### N85-32410 TOPICS IN ELECTROCHEMICAL DEGRADATION OF PHOTOVOLTAIC MODULES

#### JET PROPULSION LABORATORY

#### G.R. Mon

#### Topics

- The relationship between leakage current and electrochemical degradation
  - · . ositive and negative polarity
  - · Dependence on temperature and humidity
- Leakage-current response mechanisms
  - Experimental observations
    - The effect of non-metallized substrate films
    - The effect of cell-frame gap dimension
    - The effect of applied voltage magnitude
    - The effect of pottant ion mobility
  - Physical deductions
- Laboratory-field equivalence -- acceleration factors
  - Module life prediction
  - Module (electrochemical) qualification test

## PRECEDING PAGE BLANK NOT FILMED



#### The Relationship Between Leakage Current and Electrochemical Damage

#### **Electrochemical Damage: Positive and Negative Polarity**

- Positive polarity
  - Metallization dissolution and migration (from cell to frame)
  - Cathodic dendrite formation (from frame to cell)
  - Evolution of gas at cathode (frame)
- Negative polarity
  - Evolution of gas at cathode (cell) between metallization and silicon substrate -- metallization delamination
  - Formation of corrosion salts at anode (frame)
- Both polarities
  - Reduction of cell power output
  - Increase in cell series resistance

#### Power Reduction and Series Resistance vs Time, Showing Effects of Polarity and Non-Metallized Substrate Films



#### **RELIABILITY PHYSICS**

## ORIGINAL PAGE IS

#### Influence of Electrochemical Damage on Cell I-V Performance



ŝ

#### **Observed Current Paths**



 Metallization ions follow electric field lines

 Metallization ions often proceed to, and then along, interfacial surfaces

#### Current Response for Small-Gap Samples and the Effect of Non-Metallized Polymer Substrate Films





Current Response for Large-Gap Sample

TIME, h

#### **Physical Deductions**

- At large cell-frame gaps and/or low voltages, capacitive charging and polarization currents are absent because
  - Literelectrode capacitance is small
  - Electrode forces on interelectrode dipoles are weak
- Equilibrium current is independent of gap, other things being equal, because of the relatively low-resistance surface-active paths
- The magnitude of the equilibrium current is directly proportional to the pottant volume conductivity (actually, ion mobility) along paths in the bulk of the pottant
- Independent of voltage breakdown considerations, substrate polymer films provide higher surface resistance paths, hence lower equilibrium current levels

Electrochemical Damage: Laboratory-Field Equivalence

- Assumption: Equal quantities of charge transfer in the field and test environments produce equivalent amounts of electrochemical degradation
- Ohm's law:  $Q = I\tau = V \cdot (\sigma\tau) \cdot (ge \text{ netric terms})$
- Field time in years equivalent to  $\tau_{\rm T}$  hours at test conditions:

• Field values are based on yearly compilations from reduced SOLMET weather data

#### 1071 PV-: 106 105 CHAMBER TEMPERATURE (T) 104 4010 Ч, 103 40'1 70 L 10<sup>2</sup> o°C J°0℃ 10<sup>1</sup> MIAM BOSTON ìoo°c 100 100 50 0 CHAMBER HUMIDITY (RH), %

Test Chamber Time - Equivalent To OF FOOR QUALITY 30 Years In The Field

ORIGINAL PAGE 'NS



# Test Chamber Time $\tau$ Equivalent to 30 Years in the Field: EVA

ORIGINAL PAGE IS OF POOR QUALITY

#### **Module Life Prediction**

- Median cell failures are experimentally determined to occur with the passage of about  $Q_T = 1 2$  C/cm of charge between cell and frame
- Median time to cell failure is  $\tau_{\rm M} = \frac{\Omega_{\rm T}}{\Omega_{\rm F}}$ 
  - Calculate charge transfer in the field, QF, using known dependencies on T and RH and SOLMET weather data
  - Assume a log-normal distribution of cell failures
- Calculate average module field failure rate
  - Without replacement (23rd PIM)
  - With replacement (this PIM)

#### Power Output Reduction vs Accumulated Charge Transfer





# Module Failure Rate vs Time for $4 \times 4$ -ft-Square-Celled Modules at Miami

Conclusions

- Calculated failure rates for unprotected PVB modules exceed allocation levels
- · Failure rates for EVA modules fall within allocation guidelines
- Added mathematical rigor engendered by considering that replacement minimally impacts computed module failure rate results

#### **RELIABILITY PHYSICS**



Block V Qualification Test Temperature-Humidity Profile

' -

# Electrochemical Qualification Test Results: 500 Vdc, $85^{\circ}C/85^{\circ}$ RH for 20 h, $-40^{\circ}C$ for 4 h, 10 24-h Cycles

| Sample    | Polarity | Metallization | Encapsulation | Metal<br>Substrate<br>Foil? | 0200,<br>C/cm | P/Po | 1/1 <sub>0</sub> | Equivalent<br>500-V Field<br>Exposure<br>Miami, yr* |
|-----------|----------|---------------|---------------|-----------------------------|---------------|------|------------------|-----------------------------------------------------|
| MO 5107   | P        | Pd/Ni-solder  | PVB           | Y                           | 1.17          | 0.95 | 0.91             | 1.8                                                 |
| PW 5222   | P        | Ni-solder     | PVB           | Y                           | 1.53          | 0.97 | 0.96             | 1.8                                                 |
| AS 200307 | P        | Print Ag      | PVB           | Y                           | 3.61          | 0.96 | 0.96             | 1.8                                                 |
| AS 107461 | P        | Print Ag      | PVB           | N                           | 2.91          | 0.17 | 0.32             | 84.0                                                |
| MO 5117   | N        | Pd/#i-solder  | PVB           | Y                           | 0.737         | 0.79 | 0.97             | 1.8                                                 |
| PW 5224   | N        | Ni-solder     | PVB           | Y                           | 0.0034        | 1.0  | 1.0              | 16                                                  |
| AS 200303 | N        | Print Ag      | PVB           | Y                           | 0.181         | 0.99 | 1.01             | 1.8                                                 |
| AS 107449 | N        | Print Ag      | PVB           | N                           | 1.41          | 0.88 | 0.94             | <u>84.0</u>                                         |
| MS 4887   | P        | Ni-Cu-Sn      | EVA           | Ŷ                           | 0.031         | 0.98 | 0.99             | 1.0                                                 |
| SP 58494  | P        | Ni-Sn         | EVA           | Y                           | 0.072         | 0.93 | 0.98             | 1.0                                                 |
| SO 009    | P        | Print Ag      | EVA           | N                           | 0.202         | 0.9  | 8.0              | 4.3                                                 |
| AS 022    | P        | Print Ag      | EVA           | N                           | 0.534         | 0.96 | J.97             | 4.3                                                 |
| MS 4954   | N        | Ni Cu Sn      | EVA           | Y                           | 0.052         | 0.53 | 1.0              | 1.0                                                 |
| SP 58487  | N        | Ni-Sn         | EVA           | Y                           | 0.006         | 1.06 | 0.98             | 1.0                                                 |
| SO 011    | N        | Print Ag      | EVA           | M                           | 0.346         | 0.73 | 0.9              | 4.3                                                 |
| AS 021    | N        | Print Ag      | EVA           | N                           | 0.205         | 0.94 | 0.96             | 4.3                                                 |

 Values in last column assume that foil modules are water-free (temperature acceleration only) and that non-foil modules instantly track the environmental temperature and humidity

#### Conclusions

- An equivalence relationship for electrochemical degradation, based upon equal charge transfer levels, establishes a correspondence between years in the field and hours in an accelerated stress test chamber
- Adding voltage to the Block V temperature-humidity test provides an electrochemical gualification test of modules
  - Equivalent to 1 to 2 years for foil-back modules
  - Equivalent to 4 to 80 years for non-foil-back modules
  - Equivalent field years are inversely proportional to the test voltage
- Temperature acceleration ratios are similar for a wide variety of module constructions and materials (factor of 2 per 10°C)
- Humidity acceleration ratios vary considerably (40 to 1), depending upon module construction and materials

Summary and Conclusions

- The extent of electrochemical damage is dependent on the integrated leakage current
- PV electrochemical degradation mechanisms in the two polarities are different
  - Degradation rates in the two polarities are of the same order of magnitude
  - Center-tapped grounded arrays appear to be a preferred system configuration to minimize electrochemical degradation
- There is encouraging agreement between theory and experiment in regard to leakage current response to applied voltage, gap magnitude, and encapsulant ion mobility

Summary and Conclusions (Cont'd)

- Path resistance considerations suggest the use of thicker pottant layers and polymer substrate films to reduce equilibrium lea cage current values
  - A metallized substrate layer, if used, should be isolated from the pottant and the frame by polyester layers
  - EVA modules appear to be consistent with 30-year-life allocation levels for electrochemical damage
- Temperature acceleration factors are well behaved and moderately well understood; humidity acceleration factors vary radically with module construction and materials and require additional research

#### Additional Work Required to Finalize Understanding of Photovoltaic Electrochemical Corrosion

- Quantify temperature-humidity dependency of equilibrium leakage currents
- Quantify temperature-humidity levels of encapsulants in fielded modules



#### Leakage Current Response Mechanisms

Current response characteristics

- (A) --- Water absorption current (impurity ion removal)
- (B) -- Capacitive charging current
- (C) Polarization currents (polymer and water dipoles)
- (D) --- Equilibrium ion current (metallization ion diffusion)