1

# $\frac{N85-32432}{PULSED EXCIMER LASER PROCESSING}$ FOR COST-EFFECTIVE SOLAR CELLS

ARCO SOLAR, INC.

#### D. Wong

CONTRACT\_TITLE: ADAPT PULSED EXCIMER LASER PROCESSING FOR COST EFFECTIVE SOLAR CELLS

CONTRACT\_NO: 956831

GOAL: TO DEMONSTRATE THE COST EFFECTIVE FEASIBILITY OF FABRICATING 16% EFFICIENT SOLAR CELLS ON 125 MM DIAMETER CZ WAFER USING PULSED EXCIMER LASER FOR JUNCTION FORMATION, SURFACE PASSIVATION, AND FRONT METALLIZATION.

#### Texturing

0.4 J/cm<sup>2</sup> (70% OVERLAP) SUFFICIENT TO MELT THE SURFACE.

Cells were shunted. 650°C, 30 min. Furnace annealing most often improved the  $V_{\text{OC}}$  .

< )> -6.5% BEFORE 650 C

< )> -11% AFTER 650 °C

EXCESSIVE SURFACE MELTING IS BELIEVED TO LIMIT CELL EFFICIENCY.

PRUCEDING PAGE BLANK NOT FILMED

.

 $\sim$ 

Carter Brach Same Same Same

. .

·+ ،

• •

î

,ī

.

- -

THE LEVEL OF

1. 1.

i i Zit

•---

.

.

-

ł

• • •







1.1

1

. \*\*\*\*

RUN 5 8, ENERGY -0.81/CM21 OVERLAP 30% Annealed Thermally 0 630 C 30 Min. No Sintered

438

<del>.</del>

.

#### ORIGINAL PAGE IS OF POOR QUALITY

# Threshold Energy Density for Textured Surface to Start Melting



100

10.66

A JKX N

#### ORIGINAL PAGE'IS OF POOR QUALITY

Surface Melting on Textured Surface Due to Laser Annealing at Different Laser Energy



Ø.4 J/cm<sup>2</sup>

Ø.7 J/cm<sup>2</sup>



Ø.9-1.2 J/cm2

2 J/cm2

29.94

and a

Letter and the second

,

7

;

Nufe\*

100

- ----

## Comparison of Baseline Process With Proposed Excimer Laser Process

#### BASELINE\_PROCESS



441

. .





# Polished Wafer (p-Type Cz) Ion Implant 31p+

| (J/c#²)     | 1 BEAM SIZE  <br>  (MM X MM)  <br> | OVERLAP<br>(%) | I PULSE<br>I (NS)<br>I | I IMPLANT<br>I (KEV)<br>I | DOSAGE<br> (1x1Ø15)<br> | I RHO I<br>I (OHM/SQ) I<br>I APPROX I | ћ<br>Х |
|-------------|------------------------------------|----------------|------------------------|---------------------------|-------------------------|---------------------------------------|--------|
| 0.7         | 1 1.1 x Ø.8                        | 40             | 1 6                    | 110                       | 1 5                     | 31                                    | 7.3    |
| <b>Ø</b> .7 | 1.1 × Ø.8                          | 40             | 6                      | 1 10                      | l 1                     | 1 92 1                                | 4.2    |
| 1.3         | 10.95 x 0.95                       | 70             | 25                     | 5                         | 2.5                     | 50                                    | 7,1    |
| 1.3         | 10.75 × 0.6                        | 20             | 1 25                   | <br>  5                   | <br>  1                 | 1 70 1                                | 8.9    |
| 1.3         | 9.0 x 7.5                          | 20             | 1 80                   | 1 5                       | 1 2.5                   | 1 50 1                                | 8.4    |
| 1.45        | 1 9.6 x 8.3                        | 12             | 1 98                   | 1 5                       | 1 1                     | 98 - 198                              | 9.3    |
| 1.55        | 1 8.9 x 7.5                        | 12             | 90                     | 1 5                       | <br>  1                 | 1 98 - 188                            | 9.3    |
| 2.9         | 1 7.5 x 6.5                        | 12             | 1 <u></u><br>1 910     | I 5                       | 1 1                     | 98 - 198                              | 9.4    |
|             | .I                                 |                | 1                      | I                         |                         |                                       |        |

442

Sal String

Rout in

## ORIGINAL PAGE IS OF POOR QUALITY

and the state that the state was

## Laser Energy Density

LASER ENERGY DENSITY FROM 1.45 J/cm<sup>2</sup> to 2 J/cm<sup>2</sup> yielded similar results in cell efficiency from the same implant. However, surface damage started to be observed at 2 J/cm<sup>2</sup>.

# Overlap, %

NECESSARY FOR COMPENSATING BEAM NONUNIFORMITY. HOWEVER, FOR HIGHLY NONUNIFORM BEAM, OVERLAP WOULD PRODUCE SEVERE SURFACE DAMAGES.

MORE UNIFORM LASER WITH LARGER BEAM SIZE REDUCES OVERLAP REQUIREMENT -----> HIGHER CELL EFFICIENCY.

## Kaleidoscope Beam Profile (MSNW Inc.)



1

شنهمه نكادتم شمق

174

4

## PROCESS DEVELOPMENT



.: ..

15

# Profile of Excimer Output Beam (MSNW Inc.)

### Ion Implant

5 KeV  $^{31}P^+$  channeled to about 0.16 - 0.22,4Lm which requires laser energy at least 1.6 J/cm<sup>2</sup> - 1.8 J/cm<sup>2</sup> to remove lattice damages completely.

#### **Indirect Proof**

CZ WAFER WITH THERMAL N+ DEPOSITION (830°C 10 MIN) FOLLOWED BY LASER ASSISTED DIFFUSION AT 1.25 J/cm<sup>2</sup> (12% 0.L.) YIELDED ALMOST IDENTICAL IN ELECTRICAL PERFORMANCE AS THE THERMALLY DIFFUSED CELL ( $\geq$ 10%).

19

Real States

. \*

#### **Depth Profile**

4

.

, I

.

۲.

.

;

•

,

ŧ

.

44

. .

at the market that the sheat with



SIRS Depth Profile for 31P+ Ion Implanted at 5 keV, 2.5 x 1015 Atom per cm<sup>2</sup>. Substrate Resistivity -0.3 ohme-cm Boron Doped.

445

\*

Υ.

The second s

2

ì

3

(H. Z. 14.

5

. u

1.2.2

## Summary on Junction Formation

#### IDEAL JUNCTION REQUIRES

- (1) SHALLOW ION IMPLANT TO MINIMIZE LASER ENERGY DENSITY FOR COMPLETE LATTICE DAMAGE REMOVAL.
- (11) UNIFORM LASER BEAM THAT REQUIRES LESS THAN 5% OVERLAP.

#### Plans for Next Quarter

- (1) IMPROVE LASER UNIFORMITY
- (11) INVESTIGATE THE CAPABILITY OF 1 KEV ION IMPLANTATION BY GLOW DISCHARGE TECHNIQUE.
- (111) COMPLETE GAS CELL SYSTEM AND INITIATE EXPERIMENT ON LASER ASSISTED SURFACE PASSIVATION AND GPIDLINE WRITING,

÷.

, **1** 

۰. ۲

et all

1 1 1 1 H

ALX &