N85-32434

ENCAPSULATION PROCESSING AND MANUFACTURING YIELD ANALYSIS

SPRINGBORN LABORATORIES, INC.

P. Willis

 ADD - ON ACTIVITY TO BASELINE CONTRACT ON DEVELOPMENT OF ADVANCED ENCAPSULATION MATERIALS

(PHASE III)

• NOT YET FUNDED

GOALS:

- UNDERSTAND THE RELATIONSHIPS BETWEEN:
 - FORMULATION VARIABLES
 - PROCESS VARIABLES
- DEFINE CONDITIONS REQUIRED FOR OPTIMUM PERFORMANCE
- RELATE TO MODULE RELIABILITY
- PREDICT MANUFACTURING YIELD
- PROVIDE DOCUMENTATION TO INDUSTRY

PRECEDING PAGE BLANK NOT FILMED

5-6

Material Variables

LAMINATION POTTANTS

- ETHYLENE/VINYL ACETATE (EVA)
- ETHYLENE/METHYL ACRYLATE (EMA)

CASTING POTTANTS

• ALIPHATIC POLYURETHANE (PU)

ADHESIVES/PRIMERS

• THREE BASIC PRIMER SYSTEMS

COVER FILMS

• TEDLAR, ACYRLICS, FEP

FURMULATION VARIABLES:

TYPE AND AMOUNT OF:

- CURING AGENTS (PEROXIDES)
- ANTIOXIDANTS
- ULTRAVIOLET SCREENERS
- ULTRAVIOLET STABILIZERS (HALS)
- SELF PRIMING AGENTS

STORAGE CONDITIONS:

• TIME, TEMPERATURE, HUMIDITY, LIGHT AIR EXPOSURE 1.1

دتو. . 1 _ _ _ (

. .

QUALITY CONTROL:

- DETERMINE ANLYTICAL METHODS TO VERIFY
 COMPOSITION
- PUBLISH QC SPECIFICATIONS FOR MATERIAL CERTIFICATION

م ۳۰۹ معد بعد - بد

1

*3

Process Variables

....

- -

(VACUUM BAG LAMINATION)

 AMBIENT CONDITIONS: TEMPERATURE HUMIDITY BAROMETRIC PRESSURE

.

the little of the Bart of the Bart of the Bart of the second of the seco

- VACUUM PRESSURE (INITIAL) AND TIME
 OF EVACUATION
- TEMPERATURE - RATE OF RISE
- TEMPERATURE - ULTIMATE
- DWELL TIME, AT TEMPERATURE
- RATE OF COOLING
- TIME/TEMPERATURE/PRESSURE INTER-RELATIONSHIP

(CASTING LIQUID SYSTEMS)

ABOVE VARIABLES, PLUS:

- 2 COMPONENT MIX TIME
- DEGASSING PRESSURE
- PUMP AND FILL TIMES
- MIX UNIFORMITY
- GEL TIME

Quality and Performance Criteria

-

-

ł

Ĩ

-

- METHOD: PREPARE TEST MODULES AND/OR OTHER TEST SPECIMENS WITH CHANGE IN SIGNIFICANT VARIABLE(S)
 - DETERMINE THE EFFECT

COMPONENT	CONDITION	TEST
POTTANT	ADEQUATE CURE	PERCENT GEL THERMAL CREEP
	TRAPPED BUBBLES	VISUAL
	DISCOLORATION	VISUAL
CELLS	BREAKAGE	VISUAL, RESISTANCE
	INTERCONNECT	RESISTANCE
	REGISTRATION	VISUAL
COVER FILMS	TEARS/PUNCTURES	VISUAL
	WARPING/SHRINKAGE	VISUAL
GLASS (SUPERSTRATE)	FRACTURE	VISUAL
ADHESION	BOND STRENGTH	PEEL TEST
	ENDURANCE	WATER SOAK (50°C)
NEED TO DECIDE O	N:	

- STANDARD TEST SPECIMEN(S)
- STANDARD TEST PROTOCOL
- UNIFORM DATA SETS

*

Data Analysis

- STATISTICAL ANALYSIS COMPLICATED BY LACK OF UNIFORMITY IN DATA TYPE
- TWO TYPES OF DATA:

1.12

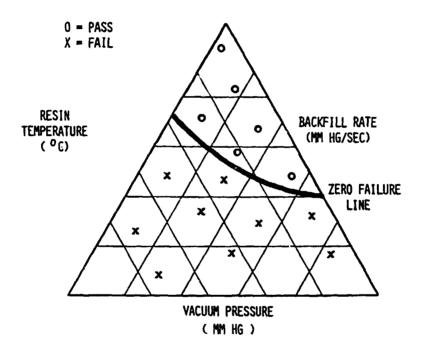
DISCRETE (PASS/FAIL) CELL FRACTURE INTERCONNECT BREAKAGE TRAPPED BUBBLES THERMAL CREEP GLASS FRACTURE CONTINUOUS GEL CONTENT

PEEL STRENGTH STABILIZER LOSS

FOR CUNTINUOUS DATA TYPES:

- TWO LEVEL FACTORIAL EXPERIMENTS (MOST INFORMATION, FEWEST EXPERIMENTS)
- HO. EXPERIMENTS = 2^{K} , K = NO. VARIABLES
- DETERMINES EFFECT OF SINGLE VARIABLE AT TWO LEVELS
- DETERMINES FACTOR INTERACTIONS (SEVERAL VARIABLES)
- PERMITS RANKING OF VARIABLES ACCORDING TO MAGNITUDE OF EFFORT
- LINEAR ANALYSIS POSSIBLE FOR SUBSEQUENT PREDICTIVE
 CAPABILITY

FOR DISCRETE DATA TYPES:

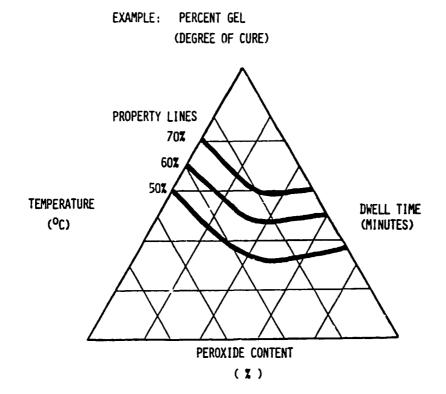

- PREPARE SCATTER PLOT VS. VARIABLE
- PLOT THE ZERO FAILURE LINE
- USE GRAPHICS TO SPECIFY BOUNDRY CONDITIONS AND ACCEPTABLE PROCESSING "WINDOWS"
- DETERMINE FAILURE PROBABILITIES BINOMIAL DISTRIBUTION

Manufacturing Practice

DISCRETE VARIABLES

- PREPARE GRAPHICAL INTERPRETATION OF DATA
- DETERMINE "ZERO FAILURE" LINE
- DEFINE BOUNDRY CONDITIONS FOR DEFECT-FREE MANUFACTURING

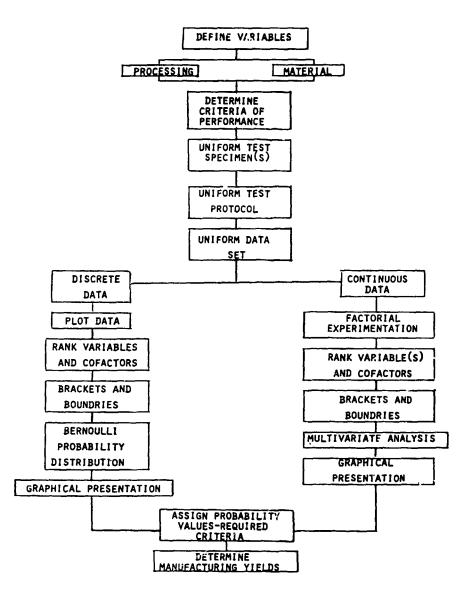
EXAMPLE: CELL BREAKAGE


.

MANUFACTURING PRACTICE

CONTINUOUS VARIABLES

- GRAPHICAL PRESENTATION ALSO GOOD FOR CONTINUOUS
 VARIABLES
- PROVIDES BOUNDRIES FOR PROCESS/FORMULATION VARIABLES
 BASED ON CRITERIA OF ACCEPTABILITY
- EASILY USED IN MANUFACTURING PRACTICE



Future Work

- IDENTIFY SIGNIFICANT VARIABLES
 - FORMULATION
 - PROCESSING
- DETERMINE MATERIALS SPECIFICATIONS AND QUALITY CONTROL METHODS
- ASSESS EFFECT OF VARIABLE(S) AND RANK ACCORDING TO IMPORTANCE
- DEFINE FORMULATION AND PROCESSING "WINDOWS" (ZERO FAILURE)
- CONVERT DATA TO PRACTICAL ENGINEERING FORMAT
- RELATE DATA TO MANUFACTURING YIELD
 - ASSIGN PROBABILITY OF FAILURE
 - NORMAL DISTRIBUTION (?)
 - WEIBUL (?)
- PREPARE TROUBLE-SHOOTING GUIDE: "WHAT'S WRONG IF . . . ?"

\$

JPL Process Sensitivity Analysis

۲
