N85-32397

HIGH-EFFICIENCY MODULE AND ARRAY RESEARCH

JET PROPULSION LABORATORY

R.G. Ross, Jr.

Module High-Efficiency Research Thrusts

- Development of medule technologies contributing to high efficiency
 - High cell packing factors
 - Low optical losses
 - Low electrical mismatch losses
 - Low operating temperatures
- Development of reliability technologies required to maintain high efficiency of:
 - Cells
 - Optical coatings
 - Encapsulants

Module Technologies Contributing to High Efficiency

- High cell-packing factors
 - Narrow borders, close ce" spacing
 - Large modules
- Low optical losses
 - Antireflection coatings
 - Antisoiling coatings
 - High-transmittance encapsulants
- Low electrical-mismatch losses
 - Series-paralleling
 - Cell sorting
- Low operating temperatures
 - Good convective cooling of module rear surface
 - High-emittance, high-reflectance rear surface
 - Low IR-absorptance front surface

Unique Issues Associated With Reliability of High-Efficiency Modules

- Reliability of:
 - High-efficiency cells
 - Narrow module borders
 - Antisoiling coatings
 - Antireflection coatings on glass-air interfaces

FY85 Research Related to High-Efficiency Modules

- Module temperature reduction with IR-reflecting cells (Spire)
- Reliability of antisoiling coatings (Springborn)
- Reliability of modules with narrow borders (JPL, Wyle)
- Reliability of high-efficiency cells (Clemson)
- Verification of overall module performance (JPL, Spire, Westinghouse)