N85-32411 POLYMER-WATER INTERACTION STUDIES

WILKES COLLEGE

John Orehotsky

Corrosicn in Solar Cells

REQUIREMENTS FOR CORROSION

- DISSIMILAR MATERIALS
- CELL-TO-CELL POTENTIAL DIFFERENCES
- ELECTRICALLY CONNECTED CELLS
- IONIC CONDUCTING ELECTROLYTE (POLYMER)

lons in Polymers

- ABSORBED WATER IONS
- POLYMER IONS
- PLASTICIZER IONS
- UV ABSORBER AND STABILIZER IONS
- . CROSS LINKING AGENT IONS
- CHAIN SCISSION (IONIZING RADIATION) IONS

PRECEDING PAGE BLANK NOT FILMED

TH: "

- KING A CHS

1.1

)ø

ŝ,

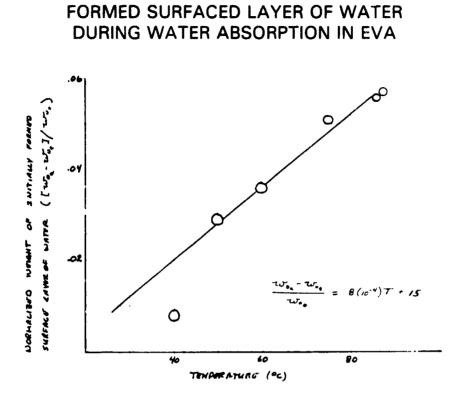
La - Canadiana

ر الا

ł

Studies

ORIGINAL PAGE RE


- I WATER ABSORPTION AND DESORPTION KINETICS IN EVA AND PVB
- II HUMIDITY DEPENDENCE OF ELECTRICAL PROPERTIES OF EVA AND PVB
- III PLASTICIZER EFFECTS IN PVB
- IV RADIATION EFFECTS IN PVB AND EVA

WATER ABSORPTION AND DESORPTION KINETICS IN PVB AND EVA

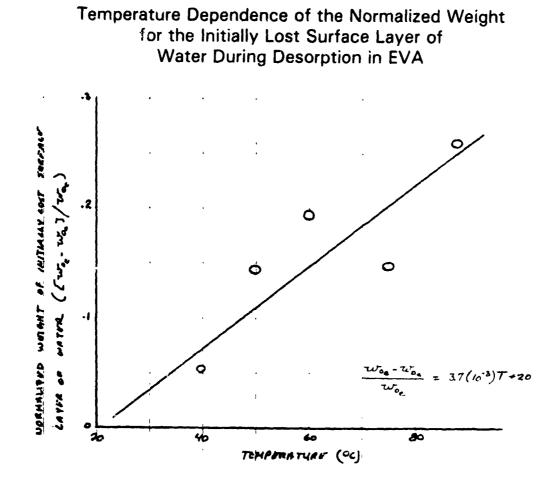
Weight Characteristics of EVA During Absorption and Desorption

Temperature Humidity Conditions T(C)/D4 (%)	Wog 3 Expected 5 rsing Weight (gms)	Woa.: Starfing Weight (gms)	W an : Measured Final Weight (<u>ams)</u>	Weng-Wea: Apparent Weight Change (gms)	W ag -Wort True Weight Change (gn.s)	Woa-Woe' Weight of Initially Formed Surface Layer (gms)	Noe-Woal Weight of Initially Lost Surface Layer (gms)
\$5/0 #88/100 absorption	1.600+	1.691	2.366	. 675	. 746	. 091	-
\$8/100-88/0 desorption	2 366	1.750	1. 599	. 151	. 767	-	. 616
7 5/0 -+ 75/100 absorption	1.821+	1, 914	2.804	. 890	. 983	. 093	-
75/100-75/0 desorption	2.604	2,388	1.824	. 564	. 980	-	. 416
60/0-+60/100 absorption	1.520*	1. 575	2.593	i. 018	1,073	. >*	
60/100-60/0 desorption	2.593	2 092	1.519	. 573	1,074	-	÷01
\$0/0-50/100 absorption	1.6001	1.647	2.565	. 918	. 965	. 947	-
\$0/100-50/0 deanr-fisco	2. 565	2.19#	1.602	. 596	, 96 1	-	. 367
+0/0+0/100 absorption	1.608*	1.613	2.295	. 682	. 675	. 013	-
€0/100+40/0 desorption	2.295	2.149	1.603	. 546	. 692	-	, 146

Original weight of desiccated dried sample.

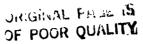
TEMPERATURE DEPENDENCE OF THE NORMALIZED WEIGHT FOR THE INITIALLY

ALINA

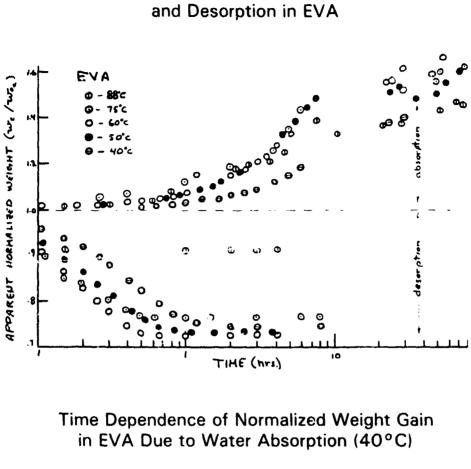

1

A. V.S. 14

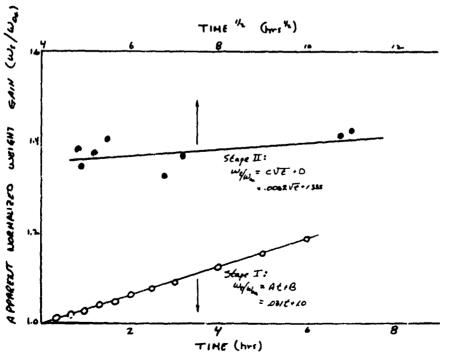
٠,


. 1 And set the set of the

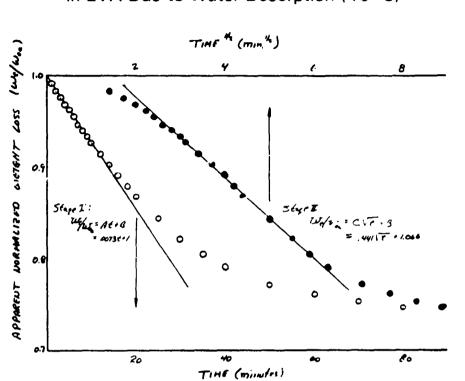
,



Ć


٩.

* JK X



VE CAR

ĩ.

**

~

Time Dependence of Normalized Weight Loss in EVA Due to Water Desorption (40°C) 1+J

Ţ

Ĭ

	STAGE I	STAGE II	
	Wt At + B Woa	We C	
lemp.	A B Absorption	<u> </u>	
88.((hrs.) . .080 1.0	(hrs1/2) .0190 1.245	
75°C	. 080 1.0	.0125 1.4-0	
60 °C	. 068 1. 0	. 010 1. 570	
50°C	. 071 1. 0	.0082 1.4.40	
40°C	. 0 31 1. 0	. 0062 1 -5	

Characterizing Rate Constraints for Water Absorption and Desorption in EVA

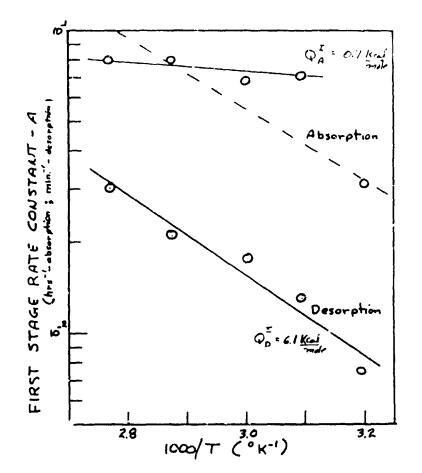
		Desorption		
	-!	l	-1/2)	
	(min.	a la construcción de la construc	(min.)	
88 ° C	030	1.0	-	-
75°C	. 021	1. 0	. 0723	1. 163
۰0 ° C	0175	1.0	. 06 90	1 176
50°C	. 0130	1.0	. 0605	1. 171
40°C	. 0073	1.0	. 441	1 164

ORICEUS COM

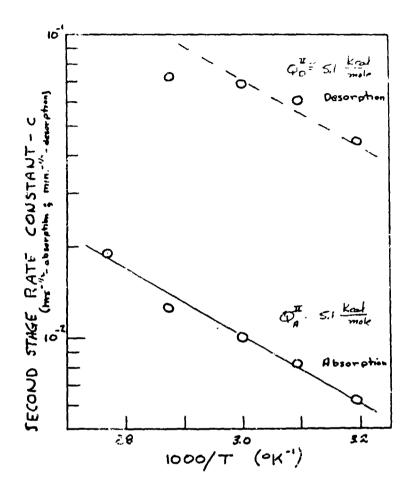
¢

ł

ł


213

A ALESSAN AT A ALESSA


.

4

ï.

Temperature Dependence of the Rate Constant for First-Stage Water Absorption and Desorption in EVA

Temperature Dependence of the Rate Constant for the Second-Stage Water Absorption and Desorption in EVA

LIN . AND A COMPANY STATE

and the second second second second

-

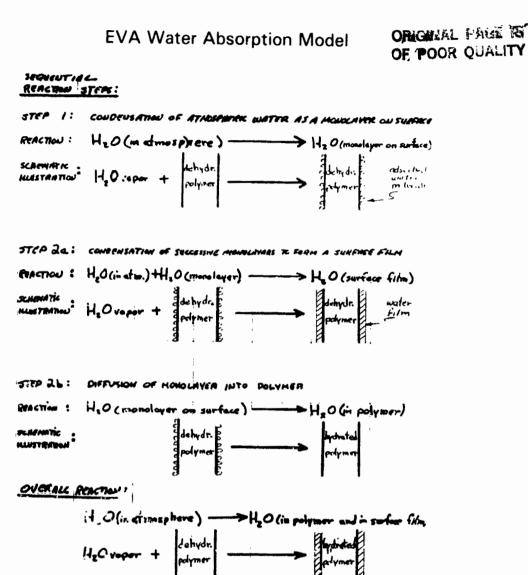
THE REAL PROPERTY AND INC.

Activation Energies and Pre-Exponential Factors for Water Absorption and Desorption in EVA

STAGE I 🔶 Surface Film

$\frac{Q^{I} (kcal/mole)}{0, 7 (= Q^{I} A)}$

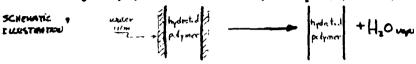
6.1 (=Q^I_D)

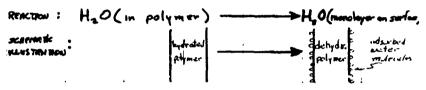

Absorption Desorption $\frac{A_0 (mm.^{-1})}{0.0033 (0.2 hr.s.^{-1})}$

STAGE II - Volume Diffusion

	Q ^{II} (Kcal/mole)	<u>Co (min $-\frac{1}{2}$)</u>
Absorption	5. (=Q ^{II} _A)	3 (23 hrs. ^{-½})
Desorption	5,1 (=Q ^{II})	159

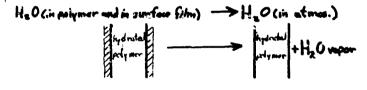
215


the state of the s


ORIGINAL PAGE S OF POOR QUALITY EVA Water F Scorption Model

SEQUENTIAL REACTION STEPS:

CARRY RANG CAR



STEP 2: VOLUME DIFFELION OF WATER OUT OF POLYMER TO SURFACE

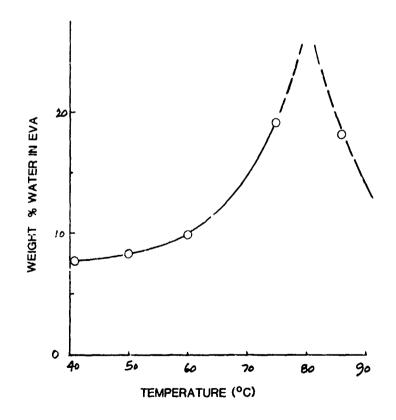
STEP 3 : EVAPORATION OF WATER MONOLAVER ON SURFACE

OVER ALL REACTION :

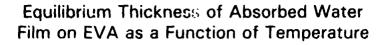
Contraction of

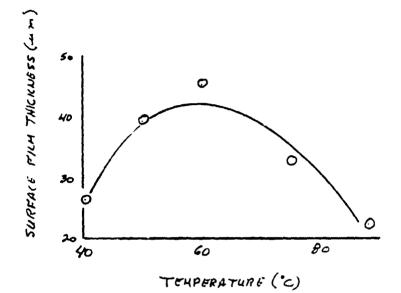
18

و بندر الله المرابي


Weight-Gain Characteristics of EVA in Water Absorption Due to Surface-Film Formation and Volume Absorption

Temperature	Woo Waa Total Kongot Lod	Wco: total weight gan bei gran EVA (gms)	Ws/Woas Total Normalized Weight Gain Due to Surface Film Formation (gms)	due to Surface fil	Wy: Weight Gain per Gran Even Due to m Volume Absorption foms)	W 7 : Weight Percent Solubility Dowater In EVA
0						
88 C	· 4~·	. + >	1.285*	. 285	. 195	16. 1
75 C	1 774		1. 100*	.460	. 240	19.3
60 C	1.0**		1.570*	. 570	. 110	4. 1
Э						
50 C	1. 50.	. 58	1. 4 90*	. 🖬 30 ·	.040	0-Z
э						
40 C	1.42+	. 42	1, 335*	. 335	.085	7.5


• Detern en tram data in Table !


* Taken instreamolater D intercept volues in Table II

Sclubility of H_20 in EVA as a Function of Temperature

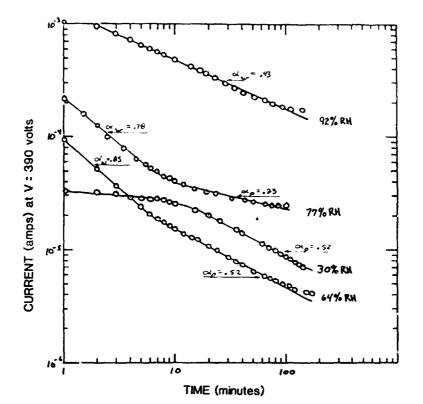
ť

Energy Barrier for Condensation and Evaporation During the Stage I Kinetic Response in Water Absorption and Desorption on EVA

. .

4.4.5

action 1

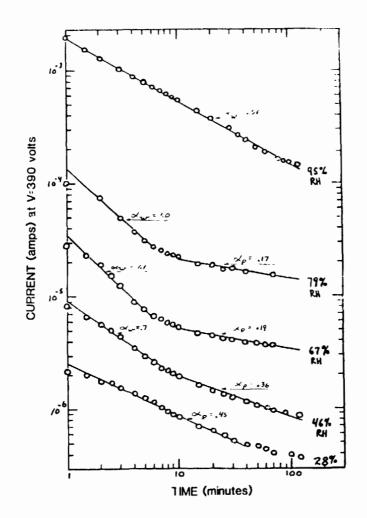


EVAPORATION

Water Interaction Comparison of EVA and PVB

	PVB	EVA
WATER SOLUBILITY AT 60°C (w/o)	38	10
ACTIVATION ENERGIES (Kcal/mole) ABSORPTION		
STAGE I	4.2	0.7
STAGE II	6.3	5.1
DESORPTION		
STAGE I	16	6.1
STAGE II	7.1	5.1
STAGE I ABSORPTION RATE OF WATER PER GRAM OF POLYMER AT 25°C (gms/hr)	2.5(10 ⁻⁴)	6.1(10 ⁻²)
STAGE I DESORPTION RATE OF WATER PER GRAM OF POLYMER AT 25°C (gms/hr)	9.9(10 ⁻²)	5.5(10 ⁻³)

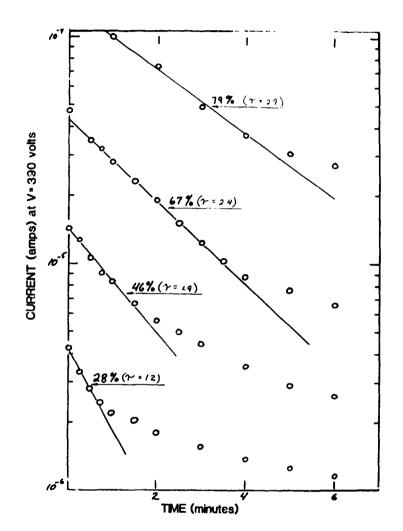
HUMIDITY DEPENDENCE OF THE ELECTRICAL PROPERTIES OF EVA AND PVB



Current Response to a 390-V Step Voltage for PVB (80°C)

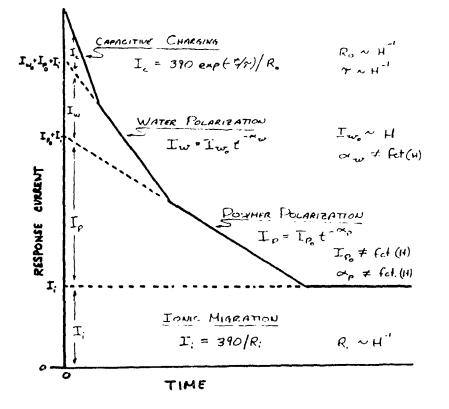
all the second

JA.


1

Current Response to a 390-V Step Voltage for PVB (68°C)

Ťż,


Initial Transient Behavior for the Current Response to a 390-V Step Voltage for PVB (68°C)

· service a street the state

::1

Proposed Current Response to a Step Voltage

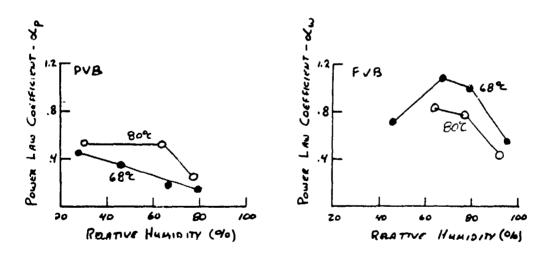
Current Response Parameters for PVB (80°C)

RELATIVE	TIME RANGE	CURRENT Compositionts	THE DEPENDENC I=A C	. e	I	I _{P.}	T,
(%) 	(mm.)		$A(\cdot I_{u} \cdot I_{a} \cdot I)$	<u>e</u>			
92	0424100	$\Gamma_{n,r}+\Gamma_{r}$	1.36-33	(س ه م)34.	1210-3	-	-
	t > 100	r ,	-	-	-	-	1.7(x ⁻⁴⁾
77	ustein	$\mathbf{I}_{\mathbf{u}} \cdot \mathbf{I}_{\mathbf{h}} \cdot \mathbf{I}_{\mathbf{i}}$	2.1(10**)	.78(= =)	15(10-4)		-
	10 4 2 4/00	2, +7;	6.5(P ⁻⁵)	.23(= m _A)	-	4.1(10*9)	-
	6 7 100	I,	-	-	-	-	2.5(10-5)
64	04647	I _w .+I _P +I;	95(10 ⁻⁵)	. 85(e er)	4(n° 9)	_	-
	7424/40	$\mathbf{I}_{\mathbf{p}} + \mathbf{I}_{\mathbf{r}}$	5.0(m ⁻⁵)	. Sz(* dp)	-	44(10*5)	
	£ >/00	x,	-	-	_		*(***)
30	20 = L * 100	I,+I,	\$7(~ ^{-\$})	.52(= *p	-		
	t >100	I,	-		-	-	7(10-9)

ORIGINAL POR QUALITY

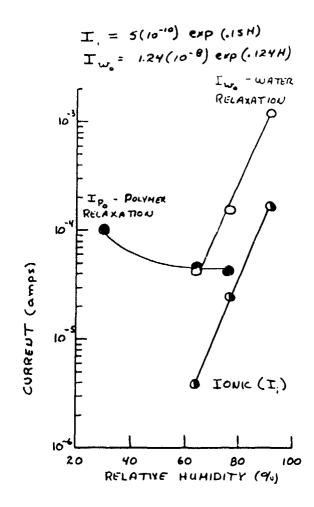
ORIGINAL PACLESS OF POOR QUALITY

L. BERLES


N. 14

RELIABILITY PHYSICS

Current Response Parameters for PVB (68°C)

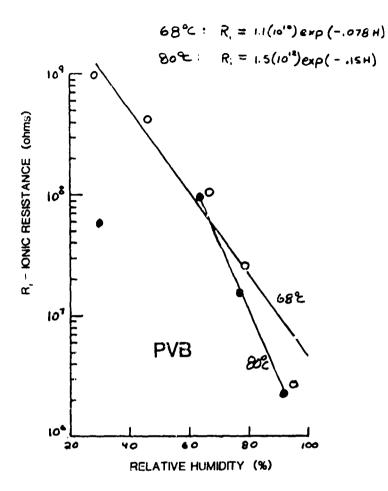

RELATIVE	TIME	C URBENT	\mathbf{T}_i	Ri		THE PE	PENDENCE		
HUMIDITY	RAUSE	CONFORCETS	4 7	* 310/T;	I-At	· •		12.][e.p.	(- \$+)]
(%)	(min)		(amp)	(4)	ALTE	<u>~</u>	390/Rdom	B.C.	Z(mm)
95	04 (4/00 £ 7/00	I+I. I.	4(15 ⁻⁴)	(9(0*)	1.9(11)	ري¥∙). (ب¥∙)	-	-	~
79	04844 24846 184846 84846 8480 8480	I_+1_+1_+1 I_+1p+1 Ip+I, Ip+I, I,	i 5(n ⁻⁸)	2 6(10)	14(0) 82 (**)	 لبر الد=/0.1 (جلا = /11.0	(×(/6 ⁻ 7) 	28(n*) -	21
67	0 = t = y 2 = t = 6 /0 = t = 100 C > 100	τ.+1.0+Τ.+Γ. Σω+Τ.ρ+Γ. Σρ+Γ. Τ.	3(m ⁻⁴)	(3(m ⁹)	59(2°5) 80(10°5)	 ادا(= یدی) ۱۸۹(= هو)	* 3(/c ⁻¹ / 	90(1c*) 	2¥ -
46	04642 246410 10464100 24100	I ₄ +I ₄ +I ₇ +I I ₄ +I ₇ +I I ₈ +I I;	\$ {\no ⁻⁷ }]⁻	49(10 ⁸)	9.460°4) 45(10°4)	 Q72 (* 21 ₆ 0) 0,36 (* 41 ₉)	4(10 ^{- 3}) 	2 8 (~ [*]) 	/•
28	04241 242450 2 7 50	I, • I, • I, I, • I, I,	4(no ⁻¹)	9 B (a)	- 7 4(10 ⁻⁶)	0,45(==,)	42(x**)	92(2)	

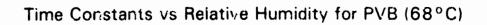
Dependence on Relative Humidity of the Current Response Coefficients κ_p and κ_W

1. .. 19

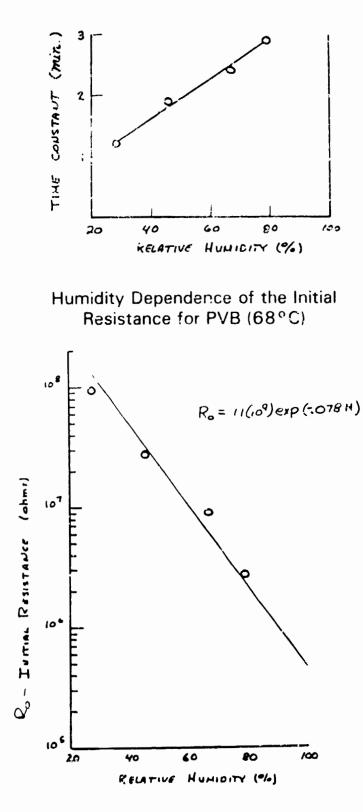
The section of the section

Ionic and Polarization Components of the Response Current vs RH (PVB at 80°C)




2

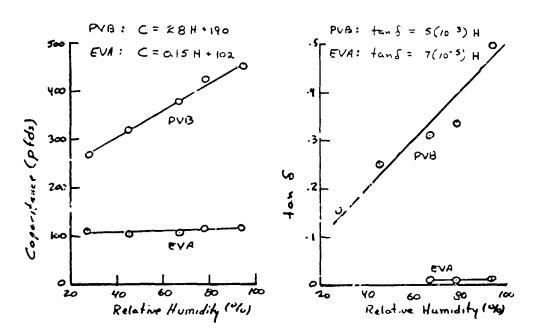
4


: !

-

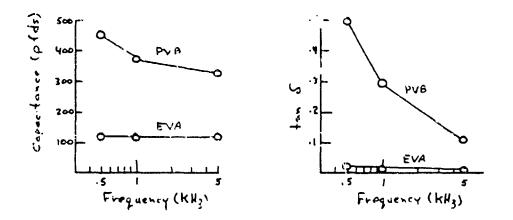
 $\gamma = .033 H + 0.3$

1


2

1

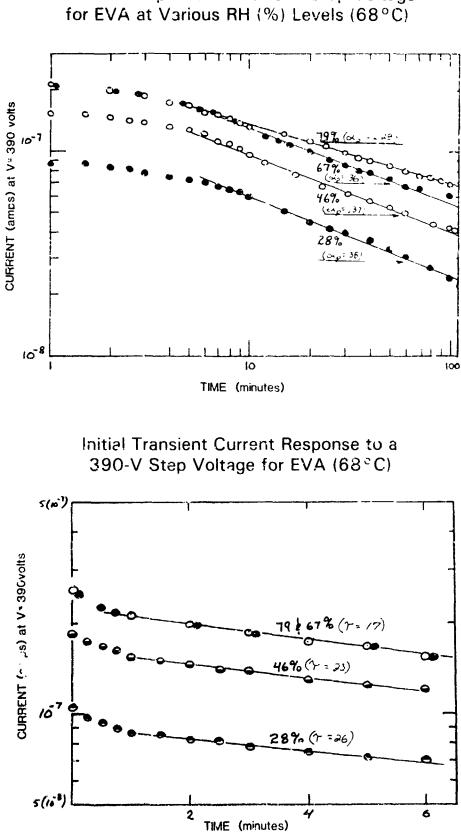
•



RELIABILITY PHYSICS

Capacitance and (tan δ) vs RH (500 Hz and 68 °C)

Capacitance and (tan δ) vs Frequency (68°C/95% RH)

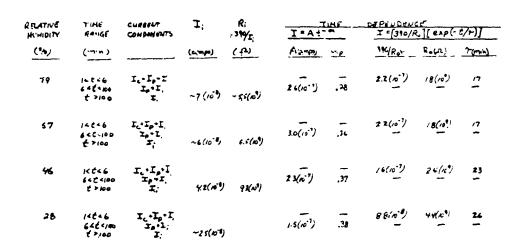

1. Z. .

The state the second states and the second s

k

語、ころ、

1. i. T. S.


Current Response to a 390-V Step Voltage

لع:

230

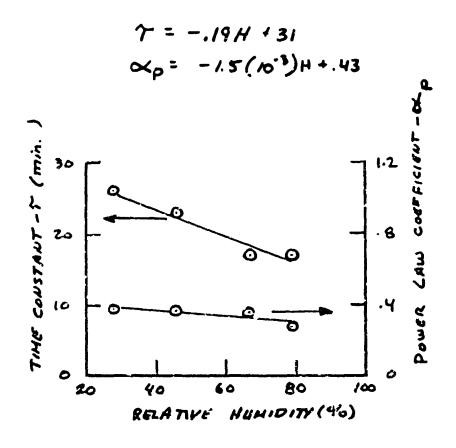
L

Current Response Parameters for EVA (68°C)

.

1

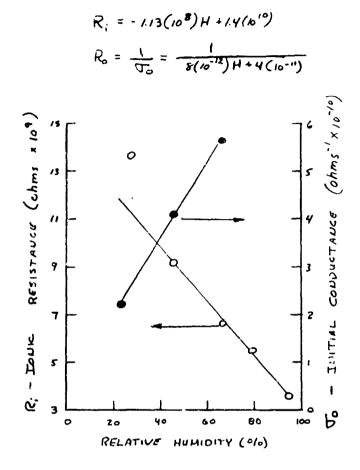
ŗ


•

, ا

ļ

ţ


Power-Law Coefficient κ and Time Constant τ vs RH for Current Response of EVA to a 390-V Step Voltage (68°C)

ORIGINAL PADENS OF POOR QUALITY

231

Ionic Resistance and Initial Conductance vs Relative Humidity for EVA (68°C)

Measure and Calculated Time Constants for Capacitive Charging of EVA and PVB (68°C)

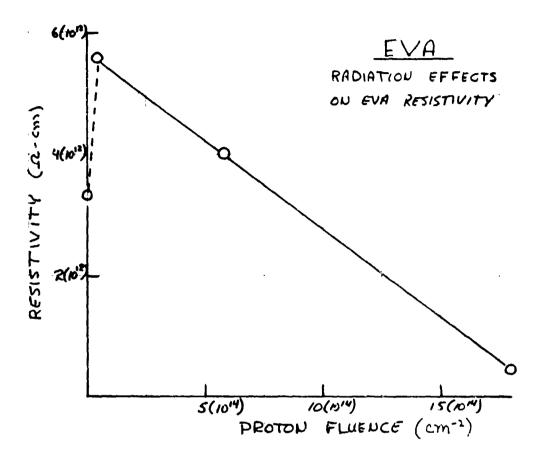
Humidity %	Т	ime Const		(min.) EVA
	measure	ed calculated n	neasure	d calculated
79	2.9	1.0(10 ⁻⁵)	17	3.5(10 ⁻³)
87	2.4	5.0(10 ⁻⁵)	17	3.5(10 ⁻³)
46	1.9	1.4(10-4)	23	4.2(10 ⁻³)
28	1.2	4.0(10 ⁻⁴)	26	7.9(10 ⁻³)

Humidity Dependencies of Selected Properties of PVB and EVA (68°C)

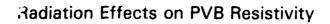
VG

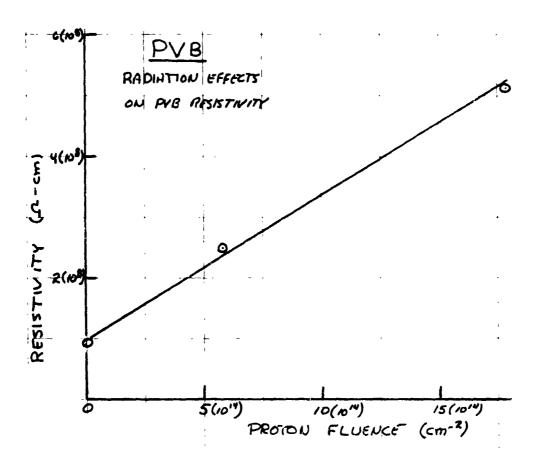
¥.

Property	Expected	Experimentally Observe	ed Dependencies
	Dependency	PVB	EVA
Ro(C.)	=[X H + [3]	= 1.1(10)exp(078H)	=[8(10")H +4(10")]
R,(2)	=[XH+B],	= 1.1(n°)exp(078N)	=-1.13(10 ⁸)H+1.4(10'*)
$lpha_w$	≠ fct(H)	?	
\sim_{ρ}	≠ fct(H)	=-6.4(10 ⁻¹)H+.64	= -1.5(10 ⁻³)H+.43
T(min)	= [SH + n]/[r++]	= .033H+0.3	=19H +31
C (pfds)	= S#+n	= 2.8#+190	= 0.15H +102
tan 6	= SH+n	= 5(10 ⁻³)H	= .7(10 ⁻⁴)H


Effects of Plasticizer on the Resistivity of PVB

PVB	RESISITIVITY (A -cm)
UNPLASTICIZED	3(10 ¹⁴)
PHTHALATE PLASTICIZED	5(10 ⁹)
PHTHALATE REMOVED	6(10 ¹⁴)


IX M. Sund.


RADIATION EFFECTS IN PVB and EVA

Radiation Effects on EVA Resistivity

٤

and the second second

And the second

ORIGINAL PAGETS' OF POOR QUALITY

Conclusions

I. WATER ABSORPTION EXPERIMENTS

- FAST WATER DESORPTION KINETICS IN PVB AND EVA
- SLOW WATER ABSORPTION KINETICS IN PVB AND EVA
- WATER ABSORBED IN PVB IS LARGE
- WATER ABSORBED IN EVA IS SMALL

II. ELECTRICAL PROPERTIES OF PVB AND EVA

- IONIC RESISTANCE : RIPVB < RIEVA 102
- CAPACITANCE : $C^{PVB} > C^{EVA}$ 10¹
- LOSS FACTOR : $tan \delta^{PVB} > tan \delta^{EVA}$ 10⁺
- HUMIDITY DEPENDENCE : PVB > EVA
- WATER DIPOLE EFFECTS IN PVB
- NO WATER DIPOLE EFFECTS IN EVA
- III. PLASTICIZER EFFECTS ON IONIC RESISTANCE OF PVB
 - RI UNPLASTICIZED > RI PLASTICIZED 105
- IV. IONIZING RADIATION EFFECTS ON RESISTANCE OF PVB AND EVA
 - PVB : RI T AS DOSE T
 - EVA : RI AS DOSE

Future Work

- TEMPERATURE DEPENDENCE OF ELECTRICAL PROPERTIES OF EVA AND PVB
- UV LIGHT EFFECTS ON THE ELECTRICAL PROPERTIES OF EVA AND PVB AS A FUNCTION OF HUMIDITY AND TEMPERATURE
- EFFECT ON COMPOUNDING AGENTS ON ELECTRICAL PROPERTIES OF PVB AND EVA
- CORROSION EFFECTS IN SOLAR CELL MATERIALS
- THEORETICAL MODELS FOR HUMIDITY DEPENDENCY OF ELECTRICAL PROPERTIES