N85-32407 ENCAPSULATION MATERIALS RESEARCH

SPRINGBORN LABORATORIES, INC.

P. Willis

PHASE I

IDENTIFY AND DEVELOP LOW COST MODULE ENCAPSULATION MATERIALS

POTTANTS

The same of the sa

- COVER FILMS
- SUBSTRATES
- ADHESIVES/PRIMERS
- ANTI-SOILING TREATMENTS

PHASE II

MATERIALS RELIABILITY

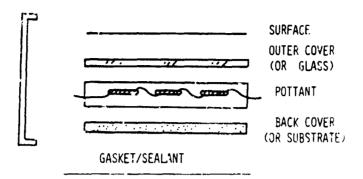
- AGING AND LIFE ASSESSMENT
- ADVANCED STABILIZERS
- CHEMICAL DIAGNOSTICS
- FLAMMABILITY
- ELECTRICAL ISOLATION

PHASE III

PROCESS SENSITIVITY

- INTERRELATIONSHIPS OF
 - FORMULATION VARIABLES
 - PROCESS VARIABLES
- MANUFACTURING YIELD ANALYSIS

(PROCESS DEVELOPMENT SECTION)


PRECEDING PAGE BUANK NOT MILMED

心心 电硬件

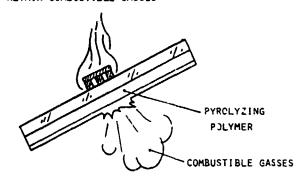
Level Street Acres Secretary

RELIABILITY PHYSICS

Module Components

CURRENT EMPHASIS ON MATERIALS AND MODULE PERFORMANCE CHARACTERISTICS

- DETERMINE CURRENT LEVEL OF PERFORMANCE
- ENHANCE PERFORMANCE (E.G. REFORMULATION)
- SERVICE LIFE PROGNOSIS


PERFORMANCE CRITERIA

- ENVIRONMENTAL DEGRADATION
- ADHESIVE BOND DURABILITY
- ELECTRICAL INTEGRITY
- FLANMABILITY

Module Flammability

- MOST MODULES CONSTRUCTIONS NOT PASSING UL-, 30 BURNING BRAND TEST
- MECHANISM: APPEARS TO BE RUPTURE OF THE BACK COVER WITH THE EVOLUTION OF BURNING GASSES
- MODULES CAN BURN BUT MUST NOT SERVE AS AN IGNITION SOURCE TO GIHER STRUCTURES
- MODULES WITH KAPTON BACK COVERS (HIGH STRENGTH) PACS TEST DUE TO ABILITY TO RETAIN COMBUSTIBLE GASSES

- KAPTON IS VERY EXPENSIVE
- INEXPENSIVE HIGH STRENGTH HIGH TEMPERATURE
 BACK COVER NEEDED

L AMMONDATION OF THE PARTY OF T

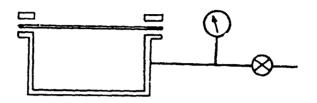
Module Flammability

GOAL:

- PREVENT SPREAD OF FLAME
- PASS UL-790

APPROACHES:

- (1) HIGH STRENGTH HEAT RESISTANT BACK COVERS
 - CERAMIC PAPER
 - POLYMER FILM LAMINATES WITH GLASS SCRIM REINFORCEMENT
 - METAL FOILS
 - RESIN IMPREGNATED GLASS CLOTH
- (2) REDUCTION OF COMBUSTIBLE MATERIALS
 - THINNING OF POTTANT LAYER
- (3) FIRE RETARDANT ADDITIVES
 - INERT DILUENTS (TALC, CALCIUM CARBONATE)
 - RELEASE OF WATER WITH HEAT ALUMINA TRIHYDRATE (35% WATER)
 - FIRE RETARDANTS (FREE RADICAL TRAPS)
 ANTIMONY OXIDE, ZINC BORATE
 BROMINATED ORGANICS
 ORGANIC PHOSPHATES
- (4) COMBINATION OF ALL THREE


EVALUATION OF CANDIDATE TECHNIQUES

CONVENTIONAL:

- UL-94 VERTICAL BURN TEST
- ASTM E-262 FLAME SPREAD INDEX
- ASTM D-2863 LIMITING OXYGEN INDEX

FOR BACK COVERS:

• CONSTRUCT SPECIAL APPARATUS

- DETERMINE BURST STRENGTH AS FUNCTION OF TEMPERATURE AND PRESSURE
- CORRELATE TO ACTUAL EFFECTIVENESS UNDER FIRE CONDITIONS
- DETERMINE ADD-ON COST FOR IMPROVEMENT IN FIRE RATING
- RECOMMEND CANDIDATES FOR UL-790
 TESTING

Electrical Isolation

- POTTANTS AND COVER FILMS SERVE AS ELECTRICAL INSULATION
- NEED TO KNOW THICKNESS REQUIRED FOR VOLATAGE STANDOFF
- VARIATION WITH TEMPERATURE, ABSORBED WATER
- NEED TO KNOW VARIATION DIELECTRIC STRENGTH WITH AGING:

LIGHT, HEAT, HUMIDITY, FIELD STRESS

METHOD:

- USE DC DIELECTRIC TEST APPARATUS TIP TO TIP SYMMETRIC ELECTRODES
- SPECIFIED RATE OF RISE
- PLOT AVERAGE BREAKDOWN VOLTAGE, V_A VS THICKNESS
- STRAIGHT LINE RELATIONSHIP: SLOPE CONSIDERED TO BE THE INTRINSIC DIELECTRIC STRENGTH, DV/DT
- MEASUREMENTS TO DATE:

EVA DV/DT = 3.65 kV/ MIL

- REMEASURE DV/DT :
 - THERMAL AGING
 - WATER ABSORPTION
 - ENVIRONMENTAL EXPOSURE
 - FIELD STRESS AGING
- RECALCULATE THE REQUIRED INSULATION THICKNESS FOR SERVICE LIFE OF THE MODULE

Adhesion Experiments

SELF-PRIMING FORMULATIONS (TO SUNADEX GLASS)

		BOND STRENGTH, LBS/IN	
POTTANT/PRIMER	LEVEL (PHR)	CONTROL	12 MONTHS STORAGE
EVA A9918	0.25	42	31
Z-6030	0.05	29	20
EVA 15295/	0.25	31	28
Z-6030	0.05	10.9	5
EMA 15257/	0.25	57.4	41
Z-6030	0. 05	49.0	26

^{*}BCNDS ALSO STABLE TO WATER IMMERSION AND BOILING WATER

- STABLE TO STORAGE CONDITIONS (12 MO. TO DATE) AT 0.25 PHR LEVEL, .05 PHR NOT AS STABLE
- NOW COMMERCIALLY AVAILABLE (SPRINGBORN)

EVA A9918-P (LUPERSOL 101 CURE) EVA 15295-P (TBEC CURE)

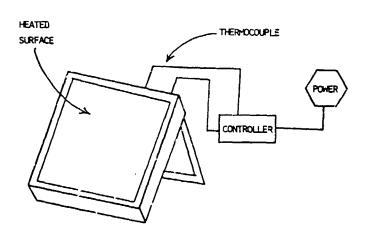
 WORKING ON INTERNAL PRIMING FOR CELL STRING AND METALLIZATION (MORE DIFFICULT TO PRIME)

CONTINUED PRIMER STUDIES:

- EVALUATE THE THREE "BASIC" PRIMERS -DR. PLUEDDEMANN - DOW CORNING
 - POLYMER/METAL
 - POLYMER/INORGANIC
 - POLYMER/ORGANIC
- METAL PRIMER (ALUMINUM) RECOMMENDATIONS
 DR. JIM BOERIO UNIVERSITY OF CINCINNATI

ADHESION DIAGNOSTICS:

- HOW DURABLE ARE ADHESIVE BONDS? UNDER WHAT CONDITIONS?
- SUCCESSFUL SPECTROSCOPIC EXAMINATION OF GLASS/ PRIMER INTERFACE - DR. JACK KOENIG -CASE WESTERN RESERVE
- EVA COMPOUNDED WITH HIGH LOADINGS OF SILANE TREATED GLASS BEADS
 - SPECIMENS AT CASE WESTERN FOR "DRIFT" ANALYSIS (CHEMICAL)
 - IDENTICAL SPECIMENS AT SPRINGBORN FOR MECHANICAL ANALYSIS
 - HYDROLYTIC AGING
 - CORRELATE CHEMICAL OBSERVATIONS WITH MECHANICAL PERFORMANCE
 - DETERMINE DEGRADATION RATES
 - ASSESS SERVICE LIFE

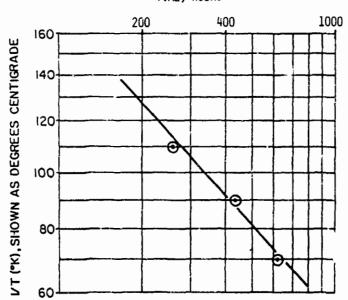


· ·

Accelerated Aging

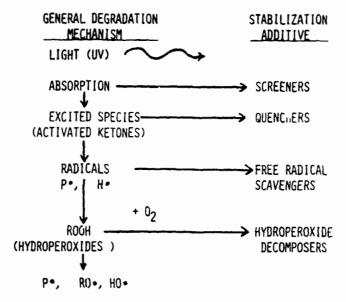
OUTDOOR PHOTOTHERMAL AGING DEVICES (OPT)

- USE NATURAL SUNLIGHT, AVOIDS SPECTRAL DISTRIBUTION PROBLEMS WITH ARTIFICIAL LIGHT SOURCES
- USE <u>TEMPERATURE</u> TO ACCELERATE THE PHOTO-THERMAL REACTION
- INCLUDES DARK CYCLE REACTIONS
- INCLUDES DEW/RAIN EXTRACTION
- INTENDED PRIMARILY FOR MODULE EXPOSURE
- EXTRAPOLATE EFFECTS TO LOWER TEMPERATURES



I STATE TO THE STATE OF THE STA

RELIABILITY PHYSICS

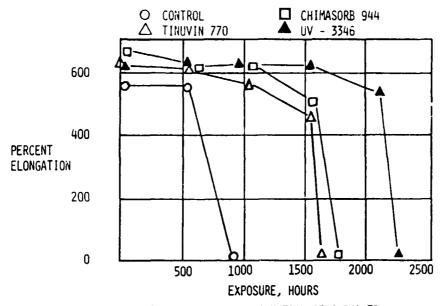

- MODULE EXPOSURE: OPT 105°C, 7,000 HRS
- ALL SHOW SEVERE COPPER REACTION
- BEST PERFORMANCE: EVA-ADVANCED STABILIZER
 TBEC, UV-2098, TINUVIN 770
 VIRTUALLY NO DEGRADATION APPARENT
- CONSPICUOUS DEGRADATION IN OTHERS
- GLASS FRACTURE THERMAL SHOCK
- MODULE EXPOSURE: OPT 70°C, 7000 HRS.
- SOME COPPER REACTION W/EVA 9918
- NO OTHER EFFECTS NOTICEABLE
- USEFUL FOR EVALUATING CANDIDATE FORMULATIONS COMPARISON
- FVALUATES WHOLE MODULES
- DETERMINE UPPER LEVEL SERVICE TEMPERATURES
- MODELLING:
 - ARRHENIUS : LOG P VS. 1/K^O
 - PREDICT SERVICE LIFE BY EXTRAPOLATION TO LOWER TEMPERATURES
 - TIME TO ONSET OF DEGRADATION (INDUCTION PERIOD)
 - PROBABILITY DISTRIBUTION-FAILURE
- EXAMPLE: POLYPROPYLENE INDUCTION TIME

TIME, HOURS

マン 東麓 リー

Advanced Stabilizers

AUTOCATALYTIC DEGRADATION


- QUENCHERS STRONGLY COLORED NOT USED
- LONG TERM STABILIZERS:
 - GXIDATIVELY STABLE
 - NON-FUGITIVE
- UV-2098 (AMERICAN CYANAMIDE) BEST SCREENER FOUND TO DATE (CO-REACTIVE BENZOPHENEONE)
- HINDERED AMINE LIGHT STABILIZERS (HALS)
 FREE RADICAL TRAPS AND HYDROPEROXIDE DECOMPOSITION
- COMBINATION OF SCREENER AND HALS BEST STABILIZER PACKAGE

いて大学

a Alman ist 1

CANDIDATE HINDFRED AMINES (HALS)

- HIGH EFFICIENCY FROM REGENERATIVE CHEMISTRY:
 ACTIVE SPECIES RECYCLES NON SACRIFICIAL
- EVALUATION OF CANDIDATES:
 - EVA, TBEC CURE, 0.1% HALS
 - % ELONGATION VERSUS TIME
 - OPT DEVICE, 90 °C

- FAILURE: LOSS OR CONSUMPTION OF CHEMISTRY?
 NEED FOR ANALYTICAL METHOD
- CYASORB UV-336 (CYANAMIDE) CLEARLY BETTER
- SYSTEM EVALUATION: EVA/TBEC/UV-2098/UV-3346 MODULES, ADHESION, FLAMMABILITY, ETC.

STATE OF THE STATE

Antisoiling Treatments

SURFACE CHEMISTRY:

- HARD
- SMCOTH
- HY ROPHOBIC
- OLEOPHOBIC
- ION FREE
- LOW SURFACE ENERGY

SURFACE INVESTIGATED:

- SUNADEX GLASS
- TEDLAR (100 BG 30 UT)
- ACRYLAR (ACRYLIC FILM)

TREATMENTS REMAINING:

- L-1668 FLUOROSILANE (3M)
- E-3820 PERFLUORODECANOIC ACID/ SILANE (DOW CORNING)
- STILL EFFECTIVE AT 38 MONTHS OUTDOOR EXPOSURE
- RESULTS IN IMPROVED POWER OUTPUT
- FLUOROALKYL SILANE CHEMISTRY APPEARS TO BE MOST EFFECTIVE

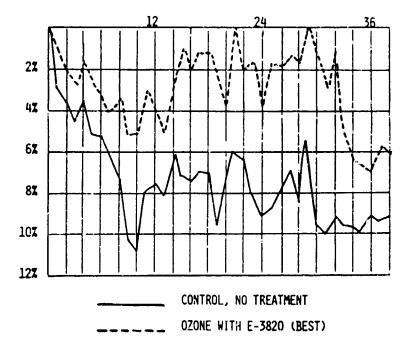
Spiling Experiments

THIRTY-TWO MONTHS EXPOSURE ENFIELD, CONNECTICUT

% LOSS IN I_{SC} WITH STANDARD CELL TREATED
TEDLAR 100BG300UT
(SUPPORT ON GLASS)

CONTROL, NO COATING

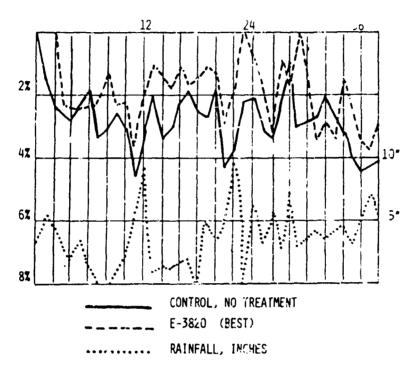
____ E-3820 COATING (BEST)


ESTIMATED AVERAGE POWER IMPROVEMENT, 3.8%

THIRTY-TWO MONTHS EXPOSURE ENFIELD, CONNECTICUT

I LGSS IN I_{SC} WITH STANDARD CELL TREATED ACRYLAR (SUPPORTED ON GLASS)

38 MONTHS EXPOSURE



ESTIMATED AVERAGE POWER IMPROVEMENT, 3.9%

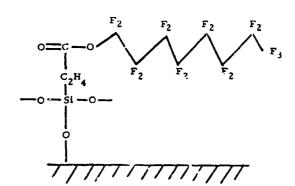
THIRTY-TWO MONTHS EXPOSURE ENFIELD, CONNECTICUT

% LOSS IN I_{SC} WITH STANDARD CELL TREATED SUNDEX GLASS

38 MONTHS EXPOSURE

ESTIMATED AVERAGE POWER IMPROVEMENT, 1%

Antisoiling Coatings


- STILL EFFECTIVE AFTER THREE YEARS OUTDOOR EXPOSURE
- PERMANENCE APPEARS TO BE GOOD
- POSSIBILITY FOR IMPROVED PERFORMANCE BY INCREASING SOIL REPLELLANCY

NEW CANDIATE(S):

LOWEST SURFACE ENERGY EVER REPORTED:
 POLYMER OF PERFLUORO-CCTYL METHACRYLATE

 $\gamma_c = 10.6 \text{ DYNE cm}^{-1}$

- REACT WITH TRIMETHOXY HYDROGEN SILANE TO FORM ADDUCT WITH GLASS-REACTIVE GROUP
- EVALUATE IN SUILING TESTS

AND THE PROPERTY OF THE PARTY O

Outer Covers (Substrate Design)

- LOW COST UV SCREENING FILMS COMMERCIALLY AVAILABLE
- PROBLEMS: SHRINKAGE, STABILIZER EXTRACTION ADHESION, WEATHER STABILITY
- POTTANTS APPEAR TO HAVE GOOD STABILITY
- NON-SCREENING CANDIDATE FILMS CLEAR, WEATHERABLE, BONDABLE?

FILM	REF. INDEX	2 T	COST \$/FT ² /MIL
TEFZEL	1.403	85.6	0.128
KAYNAR	1.420	88.8	0.055
HALAR	1.40	85.3	0.096
F=A	1,30	88.4	0.123
FEP	1.34	93.6	0.109

- FEP MAY BE GOOD CHOICE:
 - HIGH TRANSPARENCY
 - OUTSTANDING WEATHERABILITY
 - MAY IMPROVE OPTICAL THROUGHPUT BY 2% DUE TO OPTICAL COUPLING
 - REQUIRES PRIMER TECHNOLOGY
 - WILL BE EVALUATED IN MODULE FABRICATION AND OUTDOOR EXPOSURE EXPERIMENTS

Conclusions

- OUTDOOR PHOTOTHERMAL AGING DEVICES (OPT)
 - BEST ACCELERATED AGING METHOD DISCOVERED YET
 - SIMULATES WORST CASE FIELD CONDITIONS
 - EVALUATE FORMULATIONS
 - EVALUATE MODULE PERFORMANCE
 - POSSIBLITY FOR LIFE ASSESSMENT

AVOID METALLIC COPPER EXPOSURE

- SELF PRIMING FORMULATIONS HAVE GOOD STORAGE STABILITY AT 0.25 PHR)
- STABILIZERS ENHANCED PERFORMANCE
 - UV-2098 UV SCREENER
 - UV-3346 HINDERED AMINE (HALS)
- SOIL RESISTANCE TREATMENTS STILL EFFECTIVE

LEMBERS NAME OF THE CONTROL OF THE C

Future Work

- FLAMMABILITY: FIRE RETARDANTS AND FLAME RESISTANT WORK COVERS
- ELECTRICAL INTEGRITY: DIELECTRIC STRENGTH VERSUS AGING OF ENCAPSULATION MATERIALS
- ADHESION DIAGNOSTICS AND SERVICE LIFE ASSESSMENT
- MODULE EVALUATION: EVA POTTANT WITH ADVANCED STABILIZER PACKAGE
- NEW ANTI-SOILING CONCEPTS
- MODULE SERVICE LIFE ASSESSMENT

(PHASE III)

PROCESS AND MANUFACTURING VARIABLES

