N85-32429

Ŀ

ε¥.,

LASER-ASSISTED SOLAR-CELL METALLIZATION PROCESSING

WESTINGHOUSE ELECTRIC CORP.

Subhadra Dutta

Milestone Chart

Tasks/Milestones		19	83		1984								
		0	N	D	J	F	M	٨	M	J	1	٨	S
1. Conduct Literature Search On Gurrent State- Of-The Art Laser Metallization Schemes	-		-•										
2. Assemble And Test Each Of The Following Systems:													
2.1 Photolytic metal deposition using a focused CW UV laser													
2.2 Photolytic metal deposition using a mask and UV flood illumination					┢╼┈	┢─							
2.3 Pyrolytic metal deposition using a focused CW laser				-	<u> </u>							Í	
3. Fabricate Fifty Solar Cells				-					┢╍	<u> </u>	-		
4. Characterize The Cells And Determine The Effects Of Transient Heat On Solar Cell Junctions And On Bulk Lifetime					-								
5. Compare Economics Of Laser Assisted Processing With Competing Technologies Preliminary Report Final Report													4
6. Support Meetings			As	pirec	ed i	ly Ji	4						
7. Provide Documentation		-							-				┢

PRECEDING PAGE BLANK NOT FILMED

1

and a back and a start of the s

PROCESS DEVELOPMENT

Laser-Assisted Metallization Techniques Are Essentially One-Step Processes:

> Laser-Surface Interaction Resulting In Localized Film Growth

Potential Advantages of Laser Deposition Techniques for Photovoitaic Systems

- High Resolution
- No Photolithography
- Clean And Contamination Free

*i_

- In-Situ Sintering
- Low Contact Resistance

Laser-Assisted Deposition Techniques

Pyrolytic Deposition (Thermal)

and the sea

Field Internet

- Laser Chemical Vapor Deposition (LCVD)
- Laser Deposition From Solutions

Photolytic Deposition (Non-Thermal)

- Laser Photodissociation Of Vapors
- Laser Photodissociation Of Solutions

Laser Assisted Electroplating

ł,

Late a state and

Photolytic Deposition

Laser-Induced Photodecomposition of Gas-Phase Organometallic Compounds:

This Technique is Fundamentally Different from Thermally Based Laser Processes

.3**.;

と

j.

S. Dutta I.t.-m.z. 3-9-84

in the state of the

R;

>.` ;..

.

. . .

÷.

, , 2,

ŗ

*:

-

BANG THE ENGLISH STATES

-

Dwg. 9358A48

۴.

. ...

لأشتقف

and the second second

۰.,

4

5

÷

計算

الكب

Laser Power Dependence of Electroplated Spot Size

.

Nomarski Micrograph (200X) of Copper Line Deposited by Laser-Assisted Electroplating Results

Linewidth = 25 µm Laser Power = 4 W Laser Dwell Time = 50 µsec Line Thickness = 6000 Å Plating Current = 2 mA

ORIGINAL PAGE IS OF POOR QUALITY

Alter States

C. M. S. Market & Market Provide Street

Summary of Laser-Assisted Electroplating Results

- Novel Technique For Greatly Enhancing Local Plating Rates – Yield Fine-Line, Directly-Written Patterns With Excellent Adhesion
- Multiple Rapid Laser Scans Yield Finer, More Even Line And Higher Local Plating Rate Than Single Slow Scan (Same Total Exposure Time)
- Plated Linewidth Depends On Laser Power, Plating Current, And Electrolyte Level

Laser Pyrolysis of Spun-on Metallo-Organic Film

Sample Base Temperature 75°C Focussed Laser Spot Decomposes Spun-On Film Silver Metallization Patterns are Formed by Direct-Writing

•

; ; ;

1. The sec.

Room Temperature 0 ▲ 50°C Δ } Did Not Adhere 30 ¥ 75°C ∇ Linewidth (µm.) 23 10 12 0 6 8 10 14 Laser Power (watts)

Line Width vs Laser Power and Substrate Temperature

7,000

A state of

ORIGINAL PAGE IS

Nomarski Micrographs (200X) of Silver Lines Decomposed at (a) 4 W, (b) 8 W, (c) 14 W Before & After Tape Test

414

and a standard of the

ORIGINAL PAGE TS

Laser-Written Solar-Cell Metallization Patterns Using Spun-on Silver Neodecanoate

8,425.76

Laser Metallization Process

- 1. Make Solution Of Silver Neodecanoate (Obtained From G.M. And R.W. Vest) In Xylene
- 2. Spin Onto Diffused, Coated Silicon Wafers At 1000 rpm
- 3. Decompose Film Locally With Argon-ion Laser To Form Comb Metallization Patterns
 - Laser Power = 8W
 - Spot Size = $50 \,\mu \text{m}$
 - Scan Speed = 20 cm/s
 - Scan Overlap (Contact Pads) = 60%
 - Deposited Silver Thickness = 400 Å
- 4. Electroplate Selectvely Onto Patterns
 - Plated Silver Thickness = 8 μ m
- 5. Define Mesas To Isolate Cells And Characterize Cells

ŕ.

.....

Cell I.D.	Short-Circuit Current J _{SC} (mA)	Open-Circuit Voltage V _{OC} (V)	Fill Factor	Efficiency (%)
Laser 1-2	23.1	0.557	0.761	9.8
Laser 1-3	22.8	0.558	0.755	9.6
Laser 1-6	23.7	0.557	0,776	10.3
Laser 1-7	23.7	0.556	0.770	10.1
Laser 1-8	23.7	0.559	0.764	10.1
Laser 1-9	24.2	0.560	0.764	10.3
Laser 1-10	24.2	0.558	0.772	10.4
Laser 1-11	23.8	0.553	0.774	10.2
Laser 1-12	24.2	0.558	0.773	10.4
Laser 1-14	24.6	0.558	0.769	10.5
Laser 1-15	24.5	0.562	0.755	10.4
Laser 5-7	24.3	0.562	0.734	10.0
Laser 5-10	24.7	0.562	0.650	9.0
Laser 5-11	24.7	0.566	0.751	10.5
Laser 5-14	24.6	0.567	0.762	.0.6
Laser 5-15	25.1	0 570	0 776	11.1

Lighted I-V Data for Unsintered Laser-Metallized Cells

الملكة محترض الم

а, а 1

. .

. .

Cell I.D.	Short-Circuit Current J _{SC} (mA)	Open-Circuit Voltage V _{OC} (V)	Fill Factor	Efficiency (%)
RSC 1-2	23.4	0.573	0.772	10.4
RSC 1-3	23.2	0.562	0.681	8.9
RSC 1-5	23.4	0.571	9.7 6 2	11.0
RSC 1-6	25.0	0.569	0.746	10.6
RSC 1-7	25.0	0.567	0.718	10.2
RSC 1-8	24.6	0.571	0.734	10.3
RSC 1-9	23.5	0.568	0.751	10.0
RSC 1-10	25.4	0.569	0.768	11.1
RSC 1-11	25.6	0.568	0.734	10.7
RSC 1-12	25.9	0.567	0.710	10.5
RSC 1-14	26.1	0.571	0.716	10.6
RSC 1-15	25.9	0.567	0.608	8.9
RSC 2-2	25.8	0.569	0.764	11.2
RSC 2-3	26.1	0.567	0.746	11.1
RSC 2-5	26.3	0.569	0.719	10.8
RSC 2-6	25.9	0.566	0.759	11.1
RSC 2-7	25.8	0.566	0.753	11.0
RSC 2-8	25.6	0 567	0.735	10.7
RSC 2-9	25.6	0.566	0 722	10.5
RSC 2-10	25.9	0.566	0 749	110
RSC 2-14	26 1	0 567	0 702	10.4
RSC 2-15	26.0	0.567	0.636	9.4

Comparison of Laser-Metallized and Baseline Cells Lighted I-V Data

14

Cell I.D.	Short-Circuit Current J _{SC} (mA/cm ²)	Open-Circuit Voltage V _{OC} (V)	Fill Factor	Non-AR-Coated Cell Efficiency (%)
Laser 1-14	24.6	0.558	0.769	10.5
Baseline 2-9	25.6	0.566	0.722	10.5
Laser 5-11	24.7	0.566	0.751	10.5
Baseline 1–12	25.9	0.567	0.710	10.5
Laser 5–14	24.6	0.567	0.762	10.6
Baseline 1–6	25.0	0.569	0.745	10.6
Laser 5-15	25.1	0.570	0.776	11.1
Baseline 2-3	26.1	0.567	0.746	11.1

418

and the state

257 - 22 - 22 - 22

	Cell I. D	Normalized Series Resistance (O-cm ²)	Normalized Shunt Resistance (KO cm ²)	J ₀₁ (A/cm ²)	^J 02 (A/cm ²)	Efficiency (%)
_		((<u>(/// 0/)</u>		
RSC 1-3	Before Sintering	1.3	0.8	5.1 × 10 ⁻¹²	2.4 = 10-5	8.3
	After Sintering	C.9	6.9	4.3 × 10 ⁻¹²	3.8 × 10 ⁻⁶	10.1
RSC 1-9	Before Sintering	1.0	4.9	4.2 × 10 ⁻¹²	8.8 × 10 ⁻⁵	10.0
	After Sintering	0.8	113.7	4.4 × 10 ⁻¹²	1.3 × 10-6	10.9
RSC 1-10	Before Sintering	1.0	>103	4.5 × 10-12	1.7 × 10 ⁻⁷	11.1
	After Sintering	0.8	769.9	4.9 × 16 ⁻¹²	1.1 × 10 ⁻⁶	10.9
RSC 1-15	Before Sintering	2.2	2.4	4.0 = 10-12	4.7 × 10 ⁻⁶	8.9
	After Sistering	0.8	5.8	4.3 × 10 ⁻¹²	3.5 × 10-6	8.9
RSC 2-2	Before Sintering	1.0	>103	4.2 × 10 ⁻¹²	8.7 × 10-9	11.2
	After Sintering	0.7	>103	4.2 × 10 ⁻¹²	3.1 × 10 ⁻⁸	11.3
RSC 2-3	Before Sintering	. 1.1	0.4	5.0 × 10 ⁻¹²	3.9 × 10 ⁻⁵	11.1
	After Sistering	0.8	1.3	4.3 × 10 ⁻¹²	1.1 × 10 ⁻⁵	11.1
RSC 2-12	Before Sisteriag	1.5	>103	4.3 = 10-12	1.8 × 10 ⁻⁸	7.4
	After Sistering	1.0	77.6	3.4 = 10 ⁻¹²	2.4 = 10-5	7.0
RSC 2-15	Before Sisterias	1.8	>103	4.1 × 10 ⁻¹²	9.1 × 10 ⁻⁹	9.4
	After Sintering	1.3	>103	3.3 × 10-12	4.9 = 10-8	9.3

419

540 S. Stores

A WY: Khats

1.14

ķ

Conclusions

- High Quality Solar Cells Obtained By Laser Metallization Technique
 - Non-AR-Coated Cell Efficiency = 11.1%
- In-Situ Sincering Occurs During Laser Writing Process
 - Selies Easistance Of Laser-Metallized Cells Lower
- **•** Finer Lines Should Yield Higher Efficiencies
 - Laser-Written Linewidths = 50 μ m
 - Baseline Linewidths = $25 \, \mu m$
 - Comparable Efficiencies Despite Greater Cell Shadowing In Laser-Metallized Cells