N85-32425

DEVELOPMENT OF HIGH-EFFICIENCY SOLAR CELLS ON SILICON WEB

A Contraction Contraction

A DESCRIPTION OF A DESC

Na 194

WESTINGHOUSE ELECTRIC CORP.

A. Rohatgi D.L. Meier R.B. Campbell R.G. Seidensticker P. Rai-Choudhury

Specific Tasks

- Investigate The Heat Treatment Effects On Web Quality
- Investigate The Influence Of Twin Plane Lamellae, Trace Impurities And Stress On Minority Carrier Lifetime
- Fabricate High Efficiency Web Solar Cells

Milestone Chart

		1984	1985
		AMJJA	SONDJF
Task 1.	Investigate Lifetime In Web		<u>م</u>
Task 2.	Develop Process Techniques	6	۵۵
Tásk 3.	Reduce Surface Recombination	6	<u></u>
Task 4.	Provide Samples To JPL		<u>۵</u> ۵
Task 5.	Fabricate Web Solar Cells		۵۵
Task 6.	Support Meetings	As Required	i By JPL
Taek 7.	Documentation		• • • • • •

いり

Calculated AM1 Performance of Standard Web Cells With Base Diffusion Length as a Parameter

Cell Base: 4 Ohm-cm (3.5e15/cm³) P-Type, 150 Microns Thick

Ln	Joe	Job	Jsc	Voc		Eff	Eff'
(Microns)	(A/cm ³)	(A/cm ³)	(mA/cm ²)	(V)	FF	(%)	(%)
10	1.6e-12	32.1e-11	24.6	.471	.793	9.2	8.3
30	1.6e-12	9.5e-11	30.6	.508	. 80 2	12.5	11.2
60	1.6e-12	5.3e-11	33.2	.525	.809	14.1	12.7
150	1.6e-12	2.0e-11	36.5	.551	.815	16.4	14.8
300	1.6e-12	1.1e-11	37.6	.566	.819	17.4	15.7

Note:

at the first the

í L

ź

والمراجع والمراجع المراجع المراجع المراجع والمراجع

γ.

1

.

;;;

. بالا تر از م

- 1. Calculations Were Made Using Martin Wolf's Program SPCOLAY.BAS
- Calculated Values Do Not Account Fcr Grid Shadowing, Light Reflection. Or Resistive Losses. In Order To Estimate These Effect, The Calculated Efficiency (Eff) Was Multiplied By 90% To Give A More Realistic Efficiency (Eff').
- The Model Accounts For Variation In Doping Density In The Emitter And In The Back Region. For Both The n+p And p+p Regions The Junction Depth Was Taken To Be 0.3 Microns With A Surfac. Concentration Of 8.0E19/cm³.
- 4. The Surface Recombination Velocity Was Taken As 10,000 cm/sec On The Front (AR Coating On Bare Silicon) And 1,000,000 cm/sec On The Back (Metal On Silicon).

15% Baseline Web and Float-Zone Silicon Cell

n⁺-p-p⁺ With Single Layer AR And NO Oxide Passivation

Cell ID	Jsc	V _{oc}	FF	η	T _{OCD}
4412-49W Cell 63A, 4 Ω-cm	31.8	0.588	0.80	15.0%	4 0 µs
FZ, 4 Ω-cm	33 4	0.584	0.78	15_2%	45 µs

 $\tau_{\Omega CD}$ Of 40 μ secs \simeq 360 μ m Diffusion Length In 4 Ω -cm Base

354

يعتقر به التراقية

Scatter Plot for As-Grown Web

Â

The Provide State State of the State of the

Development Furnaces J, N, R, and Z are Plotted as 10,11,12, and 13

ч**.** С

Effect of Quench Temperature and Cooling Rate on Generation Lifetime

Table 4 — Effect Of Quench Temperature Of Lifetime And Defects In FZ Silicon³

Quench Temperature, °C	Lifetime, µs
500	2012
600	2000
700	850
800	73
900	40

^aOxidation Was Performed At 1100°C With 1% HCl By Using Back-Surface Damaged Wafers And A Cooling Rate Of 1°C/Min.

~ توتي ما تر 🚽

Process	Lifetime (us)
1% HCI Oxidation At 1100°C Slow Cocled	2115
1 Hr Anneal in N ₂ At 1100°C Quenched	50
1 Hr Anneal in N ₂ At 1100°C Slow Cooled	1400
1% HCl Oxidation At 1100°C Quenched	60
1 Hr Anneal In N ₂ At 1100°C Slow Cooled	1650
1 Hr Anneal In N ₂ At 1100°C Quenched	40

Effect of Process Sequence on Lifetime in FZ Silicon

Back Surface Of The Samples Was Damaged

- Manual

1

1

•

×- .

3/

í,

Effect of Dry Oxidation Temperature on SPV Diffusion Length for a Dendritic-Web Silicon Crystal

Diffusion-Length Map of Web Crystals as a Function of Cell Processing

A the second second

r marting a start that we want and

.

. .		As	After	After	After
Sample		Grown	R21	POCI3	Passivation
<u> </u>	Crystal ID	<u>L (μm)</u>	<u>L (µm)</u>	<u>L (μm)</u>	L (μm)
#2	4.229 - 4.2 (0.5 Ω-cm)	27	51	41	30
#3	4.227 - 2.4 (1.0 Ω-cm)	27	51	22	26
#5	4.225 - 3.2 (1.5 Ω-cm)	23	-	9	40
#25	1.288 - 5.5 (4 i)-cm)	24	-	52	76
#26	1.288 - 5.6 (4 Ω-cm)	28	-	124	60
#90	1.288 - 7.4 (4 Ω-cm)	26	-	110	88
#26	2.244 - 6.4 (4 Ω-cm)	25	40	71	63
#28	2.244 - 7.3 (4 Ω-cm)	22	74	76	80
#76	3.155 ~ 11.7 (4 Ω-cm)	19	151	124	73
#77	3.155 - 15.5 (4 Ω-c)	23	50	78	-
#79	3.155 - 15.3 (4 Ω-cm)	16		91	103
FZ	Wacker 0.25 Ω -cm	216	220	220	225

Note: On 4 Ω -cm Web Crystals AESD Made Baseline Cells (n⁺-p-p⁺ With 14.5 - 15% Efficiencies

じ

Effect of Residual Stress on Diffusion Length in Web Silicon Before and After 960°C Boron Diffusion

Crystal	Residual Stress Mdyne/cm ²	Diffusion Length As-Grown Microns	Diffusion Length After BBrg Microns
Z025-3.4	14	19	16
Z-025-3.10	40	16	23
Z-025-3.15	42	16	12
2-028-12.4	< 5	25	27
2-028-12.10	< 5	40	-
2-025-12.16	< 5	33	116
R-461-5.3	< 5	17	39
R-461-5.8	< 5	9	-
R-461-5.13	< 5	10	83

ł

Note:

π+

ŝ,

j, e

Leaper Strange St.

- 1. Crystal Z-025 Was Grown With J435 Configuration And Crystals Z-028 And R-461 Were Grown With J460L Configuration;
- 2. Web Was 4 Ohm-cm, P-type

Observations:

- 1. Diffusion Length For Web Crystal With High stress (Z-025) Did Not Improve After Boron Diffusion;
- 2. In Three Of Four Samples With Low Stress, The Diffusion Length Improved Appreciably After Boron Diffusion

٤.,

٦

5

¥

ar 🚬 🕷 🖅

-1

A State State State -

ABIL RIVE F

Calculated AM1 Performance of Standard and Low-Resistivity Web Cells With Base Diffusion Length as a Parameter

A. 4 Ohm-cm (3.5e15/cm³) P-Type, 150 Microns Thick

Ln	J _{oe}	Jop	Jsc	Voc		Eff	Eff'
(Microns)	(A/cm ³)	(A/cm ³)	(mA/cm^2)	(V)	FF	(%)	(%)
10	1.6e-12	32.1e-11	24.6	.471	.793	9.2	8.3
30	1.6e-12	9.5e-11	30.6	.508	.802	12.5	11.2
60	1.6e-12	5.3e-11	33.2	.525	.809	14.1	12.7
150	1.6e-12	2.0e-11	36.5	.551	.815	16.4	14.8
300	i.6e-12	1.1e-11	37.6	.566	.8'9	17.4	15.7

B. 0.2 Ohm-cm (1.0e17/cm³) P₋Type, 150 Microns Thick

Ln (Microns)	J _{oe} (A/cm ³)	J _{ob} (A/cm ³)	J _{sc} (mA/cm ²)	V _{oc} (V)	FF	Eff (%)	Eff′ (%)
10	1.6e-12	7.5e-12	24.2	.563	.817	11.1	10.0
30	1.6e-12	2.5e-12	30.0	.589	.824	14.6	13.1
60	1.3e-12	1.2e-12	33.0	.601	.826	16.4	14.8
150	1.6e-12	0.6e-12	35.1	.609	.831	17.8	16.0
300	1.6e-12	0.5e-12	35.7	.611	.832	18.1	16.3

Note:

1. Calculations Were Made Using Martin Wolf's Program SPCOLAY, BAS

 Calculated Values (10 Not Account For Grid Shadowing, Light Reflection, Or Resistive Losses. Im Order To Estimate These Effect, The Calculated Efficiency (Eff) Was Multiplied By 90% To Give A More Realistic Efficiency (Eff').

 The Model Accounts For Variation In Doping Density In The Emitter And In The Back Region. For Both The n+p And p+p Regions The Junction Depth Was Taken To Be 0.3 Microns With A Surface Concentration Of 8.0e19/cm³.

4. $S_{front} = 10^4$ cm/sec (AR On Bare Si); $S_{back} = 10^6$ cm/sec (Metal on Si)

ł

1

3

Variation of the state of the state

Provide States - Mary

HIGH-EFFICIENCY SILICON SOLAR CELL RESEARCH

Effect of Oxide Passivation on 4 ohm-cm FZ Silicon

Fabricated On 4 Ohm-cm Float Zone Silicon						
Cell ID	Short Circuit Cuirent J _{SC} mA/cm ²	Open Circuit Voltage V _{OC} Volts	Fill Factor	Cell Efficiency %		
1 4 6	33.3 32.9 33 4	0.582 0.581 0.583	0.757 0.772 0.780	14.8 14.7 15.2		

Table 1 - Baseline Unnassivater' Solar Cells (n⁺-n-n⁺)

Table 2 - Oxide-Passivated Solar Cells On Boron-Doped 4 Ohm cm Float-Zone Silicon

Cell ID	J _{sc} (mA/cm ²)	V _{oc} (Volts)	FF	η (%)
HIEFY 4-4	36.1	0.599	u.794	17.1
-5	36.2	0.00.0	0.793	17.2
-7	36.2	0.599	0.791	17.2

• Improvements: $\Delta J_{SC} \sim 3 \text{ mA/cm}^2$, $\Delta V_{OC} \sim 20 \text{ mV}$, $\Delta \eta \sim 2\%$ $\Delta J_0 \sim$ Factor Of Two

Solar-Cell Data on 4 chm-cm Web With and Without Oxide Passivation

Cell ID	Short-Circuit Current J _{sc} (mA/cm ²)	Open-Circuit Voltage V _{oc} Volts	Fill Tactor	Cell Efficiency (%)
	W	lithout Passivation	_	
W6	32.7	0.575	0.782	14.7
W7	33.1	0.577	0.784	15.0
	Wi	th Oxide Passivatio	n	
W1	34.6	0.584	0.784	15.9
W2	34.5	0.586	0.794	15.8

