N85-32450

THIN-FILM RELIABILITY AND ENGINEERING OVERVIEW

JET PROPULSION LABORATORY

R.G. Ross, Jr.

Scope

- Development of the reliability and engineering technology base required for thin-film modules
 - Emphasis on amorphous-silicon

A shell and

.

• 1

q

ļ

ì

2. 28 . I . I . T. with a line

ALL States

- Emphasis on module and array-level issues
- De-emphasis of cell-intrinsic reliability issues such as light-induced effects
- Closely coordinated with SERI's thin-film cell research activities as a part of DOE's Amorphous Silicon Program, managed by Ed Sabisky

Thin-Film Differences Requiring New or Expanded Research

- New cell environmental durability (temperature/humidity/UV) failure modes
- Altered hot-spot heating failure mechanisms
- Short-circuit cell failure modes and effect on cell size and series/parallel redundancy
- New cell electrical interconnect failure modes
- Altered glass breaking strength
- Flexible substrate technology demands
- High cell stresses due to glass bending
- Non-linear electrical response and effect on module measurement
- Cell-to-cell electrical variability and effect on electrical mismatch and circuit design

MODULE DEVELOPMENT AND ENGINEERING SCIENCES

R&ES Crystalline-Si Research Applicability to Thin-Film Modules

 Interconnect mechanical fatigue Electrical insulation breakdown research 	0
Electrical insulation breakdown research	•
	đ
 Glass-fracture mechanics 	
Cell-fracture mechanics	С
 Cell temperature/humidity endurance (Clemson) 	đ
 Module temperature/humidity endurance (Wyle) 	đ
 Module hail-impact resistance 	đ
 Optical-surface soiling 	•
Electrochemical corrosion	đ
Encapsulant photo-thermal degraJation	
 Encapsulant debonding 	•
 Hot-spot heating 	J
 Bypass diode integration studies (GE) 	
 Module flammability ar.d arcing researc's (UL) 	

 \bullet = generally applicable, \bigcirc = significant changes

FY85 R&ES Thin-Film Research Thrusts

- Temperature-humidity reliability research
- Glass breaking strength research
- Point defect system analysis
- Hot-spot heating assessment
- Electrical measurements technology development

1.1.

MODULE DEVELOPMENT AND ENGINEERING SCIENCES

Temperature-Humidity Reliability Research

• Objective

-1

- Assess stability of a-Si cells in T/H environments
- Assess requirements for encapsulation

• Status

- Initial a-Si cell samples acquired (ARCO, Sanyo, Chronar)
- Additional samples procurements underway (Hughes and Chronar)
- Exploratory tests initiated at Clemson

Glass Breaking-Strength Research

- Objective
 - Determine breaking strength versus a-Si processing
 - Assess need for glass strength enhancement
 - Develop glass strength enhancement techniques
 - Develop glass support techniques
- Status
 - FY 1985 start, building on extensive experience with glass on crystalline-Si modules
 - Tin-oxide-coated glass samples acquired from Chronar for test

Point-Defect System Analysis

- Objective
 - Assess present areal density levels of defects
 - Assess economic penalty/allowable levels for defects
 - Determine optimum cell interconnection/geometry to minimize impact
- Status
 - Computer program operational for computing system power loss due to in orted cells
 - Laser scanner being modified to allow defect mapping

MODULE DEVELOPMENT AND ENGINEERING SCIENCES

Hot-Spot Heating Assessment

• Objective

2

- Establish susceptability of a-Si cells to hot-spot phenomena
- Establish bypass diode recommendations for modules
- Status
 - Just initiated

Electrical Measurements Technology Development

- Objective
 - Establish means for accurate repeatable measurement of electrical I-V performance of a -Si cells and modules
- Status
 - LAPSS verified as appropriate light source
 - Filters identified to convert LAPSS to AM 1.5 global spectrum
 - Filters identified to alter crystalline-Si spectral response to provide reference cells for *a*-Si

Research Forum on Reliability and Engineering of Thin-Film Modules (San Diego, Feb. 18-20, 1985)

Focus: Reliability and performance issues relates integrating a-Si cells into power modules, inclusion of review of current status, ider tification of proble and as, a definition of needed research.

Tentative Agenda

- Cell performance overview
- Module reliability considerations
- Module performance considerations
- Electrical performance measurement