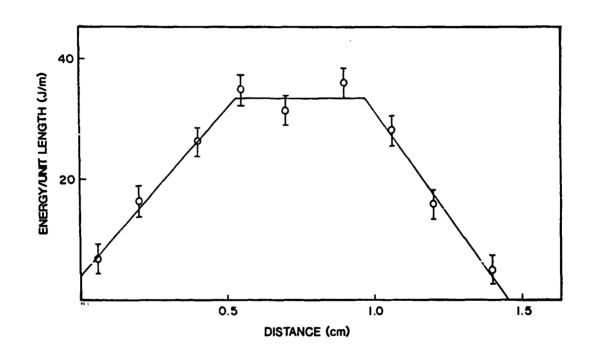
EXCIMER LASER ANNEALING FOR FABRICATION OF LOW-COST SOLAR CELLS

SPIRE CURP.

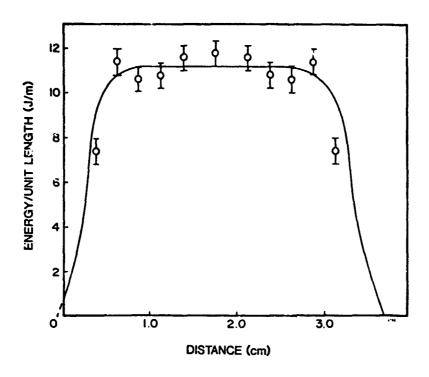
A.C. Greenwald

Program Goal

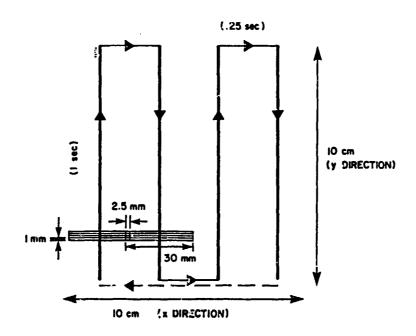
TO DETERMINE IF PULSED EXCIMER LASER ANNEALING (PELA) IS COST EFFECTIVE COMPARED TO BASELINE PROCESS.


ASELINE PROCESS	LASER PROCESS
CLEAN	CLEAN
DRY	DRY
DIFFUSE JUNCTION	(ION IMPLANT
ALUMINUM BSF) LASER ANNEAL
CLEAN	(= 1.55.7 1.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
PRIN'ı Ag BACK	PRINT Ag BACK
FRINT Ag FRONT	PRINT Ag FRONT
LASER CUT	LASER CUT
TEST AND SORT	TEST AND SORT

, - ţ

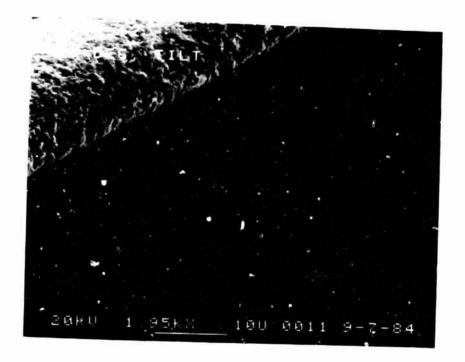

Objectives

- BUILD AN EXCIMER LASER PULSED ANNEAL APPARATUS
- DEVELOP ANNEAL PROCESSING FOR HIGH EFFICIENCY CELLS
- FABRICATE 300 SOLAR CELLS
- PERFORM ECONOMIC ANALYSIS

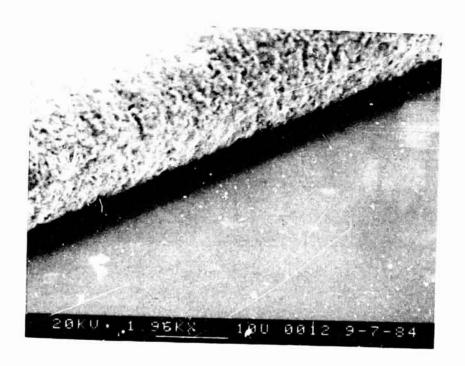

Fluence Measured Across Beam Width (at Lens)

Fluence Measured Across Beam Length (at Lens)

Scanning Pattern for Annealing a 100 cm² Wafer (Total Transit Time at 10 cm/s is 5.5 Seconds)



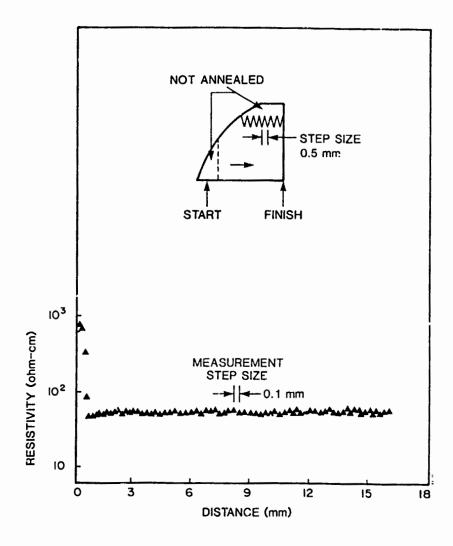
Partition of the second


Implantation Parameters

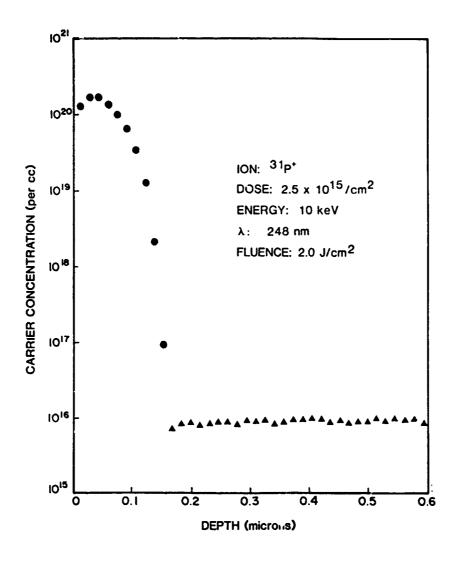
_	FRONT (TEXTURED)	FRONT (POLISHED)	BACK (EITHER)
ION	P ⁺	P+	B ⁺
ENERGY	10 keV	10 keV	25 keV
DOSE	4.3x 10 ¹⁵ cm ⁻²	2.5x 10 ¹⁵ cm ⁻²	5x 10 ¹⁵ cm ⁻²

Pulsed Excimer Laser Annealing Polished Surfaces

FURNACE ANNEAL



PELA



C. LEETHANDER.

Sheet Resistance Uniformity of PELA Sample 4520-1b

PELA Junction Depth Profile, Sample 4520-16

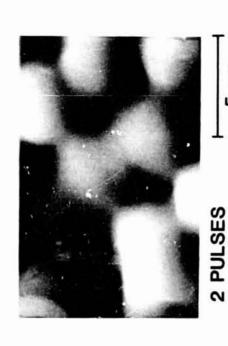
Efficiency vs Laser Fluence: Polished Wafers, No AR Coating

LOT	η (%)	FLUENCE (J/CM ²)	NO. OF PULSES
l	8.9	1.2	1-2
	8.4	1.8	1
$\lambda = 248 \text{ nm}$	8.9	1.9	2-3
	9.1	2.0	1-2
	9.1	FURNACE CO	NTROL
	7.3	0.8	1
II	8.1	1.0	4
	9.7	1.4	1
$\lambda = 308 \text{ nm}$	10.5	1.8	1
	10.2	1.8	2-3
	7 .5	FURNACE CO	NTROL (?)

ORIGINAL PAGE 'IS OF POOR QUALITY

Melting of Texture-Etched Surfaces

1.4 J/cm² 1 PULSE



>1.8 J/cm² 2 PULSES

5 µm

NOT PULSED

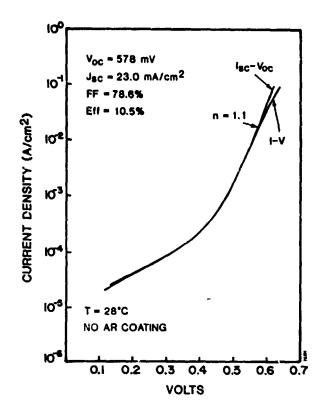
Efficiency vs Laser Fluence: Texture-Etched Wafers, No AR Coating

LOT	η (%)	FLUENCE (J/CM ²)	NO. OF PULSES	
1	10.8	1.2	1-2	
•	10.5	1.8	1	
λ =248 nm	8.2	1.8	2	
,,	9.2	2.0	1-2	
	12.9	FURNACE CONTROL		
	9.1	0.8	1	
II	8.7	0.8	2	
	9.1	8.0	4	
$\lambda = 308 \text{ nm}$	11.8	1.0	4	
	12.4	1.4	2	
	8.8	1.8	2	
	8.1	FURNACE CONTRO)L (//	

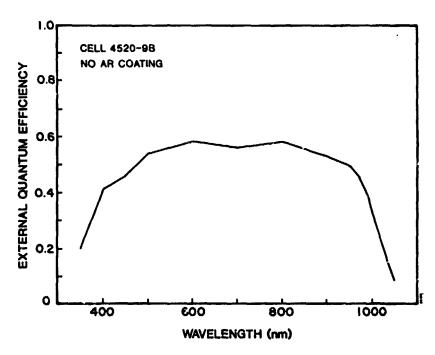
Best Cell to Date

IMPLANT: 31p+ 2.5 x 1015 ions/cm2 10 keV

ANNEAL: XeCI LASER, 1.8 J/cm² 1 pulse


minimum overlap

 $V_{OC} = J78 \text{ mV}$ $J_{SC} = 23.0 \text{ mA/cm}^2$


FF = 78.6% EFF = 10.5%

WITH AN AR COATING, EFFICIENCY WOULD BE ABOUT 15%

38 - 1-

L. CHERNASHELL

Can the Laser Deliver Enough Power to Rapidly Anneal a Large Wafer?

THE 50 WATT LASER ANNEALED A 4" ROUND POLISHED WAFER, A 4" ROUND TEXTURED WAFER, AND A 10 cm x 10 cm SILSO WAFER, EACH IN UNDER 10 SEC.

Laser Parameters

GAS Kr., F2, and Ne

WAVELENGTH 248 nm

POWER 50 watts

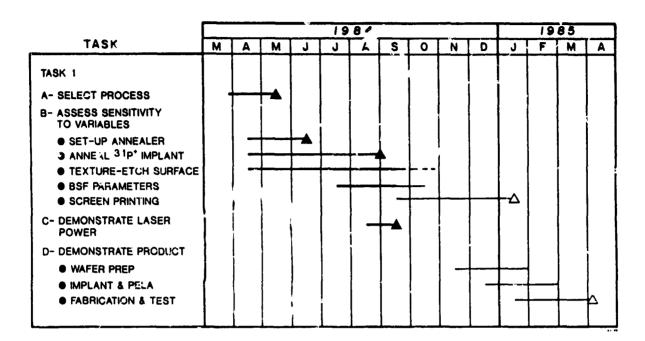
REP. RATE 160 Hz

PULSE WIDTH 20 nanoseconds

Anneal Parameters

FLUENCE ~1.4 J/cm² at sample

SPOT SIZE ~0.7 mm x 25 mm


TABLE SPEED 10 cm/sec.

Summary of Process Variables

Ċ

- LASER POV/ER OF 2J/cm² IS REQUIRED FO WAFERS, LEGS FOR TEXTURED WAFERS.
- WAVELENGTH (KrF /: XeCI) IS NOT IMPORTA
- BEAM UNIFORMITY MUST BE BETTER THAN 5% BUT NOT NEED NOT BE BETTER THAN 2%.
- DUST IS NOT TOO IMPORTANT.
- UNANNEALED AREAS REDUCE Jac BUT DO NOT SHUNT JUNCTION.
- OVERLAP IS IMPORTANT FOR TEXTURED WAFERS.

Program Schedule

Summary

- AN EXCIMER LASER ANNEALER HAS BEEN BUILT AND TESTED.
- SOLAR CELL EFFICIENCY, WITHOUT AR, OF UP TO 10.5% HAS BEEN ACHIEVED (~15% WITH AR).
- REQUIRED THRCUGHPUT FOR ECONOMICAL OPERATION APPEARS FEASIBLE AT THIS TIME.

THE STATE OF THE STATE OF