N85-32449

IMPROVED NOMINAL OPERATING CELL TEMPERATURE (NOCT) TEST PROCEDURE

JET PROPULSION LABORATORY

L. Wen D. Berns

Objective

- Understand causes of data scatter in currently used NOCT evaluation procedures
- Develop procedure modifications as required to reduce scatter and NOCT test costs

Nominal Operating Cell Temperature

Significance

A soft the set of the second

- A direct measure of module thermal design
- Representative temperature for average environmental conditions in the United States
- Applications
 - Prediction of array energy production
 - Lifetime assessment
- Definition
 - Open circuit
 - Open-back rack mount
 - Nominal thermal environment (NTE)
 - Effective insolation = 80 mW/cm^2
 - Ambient temperature = 20°C
 - Average wind speed = 1 m/s
- Principle
 - Temperature difference is largely a function of insolation

 $(Tc - Ta) = m \cdot S$

MODULE DEVELOPMENT AND ENGINGERING SCIENCES

With Mary and the

.1

Current NOCT Test Procedure

- Adjustable tilt angle
- Detailed instrumentation
- High sampling rate (two to four measurements/minute)

Current NOCT Evaluation Procedures

- Conventional evaluation
 - Run tests for one or two days with suitable weather
 - Select data points that satisfy wind-level screening criteria
 - Determine average value using all valid data points
 - Apply correction factors for wind and air temperature
- Alternative evaluation
 - Fun daily tests over extended period (months)
 - Select data from days with suitable 10-minute (calmair) periods
 - Determine one NOCT for each day (10-minute period)
 - Determine NOCT as average for selected test days

Discussion

- Both evaluation procedures contain significant scatter
- S latter attributed to two factors
 - Secondary test environments are not controlled
 - Sky radiation
 - Ground reflection
 - Ground emission
 - Tilt angle
 - Steady-state analysis ignores transient thermal effects

Proposed NOCT Refinements

- Define NOCT for particular secondary NTE conditions
 - Atmospheric radiation: clear sky
 - Ground reflection: 10% of insolation level
 - Ground emission: from 30°C ground temperature, effective emittance of 0.8
 - Effective wind direction: 135° from north
 - Module tilt angle: 30° from the horizon
- Measure module temperature relative to calibrated reference plate
 - Painted aluminum plate (front-black, back-white), Bostic paint
 - Plate temperature calibrated under refined NTE is 48.3°C
 - Level of ΔT , (T cell-T plate) is approximately constant
 - NOCT = $48.3^{\circ}C + \Delta T$

Proposed Test Setup and Conditions

• Test set-up

in a converse to the state way a third second on a

- Module and reference plates subjected to the same test environments
- Two reference plates; refinished surface coating at staggered 6-month intervals
- Test conditions
 - Minimal constraints on wind
 - Minimal constraints on air temperature
 - Minimal constraints on secondary test environment conditions
 - Insolation level higher than 60 mW/cm²
 - 3 to 4 hours test duration around solar noon
 - 30° tilt

.

, Z

Sector Sector

MODULE DEVELOPMENT AND ENGINEERING SCIENCES

Proposed Test and Evaluation Procedure

- Data collection
 - Module and test plate temperatures
 - Relative temperature accuracy: 0.5°C
 - Measurement frequency approximately one per minute
 - Approximate insolation level
- Data processing
 - Average cell-plate ΔT over selected time interval
 - Interval to have initial and final temperatures within 0.2°C (for all thermocouples)
 - Interval length to be longer than 40 minutes
 - NOCT = $48.3^{\circ}C$ + average ΔT

Conclusions

- Proposed procedure offers improved
 - Simplicity
 - Does not require long-term testing
 - Does not require sophisticated wind and irradiance instrumentation
 - No data screening judgment or tedious corrections
 - Broader test window
 - Accuracy
 - Excellent repeatability (accuracy depends on temperature error)
 - Some discoloration of reference plate over one-year field exposure, but no measurable change in calibration temperature
- Requires additional demonstrations

• ~