N85-32452

J

FAILURE ANALYSIS OF THIN-FILM AMORPHOUS-SILICON SOLAR-CELL MODULES

JET PROPULSION LABORATORY

Q. Kim

Failure Analysis

PURPOSE:

O PROVIDE INFORMATION AND DATA FOR APPROPRIATE CORRECTIVE ACTION THAT CAN RESULT IN IMPROVEMENTS IN PRODUCT QUALITY AND RELIABILITY.

APPROACHES:

- EXPAND EXISTING TECHNIQUES AND CAPABILITY IN ORDER TO EVALUATE AND CHARACTERIZE DEGRADATIONAL PERFORMANCE OF A-SI SOLAR CELLS.
- O INVESTIGATE IN DEPTH MICROSCOPIC AND MACROSCOPIC DEFECTS AND FLAMS THAT SIGNIFICANTLY CONTRIBUTE TO PERFORMANCE DEGRADATION.
- O DEVELOP NEW ANALYTICAL TECHNIQUES.

MODULE DEVELOPMENT AND ENGINEERING SCIENCES

ORIGINAL PAGE IS

State of the Art of α -Si Solar Cells

STRUCTURE	V _{oc} mV	J _{sc} mA/cm ²	FF %	ZFF.	AREA cm ²	
GLASS /TCO /p (a-SiC:H) - i - n (a-Si:H) /N	le			10, 1	1.09	RCA
p-i-n	836	16.7	66.0	9.2	0,05	ECD
GLASS / TCO /p (a-SiC:H) - i - n (a-Si:H) / A	Ae 845	13.03	14.0	8.15	C 04	SANYO
GLASS /TCO /p (a-SiC:H) - 1 - n (a-Si:H) /A	Ne 880	15.21	60, 0	8.04	0, 033	OSAKA
GLASS /TCO /p (a-SiC:H) - I - n (a-Si:H) /A	Ne 832	14.00	67.6	7.87	1.09	RCA
(CO/n (mC-Si) - i - p (a-Si:H)/SS	860	13, 90	65.2	7.80	1, 20	FUJI
GLASS /TCO /p (a-SiC:H) - i - n (a-Si:H) /A	Ae 900	14.60	58.0	7.62	0.09	SUMITOMO
TCO/n (mC-Si) - i - p (a-Si:H)/SS	889	13.80	60.0	7.36	0, 09	TEIJIN
TCO/n - i - p (a-Si:H)/Me	839	13.80	64.0	7.40	0, 06	S IEMENS
BEST INDIVIDUAL PARAMETERS	950	16.70	74. C	(11.70)		
. HIGH CONVERSION EFFICIENCY:	7.4 - 11.	1%				
DIFFERENT DEVICE STRUCTURES:	p - i - n n - i - p					
DIFFERENT FABRICATION PROCESS:	GLOW DIS REACTIVE CHEMICAL	CHARGE SPUTTERING VAPOR DEF	OSITION			

TABLE 1. PERFORMANCE OF BEST REPORTED SINGLE JUNCTION p-i-n AMORPHOUS SILICON SOLAR CELLS

Solar Battery Charger (NC-AM1), Sanyo Electric Co. Lt

MODULE DEVELOPMENT AND ENGINEERING SCIENCES

• .

.

ቁ }

Some Test Results

FIGURE 1. IV CHARACTERISTICS

AFTER ANNEALING (160°C FOR 1/2 HR IN AIR)

Jsc	• 2.973 m A/cm ²	η = 1.68%		
V _{ec}	- 0,796 V	SHUNT RESISTANCE:		1.495 K n
P _{max}	- 1.58 mw/cm ²	SERIES RESISTANCE:		4, 163 n
FF	- 0.709	THERMAL ACTIVA	INERGY	0, 14 eV
CELL ARE	A + 7.738 x 8 cm ²			

PRACTICAL CONSIDERATIONS

The state of the state

1

3

··· + : ×

- LARCE DIFFERENCES IN & SUGGESTS A NEED FOR AN IN-DEPTH EVALUATION OF DEGRADATIONAL WECHANISMS
- MANY OF THE MECHANISMS ARE LIKELY TO BE PROCESS FARAMETER SENSITIVE ON WHICH THERE IS SOME LIMITED INFORMATION
- EFFECT OF ENVIRONMENTAL STRESS ON OTHER MECHANISMS APPEAR TO BE LESS UNDERSTOOD

4, 2

ことれていたいというないないであって

X.

Amorphous-Silicon Solar Cell

- VERY SHORT DIFFUSION LENGTH (< 1 / 1000 × C-Si)
- VERY HIGH ABSORPTION COEFFICIENT (> 10 × C-Si)
- CARRIER TRANSPORT BY DRIFT

FIGURE 2. ENERGY BAND DIAGRAM OF p-i-n JUNCTION • OPTIMIZE ABSORPTION AND I-LAYER INTERNAL ELECTRIC FIELD BY ADJUSTING THE THICKNESSES AND FILM CHARACTERISTICS

Current Activity

- O INVESTIGATING DEGRAPATIONAL MECHANISHS ON COMMERCIAL A-SI SOLAR CELL PRODUCTS.
 - O THESE CELLS ARE TYPICALLY LOW EFFICIENCY BUT PROVIDE AN OPPORTUNITY FOR CONTRIBUTING DIRECTLY TO THE IMPROVEMENT OF COMMERCIAL TECHNOLOGY.
- EXAMINING DEVICE STRUCTURES, AND OPTICAL AND ELECTRICAL CHARACTERISTICS.
 - POLARIZING MICROSCOPE, SEL, CURVE TRACER, SUN-U-LATOR, SCLS, FTIR, CAPACITOR BRIDGE, HIGH PRECISION ELECTRO-METER, ELLIPSOMETRY, ETC.

ORIGINAL PAGE IS OF POOR QUALITY MODULE DEVELOPMENT AND ENGINEERING SCIENCES

Solar-Cell Laser Scanner

FIGURE 3. SCLS IMAGE OF SAMPLE 7703-1 BY TWO DIFFERENT MONOCHROMATIC LIGHTS (4880Å (a) AND 5145Å (b))

- IT ALLOWS FOR NON-DESTRUCTIVE EVALUATION AND FAILURE ANALYSIS OF ENTIRE SOLAR MODULE AS WELL AS INDIVIDUAL CELL
- IT MAKES IT POSSIBLE TO DISCRIMINATE BETWEEN ACTIVE AND PASSIVE (COSMETIC) DEFECTS
- IT MAY PROVIDE MEANS FOR ABSTRACTING INFORMATION ON DIFFERENT LAYERS OF THE THIN-FILM SOLAR CELL

MODULE DEVELOPMENT AND ENGINEERING SCIENCES

ţ,

بر بر

÷

Future Plans for α -Si Solar Cells

- O UPGRADE SCLS CAPABILITY TO PROBE PHOTOCURRENT RESPONSE IN DIFFERENT LAYERS OF THE DEVICE.
- O EVALUATE AND CHARACTERIZE MODULE DEGRADATIONAL PHENGMENA IN THIN-FILM AMORPHOUS SILICON SOLAR CELLS WITH PARTICULAR EMPHASIS ON MICRO AND MACROSCOPIC DEFECTS/FLAWS.
- O DEVELOP METHODS TO ANALYZE FAILURE MODES RESULTING FROM DEGRADATION DUE TO ENVIRONMENTAL EFFECTS SUCH AS OPTICAL, THERMAL, MECHANICAL AND MOISTURE.