)D*(OYH¥O) and m(0) = H(O)®O)C(B). Since no closed-form
solution tc this problem exists, it is necessary to use .numerical methods for
optimization. However, chere axist alternative formulas for the likelihood ratio thst
are more convenient to uze in the impiementation of the numerical methods. Such
formulas are developed in the following section.
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4. ALTERNATIVE FORMULAS FOR THE LIKELIHOOD FUNCTIONAL

% Tr log (I+R(©)] + ¥: [y-m(O))*1+R(O)) '[y-m(O)) - Yay*y BASIC

Y Tr log [I+R(©)) + Y2 (y-m(G)]*(y-Hno(G)] - Yryty SMOOTHING
. 2 2,~-1 2 2
1) [log( 1+Xk) +( 1+\k) (7\;'mk) -yk] SPECTRAL
Tr log [[+K(D)] + Y2 2%(0)z(0) -z%O)y SQUARE-ROOT
FILTER
Tr log [SECa(O)] + ¥ 2¥(0)2(0) -2¥(O)y TRIGONOMRTRIC
OPBRATOR

In the above table, the basic formula is expressed in terms of the suspected mean m and
covariance I+R = I + HO3B*Q*H¥* of the data y. The smoothing form is specified in
terms of the optimal smoothed estimate u = B(u/y), representing the conditionsi mean

of the state u given the data y. The gpectral formmla is obtained by substitution in (1.9)
of the eigensys.em expansions R = Z'k; &% 7 = Ty, &, and m = Em ¢, , where ).;
and ¢k are the eigenvalues and eigenvectors of the observed-state covariance operator
R. The sqnare-root filter formmla, previously recorded in (1.4), is based on the
¥ 4
factorization of the predicted-dats-covariance operator as (I+R) = (I+R) 0. and

- 1
ou the definitions z » Ly + (-L)m spd (4E) = (-L)™ « (4R). Pinally, the
trigonometric operator formuls is obtained from the square-root filter expression by

use of the identities I+R = SEC*a and L = I-COSc developed in Sec. 2.

Although the derivation of the above expressions leads to significant insight idout the
structure of the likelihood functionsl, it iz not within the scope of the paper to
inves-igate all of these alternatives to the same level of detail. The formmla involving
tue predicted-data-covariance square-root filter appears to be the most convenient to

implement the numerical search for the ortimal estimates. This section, however, aims
to first develop the results summarized atove.

Formulas Based on the S State 4

Result 4.1 The negative-log likelihood functionsl can be « ressed as
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J(6;y) = 2 Tr log [1+R(O)) + /2 [y-m(6)}*[y-Hu 0(9)] - Yy vy, (4.1)

©_(6) = G(ey + [I-GIOH]HB)CT, (4.2)
G(O) = R(OIH* [+HR(OH*) ", (4.3)

where u = B(u/y) is the ccpditional expectation of the state u given the data y, and G is
the estimator gain.

Proof: It will be shown in Sec. 8 that no in (4.2) is the corditional mean and that G in

(4.3) is the corresponding estimator gain. Therefore, for the sake of the discussion
here, sssume that (4.2) and (4.3) are valid. Multiply LR in (4.2) by H and use (4.3) in the

resulting equation to obtain T

Huo = HGy + (I-HG)m, (4.4)

and

y- Huo = (I-HG) (y-m), (4.5)

where m = HOC{ is as before the suspected mean of the daia y. However, recall the

identity HG = HRH®I+HRH® * = I - (I.HEH® * 50 that I-HG = (I.HEXH® * = (1+R) .
Hencez, substitution of this last identity in (4.5) leads to

y - Hu_ = (It R) ‘(y-m). (4.6)

This is the central result required to establish the equivalence between {(1.1) and 3.11).
To this end, substitute (4.6) into the second tenm on the right side of (4.1), and observe
the equivalence with (3.11) by inspection.

Result 4.2 The negative-log likeiihood functional can be expressed as
J(6;¥) = % Tr log [1+R(E)) + ¥ [B(w)]* H*E [E(u/y)] - % [B(n) + Blu/y))*Hey 4.7

where B(v) = OCf and B(u/y) are respectively the unconditionsl and conditional expected
values of the state u.

Proof:  This result can be established as a corollary to the Result 4.1 by combining
the last two terms on the right side of (4.1) end use of the equation m = HOC.

Both of these results express the likelihood functional in terms of s quantity v, in (4.2)

which is the conditiona. 2xpectation B(u/y) of the state given the data y. This quantity
is also known to be the best linear mesn-square estimate as well as the optima)
least-squares :stimate. The coincidence of the best mean-square estimate and the
optimal least-squares estimate, both of which can be computed by the conditional
expectation formula (4.2), is explored at length in Ref. [1].
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Result 4.3 The negative-log likelihood functional can be expressed as
) = ! 2 2,—1 _ 2 2
JO:y) =% ¥ llogl 1+Xk) +( l+\k) (yk mk) ’k]' (4.8)

where Yy = ¢k‘y and m, = ¢k‘m are the spectral coefficients of the data and the

suspected mean m, and \; are the eigenvalues of R. By substitution of )‘k = unak in
(4.8), this equation can be cast as

JO;) =% ¥ [log (sec’ak) + cos'cxk (yk - mk)'-y;]. (4.9)

Proof: Equation (4.8) can be established by taking the negative log of A(yN;O) in
(3.6) and letting N-oo. Use of the identity )‘k = tana, in (4.8) leads to (4.9).

Result 4.4 The negative-log likelihood ratio can be expressed as

J(6;9)= £ [%log (10.;) + Y z: -z 9,0 (4.10)
where

zy = Lk yk + ‘I-Lk)mk and l.k = l-comt. (4.11)
Proof: Define the "residual” process

ek = yk - zk, (4.12)

as the difference between the data yk and the “filtered” estimate zk. Observe that °k =
cosak(yk—m.k) by substitution of (4.11) i- (4.12). Substitute this last equation into the
second term on the right side of (4.9) to obtain (4.10).

The formuls for the likelihood functional in (4.10) can be viewed as the "spectral”
version of the predicted-data-covariance square-root formula described below.

Predicted-Data-Covariance Square-Root Formmls for the Likelihood Functional
Result 4.5 The negative-log likelihood functional can be expressed as

1(6sy) = Tr log [I+K(9)] + 2 2%(©O)2(©) - 3%(O)y, (4.13)
where

z(0) = L(O)y + [I-L(©))m(6), (4.14)
with L(©) and K(6) defined as
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- Y,
LO) =1- [l+R(®) ", K@) = [I+R(0)] " - 1. (4.19)

Proof: Conversion of the first term (1/2) Tr log [I+R(6); in (3.11) into Tr log [1+K(©))

follows because (1/2) Tr log(I+R) = (1/2) Tr log M+KE)? = Tr log (I+K). Conversion of the

last two terms on the right side of (3.11) into the desired form in (4.13) follows from the
identity

(y-m)¥I+ R) (y-m) = [(I-L) (y-m))*(I-L) (y-m)] = (y-2)¥y-2), (4.16}

where use has been made of the fact that (I+R) * = (I-L%) (I-L).

Result 4.6 The operstors L and K can be represented in terms of the following
eigensystem expansions:

- . * = - *
L= T (1 co:ak) d»k tbk K=§% (:e(:cxk 1 ¢k¢k y (4.17)
where a, = un—‘kk. and ¢, are the eigenvectors of R.
Proof: Let

L=Y thbkd)k“ with Lk-¢k"‘h¢k, (4.18)

A
and then evaluate the as yet undetermined coefficients I.k from L = I - (I+R) ' in

{4.15). To this end, premnltiply L in (4.15) by Qk‘ and postmultiply by ¢k to obtain

1
L, =-1- (1end h = l-cosak. which is the desired result.
4 k

Similarly, to obtain the desired expansion for K, seek to determine the coefficients Kk
in

K=} K‘k ¢k¢k* with Kk = ¢k‘K ¢k' (4.19)
Multiplication of K in (4.15) by ¢, * and ¢, leads to K, = ¢, *Ko, = (1+x;)"‘-1 =
secak—l.

Trigonometric Operator Formnulas for tke Likelihood Functional
Resulr 4.7 The log-likelihood functional can be expressed as
J(©;y) = Tr log [SRC (O] + Y2 2%(0)z(0) - Oy, (4.20)

where
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2(9) = [I-COSa(O))y + COSa(6Im(O), (4.21)
—*a
with COSa(B) = [I+R(©)] "~ = ¥ cm‘k‘k"k" (4.22)

Proof: Recognize that (4.17) implies that
L(©) - I-COSa(©) and K(©) = SBCa(®) - I, (4.23)
and use these identities in (4.13) and (4.14) to obtsain (4.20) and {4.21) respectively.

Result 4.8 The negative-log likelihood functional can be expressed as

J©iy) = L [logseca,® +% z;(e) - 2, (@), (O], (4.24)

where z, and ¥y ore the “spectral” coefficients

zk(e) = ¢k‘(9)z(9), yk(e) = ok*(e)y. (8.25)

and as before o, = un-x).k. with \; being the eigenvalues of R.

Proof: This result, which is closely related to Result 4.4 above, can be established by
observing that SECa(0), z(0) and ¥ in (4.20) can be expanded as

SECa(@) = §, secak¢k¢k‘. z= ¥ xk¢‘~ ased y= ¥ ,k°k' (4.26)

Selection of Preferred Formula for Search tion

In principle, all of the above formmlas for the likelihood functions) J(O;y) can be used as
a point of departure to compute the gradient 3]/30 and the corresponding Hessian

3%1/06° - and to thereby obtain the necessary ingiedients to implement the
Newton-Raphson search for optimization. The calculations involved in the numerical
search can vary significantly, however, depending on which of the forms is used as a
starting point. It is therefore of interest to conduct a detailed investigetion of the
relative advantages and disadvantages of the various methods to implement the search
that arise from the various forms of the likelihood functional. Such an investigation is
currently in progress and will be reported on in future work. In this paper however, the
formula selected to compute the gradient and Hessian is that based on the
predicted-dsta-covariance square-root filter in (4.13).

AMNBIES HAN

As a preliminary to the evaluation of 3J/30 and a’r/ae’ involved in the numerical
search for optimization, it is necessary to conduct an analysis of the perturbations Gkk

and 64>k of the eigenvalues and eigenvectors of R = HOBB*Q*HS®, with respe~t to
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variations 80 of the parameter distribution 6. Such an analysis will provide the
mathematical tools that will be used in subsequent sections to evaluate 3J/C6 and

317007
By definition, x; and ¢k are the nontrivial solutions of
2
R(G)ok(e) = xk(ewk(e). 5.13

where the dependence on O of R, ¢k snd )‘k has been explicit. The uitimate objective

of this section is to develop analytical formmlas for calculating the first-order
perturbations 6kk and 6¢k of ).k and ¢k with respect to small changes 86 in the

parameter distributions 6.

Definition of 6Xi. a\, /90 and /38

It is assumed here that the Brechet differential {2) of "k at © exists and that it can
be computed by

8}, (0:50) = [N, (B+v80V/dYL (5.2)

where Y is a scalar and 80 is an admissible perturbation of ©. Rquation (5.2) is actually
the formuls typically used for computation of the Gateaux differential. However, it is
assumed here that both of these derivatives exist and coincide and that therefore (5.2)
can be used to calculate the Frechet derivative.

Since )‘k is Prechet differentiable (admittedly by assumption, as an investigation of
the technical conditions required for differentiability is not within the scope of this
paper), its differential &k(e;ee) can be expressed as

&k(e;ae) = [axk(e)/aejae, (5.3)

where cxk(e)/ae is a bounded linear functional ref=rred to as the Frechet derivative of
kk at €. The transforma.ion axk/ae can also be viewed as a function space gradient of
)‘k at O. Similarly, the eigenvector differential 6¢k(9;t"‘) is defined as

6¢k(6;66) z [3¢k(6;66)/89] 8. (5.4)
where [acpk(e)/ae] is the BPrechet derivative, assumed to be linear and bounded.
Calculation of 6k1 and axl /30

Recall that the ¢k in (5.1) are orthonormal so that
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¢k'¢k =1 and Qk%m =0, m#k. (5.5)

Multiplication of (5.1) by ¢k*cnd use of ¢k*¢k = ] leads to

2 = *
lk ¢k ROk. (5.6)
which can te taken as the point of departure £5r calculation of 6kk and axk/ae.

Result 5.1 The Frechet differentisl Blk (9;50) can be expressed as

- - 2 >
ékk(e.be) = 'kk(G) [pk“(e)bh(e.ée)xk(e)]. 5.7

where §A(0;50) is the differential of A defined as .
SA(6;50) = [dA(&YGB)/dyl_':o (5.8)

and p, and x,_ are the vectors cefined as Py = k;lO‘H%k and x = k;‘OBtk in Sec. 2.

Proof: Performance of e first-order perturbation on (5.6), and use of the condition
¢k"‘ X 0 leads to

-1
6Xk = (Zkk) ¢k"6l¢k, (5.9)

where 6R(9;60) = [dR(6+v60)/dY] evaluated at Y = 0. However, since 6R =
S(HOBB*5O*)H¥, then

&R = H(SO)BB*®*H* + HOBB¥SP®H*. (5.10)
It can be observed from (5.10) that evaluation of 89 is the central calculation
required to determine 8R. In order to simplify notstion, without loss of genmerality, it

hss been assumed in arriving st (5.10) that B and H do not depend on 6. In most

practical cases, this assumption is satisiied because the poorly known parameters occur
in the operatcr A.

To computs 6O, as required by (5.10), recall that A(O)(O) = I, so thet (SA)D +
A(SD) = 0, and “

80 = -P(SA)D. (5.11)
Substitution of (5.11) in (5.10) leads to

SR = -HO(SA)PBB*O*H* - HOBB*O*(SA)*P*H*. (5.12)
Multiplication by ¢k*(- )ok results in
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¢k'6l¢k = - (¢k*H0)6A(OBB‘O‘H"¢k) - (¢k‘HOBB*O‘)6A*(O*H*¢k). (5.13)

Finally, use of the definitions p,_ = x;‘ O*H*Y, and x = x;‘cmvk in (5.13), and

substitution in (5.9), implies (5.7). In performing this last step, it has been assumed that

A = A* is formally self-adjoint, s condition that is valid on most problems of practical
interest.

Discussion and Additional Assumptions on A

The above result, although a step in the right direction, is still omewhat
intermediate because the differential 6kk in (5.7) is expressed in terms of the yet to be

determined differential §A. To proceed further, it is convenient tc make two additional
assumptions (typically satisfied in practice):

* A is linear in © 50 that A + ei)' = A®) + A©), for two admissible

distributions 6l and 92.

. A(O) can be factored as A(©) = D®(O)D, where D and its corresponding formal
adjoint D* may in general be matrix differential operators.

Based on these assumptions, it is now possible to derive the following more explicit
formulas for ‘”‘k and a).k/ae.

Result 5.2 The Frechet derivative 3)} (6)/00 of lk is

2
axk(e)/ae = )‘k Dpk(e) ka(e). (5.14)
Proof: Since A has been assumed to be linear and factorizadle
2 2
axk = -kkpk*D*(ée)ka = )‘k <(Dpk) 86 (ka)>2 (5.15)

where the last equality is a consequence of a process anslogous to integration by parts.

esult 5.3 Since axk/ae has been assumed to be a bounded linear functional in X,
it must be expressible as

[axk<e)/ael¢se = <axk(e;- /98, 69>x, (5.16)

where axk(e; +)/90 is an element of X*(Q2). Puthermore, [axk(e; *)/08] can be evaluated
from

p 2 ¥ . I3
axk (0;x)/90 = )‘k Dpk(e.x) Dxt(e.x). (5.17)
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Proof: The rigorous derivation of this result is not as yet available. The result is
sccepted somewhat formally on the basis that a bounded linear functional can be
represented by an element in the dual to the space in which the functional is defined.

Calculstion of égl and @l /08

Resuit 5.4 The Rrechet differential 64} (0;60) of ¢& can be expressed as

. - 2 _ 2
6¢k (0;60) = } [(cbm“élld)k)/(kk Xm)] fm’ (5.18)
m#k

where SR is the differential of the observed-state covariance operator R.

. 2
Proof: Since Rcbk = thbk.
.. 2
(BR)py + ROGy = 2N (6X M + N 50, (5.19)

Now, seek an expansion for 6¢k in terms of the orthonormal basis ¢m’ ie.,
= = &
6¢k =L “¥mPm’ °%m = Pm 6q’k’ (5.20)
m#¥ :

where Cym 7€ scalar coefficients to be determined. Note that the orthonormaslity of
¢k implies that Cex © 0, 3o that 6<|>k does not have a component in the direction of ¢k
To evaluate ¢, , premultiply (5.20) by _* to obtain

2
¢m*62¢m + ¢ m“Rbd)k = kktbm"&bk. (5.21)

3 *p = \? * - *
Use of the conditions ¢m R \m¢m and “xm "m 6¢k and rearrangement of terms
leads to

_ . 2 _ .2
Cym = (¢m 6R¢k)/0‘k 'km). (5.22)

Substitution of (5.22) in (5.20) leads to (5.18), thereby esublhhin;.t.he result.

Equation (5.18) is similar in nature to (5.9) in that it expresses the desired
differential in terms of the yet to be determined quantity 8R.

Result 5.5 The Frechet differential 64*(9;66) of 4& can be expressed as

2 2
6¢k(6,66) = ¥ [kam/(kk—km)l [‘kkpm"(tﬁA)xk + kmxm" (6A)‘pk]¢ ' (5.23)
m#k
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=\ o =\ 1}
where Py = )‘k ® H“cbk and x, = )‘l ®B¢k.
Proof: Substitute (5.12) in (5.18) and use the definitions for Py and X,

Equation (5.23) is valid without making the additional assumption that A(O) is
linear in © and factorizable ss A(B) = D*(G)D. If these two assumptions are now made,
the following result can be obteined.

Result 5.6 The Frechet derivative ack (0)/30 is specified by
2 2
a¢k(e)/ae = ¥ [kkkm/(\k—km)] [kkme- ka + kmem- Dpk]¢m. (5.24)
m#k s

Proof:  This result follows by substitution of §A(O) = D¥66)D in {5.23).

Closely related to ¢S<1>k is the differential
6(¢k¢k*) = ¢k6¢k* + (6¢k)¢k* (5.25)

of the outer product ¢k¢k*. ‘The corresponding PFrechet derivative 8(¢k¢k*)/89 is
evaluated in the following result.

Result 5.7 The Prechet derivative [3(4&4& ¥)/008] is specified by

2 42
3(¢k¢k*)/39 =¥ [kk\m/(\k-\m)] D'kme. Dx.k + 'kmem Dpk] [¢m¢k* + ¢k¢m“].
m#k (5.26)

Proof: Use (5.24) to evaluate the right side of (5.25) and recsll that 6(¢k¢k“) =
[a(¢k¢k*)/86]66.

Discussion

The results obtained above provide the key tools required to evaluate the

function-space gradient 3J/90 and Hessian 321/892 of the likelihood functional. The
most useful formulas are (5.17) for the derivative axk/ae of the eigenvalue x.t, (5.24)

for the derivative a¢k/ae of the eigenvector ¢k' and (5.26) for the derivative

a(¢k¢k*)/86 of the outer product (¢kq>k*). These formulas will be used repeatedly ir
the following section.
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6. SPECTRAL REPRESENTATIONS FOR THE GRADIENT, APPROXIMATR HESSIAN,
AND NEWTON-RAPHSON SEARCH

Implementation of the modified Newton-Raphson search for the optimal parameter
estimates requires calculation of the gradient 3J/00 and of an approximation to the

Hess 1 operator 3°]/06%. These calculsticas are best achieved using the

predicted-data-covariance square-root filter in Result 4.5 that expresses the likelihood
functional as

J(8;y) = Tr log [I+K(0)) + % z¥(0)z(6) - z2%(O)y, {6.1)

where z(8) = L(B)y + [I-L(6)] m(0). Punction space differentiation of (6.1) with respect
10 O leads to the gradient functional

g(6;y) = 9J(0;y)/30 = Tr [(3L/96) (I1+K)]} + (z-y)*(3z2/36), 6.2)

and to the approximate Hessian operator
M(9;y) = Tr [(3L/36) (1+R) (AL/99)) + (I2/00)*3z/30), (6.3)

upon which the Newton-Raphson numerical search is to be based. An updated estimate
e‘“l = 07 - 50" is obtained by specification of the parameter change 80" defined as

56" = M~ (@%y)8(0"%y). (6.8)

The main objective of this section is to replace the op=rator .., 'a‘ions (6.2) and (6.3)
with a set of equivalent matrix equations more conveniert (21 calculations. The
fundamental approach to be used consists of representing the .i.nction space derivatives
AdL/38, dm/00 and 0z/08 - which have only been derived in terms of operator symbols in
(6.2) and (6.3) - in terms of # specific orthonormal basis defined by the eigenvectors °k

of the observed-state covariance operator R.

Spectral Representation for the Gradiegt

Result 6.1 The Prechet derivative JL/30 of the predicted-data-covariance
square-root {ilter L can be represented as ’
= . y
oL/®=f [ 'km¢k¢m ' 6.5)
E m

where the spectral coefficients oYm® ¢k“(6L/39)¢m are specified by
]
U sin lkDpk* ka. (6.6)

2 2 N .
&m™ [kkxm/(km-kk)] [«:omk - cosam] [\kDp m Dx.‘ N m! mepk] k¥m. 6.7
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Note that & defines a matrix whose diagonsal elements are provided by (6.6) and
whose corresponding nondiagonal elements are given by (6.7,

Proof: Observe L = ¥ ( l-cosai)@i¢i“ implies
oL/36 = } {sinai <aai/ae)¢i¢it - cosa, [8(¢vi¢i*)/89]}. (6.8)

Substitution of this equation in U ¢k‘(8L/89)¢m and use of orthonormality of ¢k
lead to

ay, = sina, cm’ak (BN, /30), &, = -cosa o, *Bd /3O) - cosa, (3, /0¥ _,  16.9)

where axk/ae and a¢k/ae are the function-space derivatives evaluated in (5.18) and

(5.25). Substitution of these two equations from Sec. § in (6.9) leads to (6.6) and (6.7)
thereby establishing the result.

Result 6.2 The Frechet derivative dm/d0 of the suspected mean m(0O) iz represented by

om/30 = ¥ (Bm/w)ktbk. (6.10)

with the spectral coefficients (am/ae)k spzcified by
(dm/98), = Xk (Dpk' DOCH), (6.11)

and OCf in (6.11) denoting the suspected value of the state u.

Proof: Since m = HOCS, then ém = HSOCE = -HOA("9) OCS, where the iast equality
follows from the condition 5O = -GA(SO)D. Define now (Sm), as the K2 spectral
coefficient of ém, i.e.,

(6111)k = ¢k* ém = -¢k* HOA(S0)DCE = -'kkpk“A(ée)QCf, (6.12)

where as before p, = k;‘@*l-l*cbk. Use of the identity p, *A(66)OCT = -Dp, -DIOCSO
in (6.12) results in (bm)k = (3!11/39)k &, with (am/ae)k given by (6.11).

Result 6.3 In the special -ase in which the deterministic input f is assumed to be a
vector f = [f 1.....fM] of M inputs applied at the discrete locations { i o sltermative to

(6.11) in evaluating (anvae)k is

M
(am/w)k = 7 \k Dpk(x) 'Wx/fm)fm fork = 1,...,N, (6.13)
m=l
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where ¢(x/£) is the Green's function of the system model operator A.

Result 6.4 The gradient 9z2/30 = (3L/30)y+ (I-L) (dm/30) of the filtered state estiraste z
can be represented as

9z/30 = § (aZ/ae)k ¢k' (6.14)

where the spectral coefficients (az/ae)k = ¢k* (3z/00) are given by

N M
‘az/w)k = ¥ lkm(x) Y * r bkm(x)fm' (6.15)
m=1 mal

with 3 m specified in (6.6) and (6.7) and

bkm(x) = sin oy Dpk(x) Dd(x/E m). (6.16)

Proof: Substitute OL/9© and dm/d0 {rom (6.5) and (6.10) into 9z/0€ = (JL/3O)y +
(I-L) (6m/30) and then compute the spectral coefficients (az/amk in ‘2.14) from

(32/39)k = ¢k*(az/39).
Result 6.5 The gradient g(©;y) in (6.2) can be represanted as

g6iy) = T [sm’akunak (Dp, - Dx, ) - e, (32/30), 1, 6.17)

where e, = ¢k*e are the spectral coefficients of the residual process ¢ = y-z, and
(32/89)‘( are given by (6.15".

Proof: Substitute OL/08 in (6.5), 9z/90 in (6.14), ex kL ek¢k andI + K=
z secak¢k¢k* into (6.2) and use orthonormality of ¢k‘

Equation (6.17) provides the means to evaluate the likelihood functicnal gradient, one of
the key ingredients of the Newton-Raphson iteration. The approximate Hessian

operator M(6;y), which . the other major element required to implement the search, is
evaluated below. -

Evalus*ion and Inversicn of the Approximste Hessjian
Resuit 6.6 The spproxiinate Hessian M(O;y) in (6.3) is an integral operator whose kerne!
M(x/E) is specified by

M(x/8) = ) [so.-.c'a.k an(x) uu(t‘) + z'k(x)z'.‘(E)], (6.18)
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where z‘k = (82/86)k = ¢k*(az/86) is the k"h spectra) coefficient ~f z/96.
Prcof: Substitute (2.26) and (6.14) into (6.3) and use the orthonorma.ity of ¢t'

Implementation cf an iteration step in the Newton-Qaphson search requires calculation
of 807 - M—l(On;Y)g(Gn;y). tepresenting the incremental change in the parameter

estimate. Inversion of M(On;y) is therefore required at every steg of the .earch. This
inversion is achieved by solving an integral equation as outlined in the follcwing Cesult.

Result 6.7 The incremental parameter change 66" can be computed as the solution
of the following integral equation

n
J'Q Mn (x/8) E(E)ME =gn(x), (6.19)

where Mn is the approximate Hessian !'ernel in 16.18), and sL(x) is the value of the
gradient at the spatial location x. The subscript n in Mn and gn denotes that the
corresponding quantities are evaluated at the nth parameter estimate 9-0".

Proof: Observe that 86" = M.;lgn implies Mnae“ =8 and express this last equation
in cerms of the kemel Mn to obtain (6.19).

7. PARAMETER ESTIMATION ERROR, CRAMER-RAO BOUND3 AND OPTIMAL
INPUT DESIGN

The objectives here are 10 obtain a C-R boutd for the covariance of the patemeter
estimation error and to begin an investigation of the problem of optimal input design by
using the C-R bound as a criterion fur optimal input selection.

Recall that the covariance of an unbiased estimate 5 satisiies the inequalitv
E© 6 M 2M *0), (7.1
PP o

where M(Go) i, the information opeiator uccined as

_ 2 2 - " .
M(Go) = E[@"] /90 ]e‘eo B[(3]/00) (31 /00) ]e.eo . (7.2)
The corresponding mean-square estimation error mep*ep) setisteus in: related
inequality
E(€_*© )2 TriM (6 )] (7.3
P P o
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I+ can be observed that the key calculation required to obtain the C-R bound is the
computiation of E[3°]/30%; as vutlined below.

Cram: _.-Rao Bound for the Estimation Brror

Result 7.1 The information operator M(Oo) is specified by

M(© ) = E[3°)/80°)y_q = 2 Tri(8L/38) (1+R) (3L*/30))
Yo

(7.49)
+ (dm*/90) (I-L*) (I-L) (3m/30),

where h = HOEE*®*H* is the data-covariance operator, (OL/90) is the derivative of

L=1-(+R) ', and (Om/d0O) is the derivative of the datsa mean m=H®Cf.

Proof: Differentiate g(€;y) in (6.2) to obtain

3%1/807 = Tr{(3°L/36>*V1+K) + (3L/OONIK/I0)] + (z-y)¥X(32/30) + (32/30)%(32/30). (1.5)

Take the expected “ae in (7.5) abo~e, evaluate at © = 90. and simplify to obi.in

B13°]/30%1g_g = Tr i(3L/36) (I+R) (BL/AO} + B[(@2%/30) (32/30)]. (7.6)

o

Finally, use ~ #) in (7.6) to arrive at (7.4).

Result 7.2 In spectral form, the information operator M(Go) is specified by

M® ) = L [2 sec’a (®a

2 ' .
r *kx kk(E) +cos’a,m k(x)m k(E)]. a.n

where L. and m'k = (6111/«'.»9)k are detined in (6.9) and (6.11) respectively.

Prcof: Use an approsach similar to that used o arrive at (6.18).

Inspection of (7.4) reveals .hat the informatior operstor M(© o) consists of the sum of

two terms bcth of which are positive definite. In the first term, the data-covariance
operator (I+R) appears as a "weighting” that is multiplied by the sensitivity filter
OL/39. Note parenthetically that in fact L is self-adjoint so that L = L¥. The second
term., on the other hand, will be shown to be a quadratic funstion of the input f.

Nesult 7.3 Assume that { = [tx ,....fM] is a vector cf M inputs applied at the M discrete
locations Em‘ The information cperator M(eo) is an integral operator whose kernel
M(x/E) can be e.nrosed as
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T

M(x/8) = U(x/E) + £ V(x/ 8, (7.8)
where
.4 2
Ux/8) = ¥ sin a.kun a, [Dyk(x)'r'pk(x)] [Dyk(E) ka(E)]. (7.9)
k
.2 T
Vix/E)= ¥ sin a, bk(x) bk(E), (7.10)
k

and where bE( £) is the M-dimensional vector

by(E) = [Dp (E)- DAE/E J,....Dp (E)- DAXE/E ) (7.1

with ¢ being the Green's function of A in (1.1).

Proof: Substitvte the eigensysiem expansions for R in (2.26), for L in (4.17), for
(3L./90) in (6.5), and for 3m/Je in (6.10) into (7.4) to obtain (7.9) and (7.19).

The second term in (7.8) is a quadratic form in the input signal f. This property can be
used as a basis for optimal input design.

Optimal Input Design

The information operator can be used to state criteria for optimal input design.
While several possible criteria exist, the one that is easiest to use is perhaps the
maximization of Tr M(Go):

max Tr M(© ) = U + eTve, flf=1, (7.12)

where

U= IQU’.x/x)dx and V = j'QV(x/x)dx. (7.13)

The optimal input fo. which is the solution to the sbove optimization piobl'em, is the
eigenvector corresponding to the largest eigenvalue of the M-by-M matrix V.

Other criteris for optimal input selection include: minimization of Tr MY, which
would correspond to minimizing the Cramer-Rao bound; and minimization of

RN M™Y), where A is the maximum eigenvalue of M™'. While these last two
max max

cnteria could be superior to (7.12), they both have the disadvantage of requiring
inversion of the operator M( o)' However, the requirement for such ap inversion may

not be a serious additicnsl drawback because a similar calculation is required to
implement the Newton-Raphson search outlined in the previous sections.
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Vanish’ng Bias of the Gradient

Closely related to the sbove analysis is an investigation of the bias in the
parameter estimate ©. The central result is as follows.

Result 7.4 The expected value of the gradient functional g(9;y) vanishes at © = 90 W

Eig(o;m] '9:9 = 0. (7.14)
o

Proof: Observ-~ that 3z/00 = (OL/90)y + (I-L) (3m/30), and recall that y = (I+K)e.
Substitute this in (6.2) and take the expected value. Finally, use the whiteness of the
residual process, to be established in (8.46).

8. FILTERING, SMOOTHING AND THB RBSIDUAL PROCBRSS

The central aim of this section is to con uct an analysic of the smoothed estimate

u, and of the filtered state estimate Z, that emerges from the

predicted-data-covariance square-root filter. This analysis leads to the following
major results:

. The smoothed estimate uo is optimal in a conditional mean sense.

. The formulas that generate 8, and zZ, have a predictor-corrector structure in

which the final state estimate is the sum of: a prediction term-based on
application of kn~wm inputs to the system model; and a correction term based
on the difference between the actual and predicted data. The key eiement in
these formulas is an estimator gain thay provides the relative weighting
between the two terms.

. The covariance of the state estimation error inherent in both estimates can
be evaluated by means of equations which, if written in operator notation,
resemble those encountered in tiltering and smoothing for linear dynamical
systems.

. Investigation of a residual process associated with the filtered state estimste
z, that has properties nearly identical to those of an innovations process: the

residuals are a white noise process with s unit covariance; the residuals and
the measurements can be obtained from each other by means of reciprocal
linear transformations. Becau.e these transformation; are not causal, the
residuals are not a bonas fide innovations process. However, they are as
useful in deriving filtering, smoothing and identification solutions for =lliptic
syst .ms as the innovatious process is in deriving similar solutions for linear
dynamical systems.
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] Development of relationships between the filtering and smoothing estimates
that can be thought of as extensions to elliptic systems of the
forward/backward sweep method for solution of filtering and smoothing
problems in linear dynamical systems.

o Development of spectral representations for the predicted-data-covariance
sjuare-root filter and the optimal smoother in terms of the eigensystem of
the state covariance R = ®BB*®* This leads to simple ways to implement
filtering and smoothing solutions on a compuier.

Smoothed and Piltered Rstimates

The smoothed and filtered state estimates uo and zo have been defined in (1.17) as
u, = OCf + Gly-HOCH), z, = &Cf + g(y-HOCD, (8.1)

where G and g are Kalman-like gains specified by
G=} sin’akxk‘bk*. g= ¢ ( 1-comk) xk¢k" (8.2)

The estimate v is referred to as a smoothed estimate because it is the

minimum-variance estimate of the state given the entire dats set. This is established
by the following resuit.

Result 8.1 The smoothed cstimate uo in (8.1) is the conditional mean 8 = B(u/y) of the

state given the data. Purthermore, the estimator gain G in (8.2) can be expressed
alternatively as

G = RHXI+ HRH® ", (8.9)
in terms of the state covariarce K = ®BB*0*.

Pro»sf: Recall the general formulc

B(u/v) = B(uv®) [B(vw®) ‘v (8.4)

derived in [4] for the conditional expected value of a Zero-mean random process u given
the related zero-mean random process v. Note that this formula requires calculation of
the “cross-covariance” operstor B(uv*) and the auto-coviriance operator B(vv¥®).
Define now the mean-centered state B = u-®Cf = ®Bw and the mean-centered data y =
Ha+n. By this definition, U and §j are zero-mean. Therefore (8.4) can be used directly
to copute I = B(@/y), i.e.,

8 = B@/y) = B@y® (BGYO) Y, (8.5)
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which indicates that to evsluste \‘10. it is necessary to first evaluate the covariance
operators EWy*) and E(yy*). These calculations are: R(uy®) = B(OBww*B¥d%) =
OBB*®* and E(Fy*) = E [(Hu+n) (Ha+n)*]) = I + HRH*. Use of this in (8.5) leads to

EW/Y) = Gy. (8.6)

This together with the definition of €@ and ¥ in terms of u and y implies (8.1). The
equivalence between the two different expressions for G in (8.2) and (8.3) is established

by use of the spectral expansions in Sec. 2. In particular, use expansions (2.46) - (2.47)
for I + R and the definition for Xy in (2.31).

As established by this result, the estimate uo has a very well defined probabilistic
interpretation. It is not presently known if the .utered estimate z, has a similar

interpretation. Nonethele:ss, this estimate plays a very significant role in the filtering,
smoothing and identification methodology for elliptic systems under develcpment here.
Its role is analogous to that of the filtered estimate emerging from a Kalmasn filter in
the case of dynamical sy*tems. This is further investigated below.

Predictor-Corrector Structure

To examine this structure, ¢ nsider the equation for u, in (8.1) and illustrated in

Fig. 8.1. Use of the deterministic input f“l and the system model Oclzl leads to a
predicted estimate [3]. The difference process y-HOCf 4] is then formed and operated

on by the estimator gain G 5] to obtain the correction term G(y-H®Cf) [6]. Pirally,
the correction term is added to the predicted estimate to obtain the optimal estimate
u - The equation for the filtered estimate z, in (8.1) also has a predictor-corrector

structure. The key difference between the twc equations in (8.1) is that the estimator
gains are different. A relationship be'ween these two different gains G and g is
explored later in this section.

SYSTEM MODEL
1 2 3 oc .
f ———| B¢ u,
EXTERNAL PRENICTED CORRECTED
INPUT ESTIMATE +}  ESTIMATE

_

K ?

MEASUREMENT DATA 'r.(]}“ DIFFERENCE
PROCESS

Fig. 8.1 Predictor-Corrector Form of the Smoothed State Estimator
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Estimation Brror Covariance and Kalman-like Gains: Smoothing

Since LR and z, are only estimates of the actual state u, it is of interest to
investigate the inherent estimation error up = u-u_ and zp = -z . In particular, the

aim is to determine the estimation error covarisnce. under the assumption that the
actual model errors © and n in (1.1) and (1.2) are white-noise processes.

esult 8.2 The covariance P = P* = B(npnp*) of the state estimation error u, =
u-u is specified by the following sltermative formulas:

P = (I - GHDR( - GH* + GG*, (8.7)

P-%-RH*(I+ HRH® ' HR, (8.8)

P=(I-GHR = (1 - GH*, (8.9)

P = OB (I + B*O*H'HOB) 'B*0*, (8.10)

Proof: To show (8.7), observe that u = ®Cf + ®Bw and u = OCf + G(y - HOCH
implythntup:u-uou

up = (I - GH)®Bow - Gn. (8.11)

Hence B(upup*) = B[I-GH}Bww*B*¢* (I-GH)* + Gnn*G*] = (I-GH)R(A-CH)* + GG¥,
where use has been made of the fact that € = [w,n) is a white-noise process with
covariance B(ee¥) = 1. To show (8.8), observe that (8.7) implies

P = R - GHR - RH*G* + G{ + HRH®G*. 18.1.)

Substitution of G = RH* (I + HRH® ® in (8.12) leads to (8.8). To show (8.9), observe

that (8.8) can be expressed as P = R 0-GH)* = (I-GHDR by using G = RH*1 + HRH®
in the last two terms of (8.12). To_establish (8.10), substitute B = O®BB*®* in (8.8) and

use the identities B*d*H* (+HOBB*O*H*) 'HOB = (I+B*O*H*HOB) 'B*O*H*HOB = [ -
(I+B*O*H*HOB) .

Result 8.3 The operator HPH* is the FredLolm resolvent of HRH* so that
(I + HRH® ™ = [_HPHS. ' /8.13)
Proof: Compute HPH* from P in (7.8) to obtain HPH* = HRH* [I - (I+HRH® ). Use

the identity (.HRH® ‘HRH* = I - (I.HRH#® ' twice in this last equation to obtain
(8.13).

The aim now is to use (8.13) in (£.2) to obtain an alternative expression for the
estimator gsin.
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Result 8.4 The estimator gain G = RHXI+HRH®) ' can also be expressed as
G = PH¥, (8.14)

where P = F.(upup*) is the covariance of the smoothed state estimation erroru .

Proof: Recall that PH* = (I- GH)DRH* = RH¥I - (I1+ HEH*) HRH*]. Yince
(1+ HRH®) "HRH =1 - {1+ HRH® ™, then PH* = RH¥I + HRH® ™ = G.

Result 8.5 The mean-square smoothed state estimation error is given by

(u *u )= P). )
E up p Tr [P) (8.15)
Proof:  This follows from the definition of P as F = B(upup"‘).

Note that many of the above formulas are very similar in form to the ones
traditionally encountered in Kalman filtering for dynamical systems. Por instance, Eqs.
(8.3) and (8.14) are very similar to those used to compute the gain G for a Kalman filter
in which R and P are the covariances of the estimation error associated with the
predicted and corrected state estimates. Note also that (8.8) implies that P is always
smaller than R, which implies that the covariance of the estimation error after the

observation y has been accounted for is smaller than the error covariance before the
estimate correction occurs.

Estimation Error Covariance and Kalman-like Gains: PFiltering

The aim here is to obtain results similar to results (8.2) - (8.5) above, but that are
applicable to the filtered estimate Z,-

Result 8.6 The covariance E(zp zp ¥} of the filtered state estimation error z_ = u-2
is given by

o

E(zpzp“) = (I-gH) R(I-gH)* + gg*, (8.16)

where R = ®BB** is the state covariance, and g is the filter gain in (8.2).
Proof: Note that u = ®Cf + ®Bw. This and (8.1) imply that

zp = (I-gH) ®Bw-gn, (8.17)
where use has been made of v-H®Cf = HOBw + n in (8.1). Calcul-tion of B(zpzp*).

..» \0.17) and the conditions Blww*) = I and B(nn*) = 1, leads to (8.16).

This result applicable to the filtered estimate is analogous to (8.7) of the smoothed
estimates. To obtein results that are analogous to (8.8) - (8.10) requires, howzver, a
frw preliminary definitions and resvits. The need for these preliminaries arises from

¢ Jltimate desire to find a spectral decomposition for the state covariance R =
et It is straightforward to cbtain the spectral representation for the
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observed-state covariance HRH*. However, finding a sim‘lar decomposition of R is not
as simple. The primary reason for this lack of simplicity is that the vectors *i =

ki_lB*di*H‘wi may not necessarily span the entire space H. This is particularly true in
cases in which the dimension of the input space Hl is greater than the dimension of the
observation space Hs. In order to consider this case, assume that the operator HOB has

finite-dimensional range. This corresponds to the situation where there are only a
finite number N of sensors and the observed-state covariance R = HOBB*®*H¥* iz an
N-by-N matrix. Assume alsc that the input space is either infirite-dimensionsl or
finite-dimensional with dimension M greater than N. This second assumption
corresponds tc cases where the uncertsinty is distributed at M discrete locations or
throughout the entire spatial domain Q.

Result 8.7 The identity operator I mapping Hl _into itself can be decomposed as

1= Io + IJ_. (8.18)
where

1 =1- B*O*H*R 'HOB, I =" O*H*R HOB, (8.19)

and R = HOBB*O*H* is the observed-state covariance. In addition, Io is in the
null-space of the operator

R (+) = HOB(* )B*Q*H¥, (8.20)
mapping the space of bounded linear transformations on Hlx Hl into the space of
N-by-N matrices. PFurthermore, [ o and I , sre orthogonal complements so that

] = = .
Io IJ_-Tr[IOI-L] 0. (8.21)

Proof: This result and its corresponding proof are illustrated graphically in PRig. 8.2.
Bq (8.18) follows from (8.19). Substitutior of I0 in (8.19) into (8.20) shows that R (Iq) =0

so that I0 is in the null space of R(*). That Io and [ ) oTe orthogonal complements
follows from substitution of (8.19) in (8.21) by calculation of Tr [Io I.L] using (8.19).

Resul 8.8 Thei’- - y cperator I mapping Hl into itself can be expressed as

N
I=1 + L "i vj* (8.22)
j=1
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SPACE OF BOUNDED LINEAR TRANSEFORMATIONS
FROM INPUT SPACR INTO ITSELF

oginTYy
|

JNULWL SPACE OF
R{s)=HPB()B*P*H*

PFig. 8.2 Orthogonal Complement Decomposition of the Identityin H. x H..

| 1

Proof:  Substitute R = ‘A;cbic»i* nto I in (8.19) and use ¥ = x;‘n*otn%f

The above result simply reflects the fact that the t’ do not span Hl' because (by

assumption) there are cnly a finite number of them, and this number is smaller than the
dimension of thz input space.

Result 8.9 The state covariance R = ®BB*®* can be decomposed as
N
=z 2 « .
R R°+ r Xj x)xi ' (8.29)
j=1
where _
= *
R, QBIOB GF (8.24)
Furtherm.ore,
R a R =0, R H*-
HROH* 0, HRO 0, ROH 0. (8.25)

Proof: To show (8.23), substitute I from (8.22) into R(I) = ®B(DB¥*®¥, and use x =

X;-lOB\vj . To show (8.25), substitute Io from (8.19) into (8.24) and (8.25).
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Result 8.10 The dual state covariance Q = ®*¥H*H® can be expressed as

N
Q=L x; P, (8.26)
i=1

where P, = X;l(ﬁ*ﬂ*cpj.

Proof: Since the ¢i span the observation space H, = RN, th~a

3

N

Ny o.,* (8.27)
j=1

vhere IN denotes the identity in RN x RN. To obtain (8.26), substitate (8.27) in Q =
¢*H*INH® and use definition of pi.
Define now the quantities

N N
r = () ﬁo + ¥ (secai— D xixi*. Q=Y (secai-l) p}p;* (8.28)

=1 i=1
and note the following key identities.

Result 8.11 The state covaviance R = PBB*®* and r defined in (8.28) are related by

R = r + r*+rH*Hr. (8.29)
Furthermore,
I + HRH* = (I+HrH®) (I+Hr*H*). (8.30)

Proof: Substitute r from (8.28) and R from (8.23) into (8.29). Use the orthonormalicy
of xj with respect to H*H. This establishes (8.29). Eguation (8.30) follows frorm (8.29)

by forming I+HRH* from (8.29) and rearranging terms.

Result 8.12 The dual state covariance Q in (8.26) and g 'n \0.2‘8) satisfy the identity

Q = q+q* + qBB¥q*. (8.31)
Purthermore,
I + B*QE = (I+B*qB) (I+B*qB). (8.32)
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Proof: Substitute Q in £3.26) and q in (8.28) into (8.31). Use the orthonormality of p
with respect to BB¥. This establishes (8.31). To establish (8.32), form I + B“aB using
(8.31. and rearrange terms in the resualting equatjon.

These are the preliminary resclts needed to evaluate the covariance of the estimation
error associated with the filtered state estimate zo.

Result 8.13 Th: filter gain g defined in (8.2) can be expresssed alternatively as

g = tH* (LHH® (8.33)
where r is defined in (8.28).

Proof:  Substitute r from (8.28) into (8.33) and use R H* = 0 and ®;* = x;*H*. This
recovers g in (8.2).

Note the similarity between (8.3) and (8.33). The equation in (8.3) expresses the
smoother gain G in terms of the state covariance R = ®BB*®. Bq. (8.33) is a similar
equation for the filter gain in terms of r. The operator R in G can be interpreted as the
state covariance. No similar piobalistic interpretation for r is known. However, its
introduction itz very useful because it allows development of formulas fo: the estimstion

error covariance anc for the filter gain that very closely resemble those obtained for
the smoothing solutions.

Result 8.14 The covariance B(zpzp*) of the filtered state estimation error z p’ G-2 o

where p = p¥ is specified by the alternative formulas

p = (I-gH)r(I-gH)* + gg* (8.35)
p = r-tH* (I+HrH%® ‘Hr, (8.36)
p = (I-gH)r = r (I-gH)¥, (8.37)
p = (/) io + I (1-cosa) xx.&. (8.38)

Proof: To establish (8.34) and (8.35), substitute (8.29) in (8.16) and use the identity

(1I-gH) rH* = rH¥ .i + HrH® ‘= g. (8.39)
To establish (8.36), observe that (8.35) implies that

p = r-gHr - rtH*g* + g(I + HrH*)g*. .3.40)
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Substitute g = rH* (I + HrH® " in (8.40) to obtain (8.36). To obtain (8.37) observe that
the second term of (8.36) can be expresscd alternatively as gHr and rH™ 3*. To obtain
(8.38), substitute r in (8.28) into (8.36) and uye orthonormality of ¢i.

Result 8.15 The mean-square estimation erro. associasted with the filtered state
estimate is given by

- N
* = *) = -
1?.(2p zp) Tr [p + p¥) Tr[Ro) +2 ¥ cosai) xi'xi. (8.41)

j=1
Proof:  This result follows from (8.34) ard (8.38).
Result 8.16 The filter gain g can be expressed as
g = pH*, ' (8.42)
where p is related to the filtered state estimation error covariance by B(z pzp*) =p + p¥

Proof: Since g = rH* (+HrH®™ ', then g = rH* (I-Eg)* = rH* (I-g*H® = r
(I-H*g:itl* = r (I-gH)*h* = pH*.

This equation is analogous tc (8.14) in that it expresses sn estimator gain in terms of
the covariance of the state estimation error.

Result 8.17 The operators [ + HrH* and | - HpH¥* are reciprocal, i. e.,
(1 + HrH®) ™ = I - HpH*. (8.43)

Proof: Recall (I + HrH® * = I-Hg = I-HpH¥, where the last equality holds because
g = PH*.

Note that this result implies that the operator HpH¥* is the Fredholm resolvent of

HrH*. The identity also immediately implies whiteness of the residuals process as
investigated in more detail below.

Pseudo-Innovations Properties of the Residuals

Define the residual process in the usual way, ss the differer between the actusl

measurements and the predicted dats emerging from the prea.cted-data-covariance
square-root filter, i.e.,

e= y-Hzo (8.44)

This process turns out to have two key properties that ar~ rearly identical to those of
an innovations process: the residusls are white with a unit covariance; the residuals

365



and the measuremnents can be obtained from each other by mcans of reciprocal
relationships. These two properties are established in the following results.

Result 8.18 The residual process defined in (8.44) is white with a unit covariance,
i.e.,

E(ee*) = L. {8.45)
Proo’: Observe from (8.1) that e = (I-Hg) (y-H&cf). Hence, B(ee¥) = (I-Hg) (I. HRH#¥)

(I-Hg‘)* = I. This last equality follows from B[(y-H®cf) (y-HOZH)*) = I + HRH* and trom
(8.42, and (8.43).

Result 8.19 The residuals = = y-Hzo and the mean-centered measurement process

y = y-H®Cf can be obtained from each other by means of reciprocal linear
transformavions, i.e.,

e = (I - HpH® ¥, ¥ = Q.HrH®)e (8.46)
where
(I + HrtH® ~* = (I-HpH®). (8.40

Proof: Bq. (8.47) has been established in (8.43) and is restated here only to

emphasize its relationshin tc the properties of the residual process. Rq. (8.1) iraplies
e = (I-Hp)y.

Relstionships Betwecs Piitered and Smoochad hstimates

While the smoothed and filtered estimates have been defined somew'.at independently
of each other, these estimates are in fact very closely related. It is possible to tain
one in terms of the other, as outlined in the following result.

Result 8.20 The smoothed and filterea estimates Y, and 3, ore related by
u =2z +pe, {8.48)
o o
where
e - y-Hzo (8.49)
is the residual process, and g is the predicted-data-covariance square- -out filter gain.

Proof:  Observe that (8.1) and (5.3) lmply u = ®Cf + RH* (@ + HEH® ™" (y-HOCH.

Use of (8.46) leads tou_ = OCf + RH* (I.HrH® ‘e Similarly, Z,, in (8.1) and ~ in (8.33)

lead to z, = ®Cf + rH*s. Hence, u,-z, = (RH* (I+4E.K%) * -rH*)e. Use of the identity
(8.29) in this implies taat u -2, = 8¢ which is the desired result. Note that (8.48; can
be v:» *:¢n in the siternative form
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u = \I-gH)zo + gy (6.50)

Clusely related to the above relsat:onship between filtered and smoothed state estimates

is a relationship between the ccrresponding covariances of the state esti.nration errors.
This is developed below.

Resust 8.21 The filtered state estimation ei~or z p° u-z ou.d the residosl process
e= y—Hzo are reiated by

e=n+ Hzp. (8.51)

where n is the measurement error.

Proof: Note tr.at e = y-Hz = Huen-Hz_ =Hiu-z2 )+n=Hz_+n
o o © P

Result 8.22 The covarisnce P = E(upup*) of the smoothed state estimation error
u_ = u-u_ can be expressed as
P o

P = p + p* - pli*Hp, (8.52)

where p + p¥ = B(z pzp"‘) is the covariance of the filtered state estimation 2rror zp T
u-z . PFurthermore,

I-HPH* - (I-HpH#*) (I-HpH¥*). (8.53)
Procf: Use (8.52) to obtain

E(ez_¥*) = B(nz_¥) + HE(z_z_¥) = B/nz_¥*) + H(p+p*). (8.54)
P P PP P
Now use (8.17) *c compute B(nzp*), i.e.,
B(nzn*) = ~-g¥, (8.5

since B(nw*) = 0 by assumption. Substitution of (8.55) in (8.54) and use of ; = ¥ 'eads
to

}:.(ezp*) = g%, (8.56)
Sinceu_ =u-u ,therus =7_ - ge from (5.48). Hence,
) 4 o P P
E(upup*) = B(zpzp*) -g B(-.zp*) - B(zp &¥ + gLiee®)g*. (8.573

Now use .3.34), (8.43), (8 45) and (8.£6) to rYtain. (8.52). RBguation (8.53) follows
immediste'v from (8.52) by forming 1 - HPH* an: rearranging tenas ia <. resulting
expressior. Note that (8.52) implies that the gains C . 2d g s1e related Ly
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G=g+g-gHg. (2.58)

The last three results can be viewed as a generalization 1o elliptic systems of
relationships encountered in filtering and smoothing for dynamical systems. Por
example, Equation (8.48) is a generalization to elliptic systems of the forward/backward
sweep methcd for solution of two-point boundary-value problems. This method in
general terms states that the smoothed states estimates can be obtained as a result of &
two-stage process: forward filtering by means of a Kalman filter to obtain a filtered
state estimate and a residual process; and backward smoothing to process the residuals
and obtain a smoothed state estimate. This two-stage data processirg approach has
been extensively studied for linear dynamical systems. Eqs. (8.48) and (8.49) have
exactly the same structure. This structure is illustrated in Pig. 8.3.

The ovz.all diagram illustrates how the data yu] and the deterministic input flz] are

processed to arrive at a smoothed estimate u?]. The estimation process consists of two

stages: a FILTERINT stage that results in a filtered estimate zL‘l erd a residual

processls]. This filtering stage is characterized by a predictor-corrector structure

where a predicted est.itmt.e[61 is first produced and then corrected by a correction
term.!’] The results of the filtering stage are then processed by the SMOOTHING

stage. Central to both the filtering and smoothing stages is the gain gwl. The
foregoing structure is nearly identical to that of the forward/backward sweep method in
linear dynamical systems. There are, however, some key differences. One of the
differences is that the filtering stage in the case of dynamical systems is based on the
Kalman filter, whereas in the elliptic case under consideration here, this filter is
replaced by the predicted-data-covariance square-root filter. Another key difference
is that the Kalman filter is causal whereas the predicted-data covariance square-root
filter is not, i.e., the filter gain g is & Fredholm operator as opposed to being a Volterra
operator. In the same vein, the smoothing stage for dynamical systems is backward (in
time) or anticausal. In the elliptic system case, however, the smoothing stage is also
characterized by Fredholm operators. The notion of causality is not even introduced
here although it is possible to do this for certair classes of elliptic systems [1]).

FILTERING SMOOTHING  _
F—-"—-"—-- - - --Ss=-S-SsSsSsss=sT=" 1 | 'Isammm
INPUT ! PREQICTZD STATE + FILTERED ESTJMATE | ! * | ESTIMATE
t2 ¥ ocr]| 6 * Zo4 Lot 'UO 3
I 7 L I
8 |FILTRR - LTR
: H 3% loan Rl L 98 e
' D IFFERENCE i RESIDUAL !
' . ESS 5 PROCESS !
| - |
M, + y HOCt !
DATA , X
] |

Pig. 8.3 Filtering and Smoothing
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Spectral Representations: Smoothing, Piltering, and the Residusls
The aims here are: to obtain spectral representations for the filtered and smoothed
estimates v, and zo and the corresponding error covariances P and p; to explore the

predictor-corrector structure of the spectral representations of the filter and
smoother; and to investigate the pseudo-innovations properties of the spectral
representation of the residual process. The term "spectral representation” means the
use of an expansion in terns of the eigensystem ¢j of R and of the related functions

¥. =\, 'B*O*H%¢., x.= N, OBy, and p_ = A, ' O*H*¢p..
) ) ) I | ) ] ) ) )
Result 8.23 The smoothed state estimate u can be represented as

2
u, = ®Cf + ¥ sin ai (yi - mi) xj. _ (8.59)

where yi = ¢j*y and mi = tbi*m are the spectral components of the data y and the
susp~cted mean m = HOCf. The related observed-state estimate Hno is specified by

Huo =m + HG (y-m), Huo = (I-HG) m + HGy. (8.60)

In spectral form, Huo =) u:) ¢j where

u:, = :ni + sin’cti (’i-mi)' ug = CO$ ’a’ m’ + sin 2(1)7,. (8.61)
and “3; = ¢i*Huo. Let up =0 -G denote the estimation error. The error covariances

P- B(upup') and HPH* = B(up‘H‘an) are represented by

2 2
P-= ﬁo + L sin a x, x}“ HPH® = ¥ sin a’¢’¢j*. (8.62)

Furthermore, the corresponding mean-square estimation errors B(np‘np) = Tr{P) and
Efo *H*Hu ) = Tr [HPH¥*) are

= 2 *« a 2
B(up*up) Tr (iol + I sin‘a, x.*x, n(np*H an) ):. sin“a (8.63)

1 )

roof: To establish (8.59), substitute y = Ey,Q’ and m = Emjtpj in (8.1). To show
(8.60) muliiply v in (8.1) by H and recall that m =« HOCE. To establish 8.61, multiply
(8.60) by cb)*. The equati_on for_P in (_8._63.) follows by substitution of (8.2?_) in (8.8) and
use of the conditions HRO = ROH' = HROH* = 0. The equation for HPHE* in (8.62)
follows {rc.a P and use of ¢) = ij. Bq (8.63) follows from (8.62) and the orthonormality
of d)j.

a3
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Result 8.24 The filtered state estimate zo can be represented by
z, = ¢Cf+ ¥ (l-cosai) (yi-mj) xi. (8.64)

The related observed state estimate z = I-Iz0 is

z = m + Hgly-m), z = (I-Hg) m + Hgy. (8.65)

In spectral form, z = § zi¢i
.=m. + (1- J(y.-m.), .= . 1- . .
z, m] + cosa’) y, uL)) z, cosa’ mj +( cosqjo ,v’ (8.66)

Let zp =2-Z denote the estimation error. The estimaticn error covariances BR(z zp*) =
p + p¥ and B(Hzpzp'H") = H(p + p*)H* can be represented as

p = (¥ io + ¥ (l-cosa.,) xix". HpH* =} (l-com’) °i°i" (8.67)

Furthermore, the corresponding mean-square estimation errors are

E(zp*zp) = Tr(p + p%), B(zp*H*Hzp) = Tr [H(p + p*)H¥), (8.68)
where

Tr [p) = (/) Tr [i°) + ¥ (l-cosaj) x"x’. Tr [HpH¥] = )_',(l—cosaj). (8.69)

Proof: To show (8.64), substitute y = Ly P iu:d m=Lm ? iim.o z oin (8.1). Bq. (8.65)

follows from multiplizcation of (8.64) by H and uze of m = HOCE. Bq. (§.66) is obtained
from (8.65) upon multiplication by ¢i“ and use of the orthonormality of ¢i' The

equation for p in (8.67) has been established in (8.38) and is repeated here only for
convenience. The second of Bq. (8.67) follows from use of the identity ¢’ = Hx’ Eq.

(8.68) follows from the definition of p = p¥* in (8.38). Bq. (8.69) is established by
performing the trace operation on (8.67).

Result 8.25 The residual process e = y—Hzo can be represented as
= P, = ¢.¥e, 8.70)
e=Y) °1¢i ei ¢) e _ (

The spectral components ei are independent random variables with zero-mean and unit
covariance, i.e.,

Ble;e,) = 0 for i #i, B(e:) = 1. (8.71)
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Furthermore, the spectral components e and A of the residual and difference processes
e= y—Hzo and y = §-m are related by the reciprocal relationships

e, = cosa, ¥, y; = seca.i e, (8.72)

Proof: Eq. (8.70) is valid because ¢ isrc.e orthonormal in H To show (8.71), observe
that E(eiei) = ¢i* 3(ee®) tbi and then use (8.45) and the orthonormality of ¢). Bquations

(8.72) are the spectral representations of the reciprocal relationships (8.47). Note that
(8.72) can also be established by the simple trigonometric identity ( llcosai) = seca..

9. NUMERICAL SRARCH CALCULATION SUMMARY
Since the development of the estimation. approach is rather lemgthy, it is

convenient to summarize the steps that are required to implement the numerical search.
It is assumed that the process starts with a known input f, a set of data y and an

initial parameter estimate 6". To conduct an iteration in the numerical search requires
that the following steps be performed:

1. Compute the suspected mean and covariance m = HOCS and R = HOBB*d*H¥*,

2. Compute the eigenvalues l; and eigenvectors ¢k of R.

3. Compute the related vectors p, = A O*H%p. ,y. = B¥p_and x_ = A_ OBy, .
k- Mk X ¥x 400 Xy = Ay k

4. Conduct s spectral analysis of the data and of the suspected mean to obtain the
spectral coefficients Yy © ¢k‘y and m, = ¢k*m.

S. Use Result 6.5 to evaluate the gradient 3]/30 of the likelihood functional.
6. Use Results 6.6 and 6.7 to compute the Hessian Mn and to determine the

incremental change 58" of the parameter estimates.

7. Obtain 2 new parameter estimate 6'“1 = 6% ~ 66", return to step 1 above, and
iterate through steps 1 to 6 until convergence is achieved.

If Cramer-Rso bounds and/or an optimal input are desired use (7.6) - (7.13). If the
covariance of the state estimation error is desired use Result 8.2 and/or 8.13.

The calculations involved in conducting s single iteration in the maximum-likelihood
parameter estimation approach are summarized in block diagram form in Pig. 9.1 A
single iteration consists of all of the computational steps required to obtain an updated

parameter estimate o™ 1by processing the available data, the known deterministic
input, and the current parameter estimate Gn.
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Fig. 9.1 Calculations Required for Single Iteration in Modified Newton-Raphson Search

To simplify the description of these computations, the steps performed in a single
iteration have been grouped into the following four major blocks (delineated by the
broken lines in the diagram):

a SQUARE-ROOT FILTER block that processes the measurement dats y and
the external input f to obtain & filtered estimate 2z and a corresponding
residual process e, defined as the difference between the data and the
filtered state estimate. The square-root filter implements the equations z =
Ly + (I-L)m and e = y-z. The central computstion in the square-root filter

1

block is that provided by the operator L = I - {I+R)” A defined in terms of the
square-root of the predicted-data-covariance (I + R). This operator appears
in two distinct places in the diagrem: in the dats filter, whose primary
function is to process the measurements y; and in the mean filter, whose
main function is to process the suspected mean m. The suspected mean is in
turn obtained from the known external input by means of the input-cutput
model.
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. a SQUARE-ROOT FILTER S3SENSITIVITY block that processes the
measurement data y and the deterministic input f to obtain the filtered
estimate sensitivity 9z/96. This block implements the equation 9z/90 =
(3L/30)y-m) + (I-LX3m/30). The computation of the sensitivity dL/3O is the
main calculation performed in this block.

. s GRADIENT-HRBSSIAN SYNTHESIS block that forms: the function-space
gradient 9J/00 of the likelihood functional by means of the equation 3]/36 =
Tr{(dL/36X1+K) - (3z/00)e¥}; and the function-space approximate Hessian by
means of the equation M = Tr [(L/30XI+ RXOL¥*/30)] + (3z/00)%(92/360). Note
that the quantity that is actually evaluated in this block is the kemel M(x/{)
of the Hessian operator. This kernel is a functior of two spatial variables x
and I defined over a "square” domain (x/£)eQQ x 2, where Q is as before the
spatial domain of definition of the system model.

. a NEWTON-RAPHSON ITERATION block whose input iz the grad.ent and the
approximate Hessian and that generates as an output the updated parameter

distribution Gml for the next iteration. The central calculation in this block

is the solution of the integral equation Mnae“ = By that results in the
parameter estimate update 50",

After specification of the parameter estimate On*l, the square-root filter L©O™ and its

sensitivity 3L(0™)/30 are redesigned by letting e‘-e“*‘, and the steps outlined above
are repeated in order to conduct the next step in the iterative process for optimization.

The predicted-data-covariance square-root filter processes the data y and the
suspected mean m to produce a filtered state estimate z and a set of re~iduals e = y-z.

. )
This is done by means of the equation 2 = Ly + (I-L)m, where L = i:-(I+R) 2 This

equation, while providing & very succinct symbolic dascription of the square-root filter,
does not by itself provide a recipe to conduct computations. In order to provide such a
recipe, it is convenient to use the corresponding spectral form z, = (l—comk)yk +

cosakmk. which expresses the spectral amplitudes zk = ¢k‘z of the filtered state

estimate z as a linear combination of the data and suspected mean spectral amplitudes
129 and m,. Such a spectral form of the predicted-data-covariance square-root filter is

illustrated in Fig. 9.2.

The diagram in the figure illustrates the main calculations involved in the square-root

1]

filter. On the upper branch of the diagram, a set of data™ "y =, [yl.....yN] is assumed to

be available a+ N discrete locations. A spectral mlyci:lz] is conducted on this data to
obtsin the data spectral cmplitude:ls] lyl,....yN]. These spectral amplitudes are
then multiplied by the coefficients (l-cosa.k) in the data ﬁlt.er[‘]. resulting in the terms

(l—cosa.k)yk. On the lower branch of the diagram, the deterministic inputs fiﬂ are
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processed by tstie input/output system mot'lel”l 10 obtain the suspected mean
m= [ml.....mN][ : The speciral amplitudes m&= ¢k* mBlof the suspected mean are
then computed and subsequently multiplied by the coefficients cosa, in the mesn

[10] to produce the terms comkmk [11].

15)

filter This last term is then added to

( l-cosak)yk in z[kl 2)
{13}

residuals e, - Note that the physical state estimste z and the residual e
recovered from Zp and Y by means of the summations z = zqu’k end e
although for simplicity this last transformation is not shown on the diagram.

resulting in the filtered state spectral amplitudes and the

can be
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Pig. 9.2 Spectrsl Form of Predicted-Data-Covariance Square-Root Pilter

The foregoing remarks have scrutinized the spectral form of the square-root filter
cyuation 2 = Ly + (I-L)m. The immediste aim now is to conduct a similar detailed
analysis of the spectral representation of the square-root filter semsitivity equation
9z/30 = (AL/2O)y + (I-L) (0Om/98). The spectral form of this equstion is stated in Rq.

(6.15) and illustrated in the block diagram in Pig. 9.3.
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function of the square-root filter sensitivity is to process the N mesan-centered dats
(1) 4nd the M deterministic inputs[z] in order to obtain the spectral

amplitudes ofm of the filtered state estimate sensitivity 3z/36. An intermediste
calculation embedded within this overall process involves processing of the

mean-centered data spectral amplitudes yku] by means of the N-by-N matrix, with
general elements Sem’ representing the data filter seunsitivity aL/ae“l. Other

spectral amplitudes

intermediste steps involve: processing of the deterministic inputs im 2] by the
input/output model sensitivity matrix bkm 5] to generate the suspected mean spectral

amplitudes (3m/d0) l6l; and subsequent processing of these coefficients by the mean
k

filter 7] to obtain the terms cosa, (am/ae)k “].
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Pig. 9.3 Spectral Form of Square-Root Filter Sensitivity
10. CONCLUDING REMARKS AND FUTURER DIRRCTIONS

The . a of estimation for elliptic systems is so full of interesting research
problems that, in spite of all that this paper has covered, much more remains to be
done. These are some of the problems that lie ahead:

L Conduct of an asymptotic statistical property analysis that explores the
convergence of the parameter estimates as the number of obzervations
increases.
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° Development of approximation approaches that rigorously arrive at

finite-dimensional approximations to the infinite-dimensional solutions
advanced here.

° More complete investigation of the optimal input design problem. In
particular, development of “spectral” domain design approaches which would
do for elliptic systems what the frequency domain methods achieve for linear
time - invariant dynamical systems.

° Development of more precise mathematical arguments to justify
function-space differentiation, eigensystem expansions, covariance
csalculations, likelihood-ratio derivations, etc.

° Investigation of alternative (to the square-root) factorization of the
predicted-data-covariance that could result in easier calculation of the
function-space derivatives necessary for the Newton-Raphson search.

. Numerical experimentation with the filiering. smoothing and identification
algorithms to gain further insight into the state and parameter estimation
approaches and solutions [5].

As a final remark, this paper is a concrete example of the power of the functional
analysis approach to estimation advanced in Ref. [4]. Because of the conceptual
simplicity of the method, it has been possible to solve in this paper problems that would
have defied solution by any other method. It has also made it possible to conceive areas
for future research that would otherwise have been left unidentified.
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