N85-32427

AMORPHOUS METALLIC FILMS IN SILICON METALLIZATION SYSTEMS

÷4

<mark>به</mark>

ŕ

3

\$

ł

1. A .

またいまた

CALIFORNIA INSTITUTE OF TECHNOLOGY

Marc-A. Nicolet Hannu Kattelus Frank Sა

The general objective of this project is to determine the potential of amorphous metallic thin films as a means of improving the stability of metallic contacts to a silicon substrate. The specific objective pursued in the reporting period was to determine the role of nitrogen in the formation and the resulting properties of amorphous thin-film diffusion barriers.

Amorphous metallic films are attractive as diffusion barriers because of the low atomic diffusivity in these materials. Our previous investigations have revealed that in meeting this condition alone, good diffusion barriers are not necessarily obtained, because amorphous films can react with an adjacent medium (e.g., Si, A1) before they recrystallize. In the case of a silicon single-crystalline substrate, correlation exists between the temperature at which an amorphous metallic binary thin film reacts and the temperatures at which the films made of the same two metallic elements react individually. We thus investigated amorphous binary films made of Zr and W, both of which react with Si individually only at elevated temperatures. We confirmed that such films react with Si only above 700°C when annealed in vacuum for 30 min.

When these films are in contact with metallic polycrystalline films (Ag, Al, Au, Ni); however, they react at significantly lower temperatures. The question arises how the reactivity of an amorphous metallic thin-film diffusion barrier can simultaneously be reduced on both sides of the film (substrate and metallization). Conceptual solutions do exist if the reactivity of two amorphous binary metallic thin films is low.

Amorphous W-N films were also investigated. They are more stable as barriers between Al and Si than polycrystalline W. Nitrogen effectively prevents the W-Al reaction that sets in at 500°C with polycrystalline W. In this respect, amorphous W-N films even outperform TiN diffusion barriers.

The study of W-N will continue, and that of Zr-N is planned, to determine deposition conditions that yield amorphous layers and how the properties vary with deposition conditions, using backscattering spectrometry, X-ray diffractic., and sheet resistivity measurements and transmission electron nicroscopy (TEM) for analysis.

PRECEDING PAGE BLANK NOT FILMED

PROCESS DEVELOPMENT

Previous Findings

AMORPHOUS FILMS (MO-NI, NI W):

- REACT WITH SI SUBSTRATE AND AL
 OVERLAYER BELOW CRYSTALLIZATION
 TEMPERATURE T_C (600, 650°C).
- NI DIFFUSES INTO SI SUBSTRATE.
 W DIFFUSES INTO AL OVERLAYER.
- NI-SI REACTION INTERFACIALLY CONTROLLED AND LATERALLY CONFINED.
- ADDING N (NI-N-W) LOWERS T_C TO
 2 600°C, SUPPRESSES NI-SI REACTION BELOW 725°C AND AL-W REACTION UP TO 550°C.

Approaches

WAYS TO CIRCUMVENT REACTION:

- AVOID NI (AND CO, PD, PT), E.G. ZR-W.
- TERNARY AMORPHOUS FILMS, E.G. NI-N-W.
- USE BUFFER LAYER,

E.G.	(A)	NI-W	
		NISI	
		<\$1>	

- MULTILAYERED AMORPHOUS FILMS.

Results on Amorphous W₆₀Zr₄₀ Films

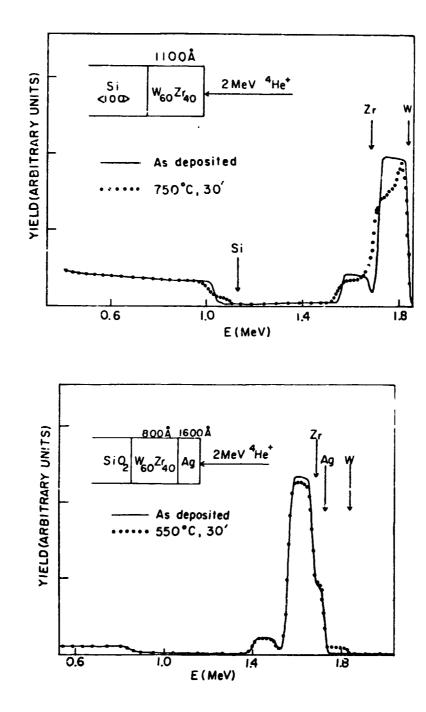
EXPERIMENTAL PROCEDURES:

- ON $<100^{\circ}$ N-TYPE SI AND SIO₂ SUBSTRATES.
- R.F. Sputtering, 10 mTorr Ar, 300 W, 5^{+1} , 60 Å/min; (2 x 10⁻⁶ Torr vacuum).
- EVAPORATED METAL FILMS (AL, AJ, AG, NI) $(3 \times 10^{-7} \text{ Torr})$.
- ANNEALING IN VACUUM $\leq 5 \times 10^{-7}$ Torr, 30 min.
- RBS AND X-RAY DIFFRACTION.

Crystallization on SiO₂

INTERACTION WITH <SI> SUBSTRATE.

- STABLE BELOW 700°C.
- UNIFORM REACTION AT 750°C
 - (+WSI2, ZRSI OR ZR2SI) SEE FIG. 1
- SAME AS W, ZR FILMS ON ${\rm <Si}$,
- SI IS DIFFUSING SPECIES, NOT W, ZR (NO INTERFACIAL PENETRATION OF <SI>)
 - REACTION AT T < TC.


CONCLUSION

AVOIDING NI (CO, PD, PT) IS BENEFICIAL.

1 1

PROCESS DEVELOPMENT

- Cherry Martin

(+

ہ

C

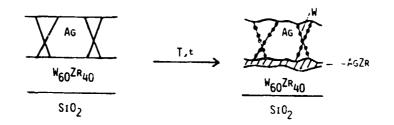
382

T

* *

METAL	Au	Ag	AL	NI
FILM THICKNESS (Å)	× 500	~ 1600	1200	1300
REACTION TEMPERATURE (°C)	∿ 400	∿ 55 0	~ 550	- 550
COMPOUND PHASES AT 550°C	AuW AuZr ₂ AuZr ₃	AgZr	AL ₃ ZR AL ₁₂ W	NiZr

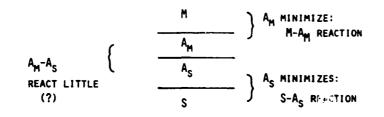
Interaction With Au, Ag, Al and Ni Overlayers: Reactions Below T_c


services in the services of the services

- REACTION LATERALLY UNIFORM FOR NI ONLY.

- PENETRATION OF W INTO AG GRAIN BOUNDARIES SEE FIG. 2.

PROCESS DEVELOPMENT


Schematic of $W_{60}Zr_{40}$ -Ag Reaction

F1G. 3

CONCLUSIONS

AMORPHOUS W-ZR FILMS NOT OPTIMIZED FOR STABILITY WITH METAL OVERLAYER. - CONCEPTUAL REMEDY: AMORPHOUS BILAYER

Results on Amorphous W-N Films

- NI-N-W SUPERIOR TO NI-W WITH AL.
- INVESTIGATE W-N VERSUS W

E BLANK MARKER IN

11

- W-N VERSUS ZRN
- W-ZR-N.

EXPERIMENTAL PROCEDURES:

- ON <100> N-TYPE SI AND SIO2 SUBSTRATES.
- R.F. SPUTTERING, 10 MTORR (AR + N₂), N₂ concentration: 0, 5, 10, 20, 40, 80%, 400 W, $3^{*}\phi$; (1 · 10⁻⁶ torr vacuum).
- R.F. SPUTTERED AL FILMS IN THE SAME VACUUM.
- ANNEALING IN VACUUM $\leq 7 \cdot 10^{-7}$ Torr, 30 min.
- RBS AND X-RAY DIFFRACTION.

Crystallization

zn ₂	CRYSTALLINE Character	CRYSTALLIZATION TEMPERATURE	
0	POLY	-	
5	POLY	-	
10	AMORPHOUS	≳ 500°C	
20	AMORPHOUS	≳ 550°C	
40	POLY	•	
80	POLY	-	

BARRIER BETWEEN SI AND AL FILM.

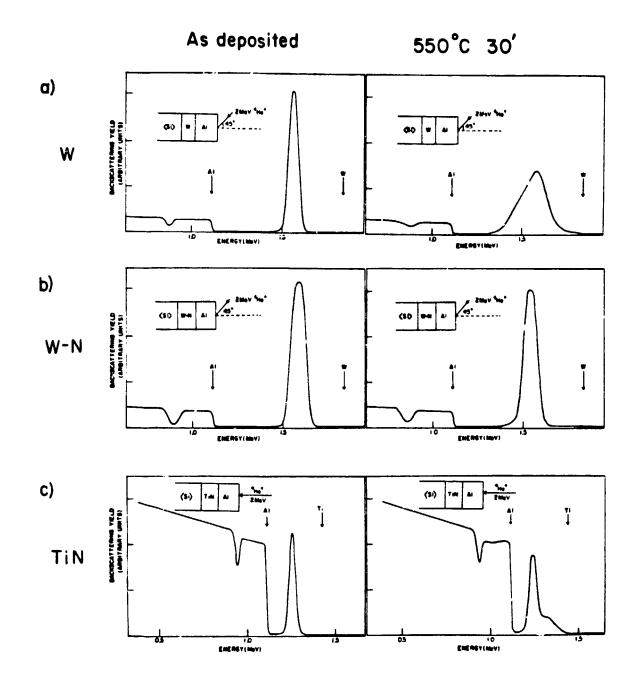
- AMORPHOUS W-N (20% N₂) MORE STABLE THAN W, SEE FIG. 3(A) AND (B).
- AT 550°C, 30 MIN SLIGHT W DIFFUSION INTO SI UNCHANGED W-N/AL INTERFACE.

PROCESS DEVELOPMENT

-1

1

1


- ,

4

the subsect of the first the first first first

> Switch and construction

.

(+

÷

÷.

. - .

Comparison With TiN

- TIN and ZRN stable between Si and AL below \sim 550°C.
- TIN AND ZR-N FAILURE MAY BE:
 - 1) REACTION TO FORM COMPOUNDS
 - LIKE TIAL3 (FIG. 3(C)) OR ZRAL3.
 - 2) LOCAL STRESS-INDUCED CRACKING.

CONCLUSION

JAR

ş

ŕ

- W-N MUCH BETTER THAN ZR-W AGAINST AL.
- W-N AT LEAST AS GOOD AS NI-N-W AGAINST AL.

Outlook

QUESTIONS:

WHY DOES N IN NI-N-W INHIBIT LOCAL NI-SI REACTION?

WHY DOES N IN W-N INHIBIT W-AL REACTION?

STUDY W-N AND W-N/AL Zr-N Zr-W/W-N BILAYER