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INTRODUCTION

As space operations become accepted as "normal" business enterprises, two

requirements tend to dominate any future technological developments:

o systems are required to be reliable over a long period of time,

either by their inherent reliability, or by means of scheduled
maintenance.

and

o future space technology developments need to be cost-effective to

warrant their incorporation.

Rendezvous and Docking (RVD) technology, being a prerequisite for

advanced space operations, is a typical example of this technology

development. Since the RVD process is not only mission critica± but also

contains the risk of damage to the in-situ space investment, its technology
has to be highly reliable. But it must also sat_ °v _he other criterion, of

being vailable at reasonable cost, so that the t ts of in-o_bit assembly
and s( vicing can be realized.

The above requirements are passed on to the subsystems comprising the RVD

system. This paper is about one of them, the Docking Mechanism Subsystem
(DMS) dev_ioped during an ESA sponsored contract.

DOCKING ,MECHANISM CONCEPTS

The various docking mechanism concepts which have flown (e.g., Gemini,

Apollo, Soyus/Saljut) were of the "impulse", or "impact:', type where the
kinetic energy of the active chaser spacecraft was used to trigger, or
actuate, the docking mechanism. This was possible because the spacecraft
involved were (more or less) rigid and rugged bodies and because their

centres of gravity were aligned.

* Dornier System, Friedrichshafen, West Germany

+ ESA, ESTEC, NoordwiJk, The Netherlands
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For future space missions, however, such as large, flexible, and locally

fragile platforms, it is very desirable to adopt non-impact docking

techniques to avoid the risk of damage, and to make use of self-actuated, and

re-usable, docking mechanisms.

Non-lmpact docking systems can be sub-divided into two categories where,

following the close rendezvous of the two satellites, they are brought

together into intimate contact either by means of the Docking Mechanism via
an extended probe, or by active control of the AOCS of one of the

spacecraft. This bringing together is known as "Closure", and the two means
of achieving it are referred to in the following as "DMS controlled closure"

(DMS-CC) and "AOCS controlled closure" (AOCS-CC). These two closure

techniques differ in the _perations which are needed, and in the make-up of

their constituent components. Table 1 gives an overview of the operations

associated with each category. Figure 1 illustrates the two different

docking mechanisms implied.

It is clear that, in principle, AOCS controlled closure can result in a

simpler mechanism, in that the boom is not needed, nor are the necessarily

complex grapple and actuator mechanisms. However, this is at the expense of
a greater demand on the AOCS and the need for short range docking sensors. A

very major advantage accrues, however: that is the possibility ot using a

very simple structural docking interface which is compatible with adoption as
a "standard" interface.

REQUIREMENTS

The general requirements for the DMS are based on typical European
scenarios for automated RVD missions, where the spacecraft are unmanned and

3-axls-stabilized. These missions require a high flexibility and modularity

in the DMS concept. Further, to protect the higher investment in orbit it is

desirable to ensure that only passive parts of the DMS are located on the
more "permanent" spacecraft.

Safety requirements become, in fact, design drivers, and Table 2 glves

typical requirements with which the DMS must comply. Latch performance

requirements derived to contain a number of alternative missions are given in
Table 3, and the range of satellite parameters is given in Table 4. Finally

the DMS is required to support certain operational strategies; these are
shown in Table 5.

Notable among these requirements is the requirement that, regardless of

the failure, it should be possible to separate the two spacecraft in order

not to prejudice a further attempt at RVD. The DMS therefore not only needs

to be reversible, it must have back-up systems which ensure complete release.
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DOCKING MECHANISM DESIGN

THE LATCH <

If the technique of AOCS controlled closure is adopted, the mechanical
components needed in the DMS are reduced to latches and connectors and their

(passive) interfaces. The design task, for latching, assumes a close
maneuver of the Chaser Spacecraft up to the target, to within about 60 mm in

the longitudinal axis and about +40 mm in the lateral axis. The role of the

AOCS may thereafter be passive, or it may assist in the docking process.

Althou_h the end result is very simple, conslderable thought was given to
different latch interfaces. Various forms of interface can be envisaged,

which lend themselves to passive guidance at the time of final closure.

However, as the geometry of the interface is made more complex, so too are
the artificimlly induced requirements on the latch itself, and the design

freedom of the latch designer is inhibited.

The latch interface chosen, termed the "cruciform concept", is shown in
Figure 2. The structural interface itself is a round bar, radially stiff,

but with some axial compliance and with rotational freedom.

The latch is required to perform three fundamental functions:

o Capture and alignment of the Handle

o Absorption and partial storage of residual (small) kinetic
energy

o Provision of structural joint (Table 2)

Elements of the chosen latch design are given as an exploded view in

Figure 3, and the method by which it operates is outlined in Figure 4.

Should at any time the latch Jam, a pyrotechnic device collapses the linkage,

enabling the clamp to retract under action of a spring. The structural joint

can, however, be maintained by two of the remaining three latches. (The
cruc_form concept is tolerant to failure of two out of the four latches.)

The selected linkage for the latch is shown in Figure 5. Here points C,

D and G are fixed points. Link No. 1 (D-A) represents the crank ando< 1 the
input crank angle. Link No. 3 (B-E) represents the pretension spring. Link

No. 5 (F-G) represents the claw, with 5 .he output claw angle.
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Based on this layout, with the following dimensions, Figures 6 to 8 give

the latch performance parameters, based on the following dimensions:

D-A : 31.50 mm 1 START = 130°

A-B : 32.48 mm 1 END : 76"9o

C-E = 82.10 mm 5 START = 186°

F-G = 30.00 mm 5 END = 60o

LATCH DESIGN TESTING

In order to gain some insight into the latch performance, testing has
: been performed on a single latch, and Figure 9 shows the test setup used.

Two massive blocks (160 kg each) onto which the handle and latch assemblies

were mounted, were supported on air bearings and made to approach each other

at varying rates and alignments, simulating a constant AOCS thrust.
Interactive forces were measured using a piezoelectric transducer mounted
between the latch and the base. Figure lOa shows a typical behaviour during

such a test with an initial lateral misalignment of 60 mm. Several bounces
against the reception element are shown prior to claw engagement. Figure lob

shows a capture with the same approach velocity (15 mm/sec), but with no

misalignment.

The results of the testing confirmed in general the performance of the

latch, and gave valuable guidance to the modelling of the latch for RVD
simulation purposes. Testing also indicated that some detailed improvements

were necessary in the configuration of the spring energy absorber - for

example, the addition of a damper. This damper could either be a

conventional passive damper (velocity proportional), or an active damper
where the interactive forces are measured and the claw is controlled

,. appropriately.

THE CONNECTOR MECHANISM

It soon became apparent that the requirement for achieving electrical and

fluid connection within the DMS could become a design driver on the latches,

not just with the precision of latching required, but also with the forces
which the latches should withstand. The forces required to mate and de-mate

connectors, particularly for the fluid connectors, were relatively high, and

in order to maintain modularity of design, keeping the latch development

independent of connector development, it was decided to provide a

self-powered, self-reacting mechanism to achieve connection. This mechanism

is still undergoing development, and will not be reported here. However

Table 6 shows typical connector mechanism requirements.
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STANDARD DOCKING INTERFACE

With a growing number of satellites in orbit, and a gro_ng capability of

direct intervention by means of vehicles designed to dock with them, it is

particularly interesting to develop usable and commercially viable standard

docking interfaces.

The latch design described has certainly some attributes to its credit,
but it is nJt the only latch design _hat can be found which interfaces with

the simple handle. Indeed this latch has co-existed wlth a latch of totally

different concept which is also being considered as an alternative design.
This possibility arises from the classic simplicity of the handle. The

handle is light (0.4 kg) and the design freedom offered to the latch means

that it is not therefore necessary to _urchase the latch always from the same
supplier.

The handle may be in a number of alternative configurations, e.g., 3

instead of 4, and located at different diameters without invalidating the

essential of the _tandat_, oe the principles of operation of the DMS. Four

such "handles" were chosen as the interface for the design presented in this

paper, over the more conventional alternative of a 3-handle configuration for

kinematic reasons because of the added security against failu,,e during

latching. In addition, aided by the inherent self-centering capability of
the latch/handle combination, the concept is also suitab] for the so-called

androgenous DMS, where active parts are placed on both sides of the lr.terface

to allow initiation of separation by either satellite. In this configuration
the location of the latches is alternated between the spacecraft, i.e.,

latches I and 3 on spacecraft i and latches 2 and 4 on spacecraft 2 (see fig.

ii). However in this concept the release security is compromised if the
command llnk fails.

CONCLUSION

A Docking Mechanism concept has been described which is suitable for use

with autonomous docking systems. The central feature of using simple
cylindrical handles on one side and a type of prism seating on the other is

offered a:3 a practical method of achieving a standardized structural
interface without freezing continued development of the latches, either

technically or commercially.

The main emphasis in future Docking Mechanism concepts will probably be
in two directions:

o The first is towards a very simple Docking Mechanism, involving

mainly the latch mechanism to achieve a structural link
o the second is towards a sophisticated Docking Mechanism, where the

latch mechanism is designed for non-rlgid spacecraft and the

achievement of very low dynamic interactions between spacecraft

during the docking process.
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ORIGINAL PAGE IS

OF POOR QUALITY
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FIGURE 2: THE CRUCIFORM CONCEPT AND ITS BASIC EL_4ENTS
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FIGUR_ J: BASIC ELB_ENTS AND POSSIBLE ADDITIONAL EL_ENTSt OF THE
LATCHING MECHANISM
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ORIGINAl. PAGE II
OF POOR QUALITY

FIGURE qa shows the reception positons of latch \\\ _ELEMENT/ /and handle, which do not hecessarily involve \_ \7
immediately a real mechanical contact, but _ \\\\_____.,x'x_ /_ /which give the final initiation command for ,i ,_. , \ _,_,'1_ r_fi_t �˜�the latch actuator. _ _,-_-'_':"_ \J_-] _:_[ l_

' _=--4_1--_v-- t --I

The handle runs against the reception element, ,,,
which, fixed to the springs, limits the inter-
active forces by compliance in the cxes. '
The claw is rotated by the actuator for engage--
ment with the handle. ______!F_ f o .

FIGURE qc shows the handle captured by the claw. % _L_/--_ _'/

The docking process may now be controlled for the ___

minimum dynamic interaction between Chaser
and Target. The actuator has to overcome the
reaction forces, the spring force and the emergency
spring force.

FIGU RE _d shows the final la_chirlg position whlEn -___'_/__ /

the handle is forced into the prism seating by the

overcenter linkage and loaded pretension ._pring. i _i-___ _[_ __ _ ,t_, ,_t..

FIGURE _e shows the emergency undocking _*"/

when, after disabling a linkage hinge, the _!!

chaser i,_ undocked by the spring element.

t ,'1

FIGURI_ _. OPERATIONAL SEQUENCE OF LATCH FOR DOCKING AND

F_,E_G_.H_Y UNDOCKING
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FIGURE 5: LATCH LINKAGE IN 2x4-BAE LINKAGE LAYOUT

e2,3,4J

IDEOJ / 45

100- /

/
/

1BO- /

/
120- /

/
w. /

I /i-".\.

i1 "+" I / "+
I /

/
0"t, "-.-._.- i "" i ' , " , "' i --
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ORIG'NAL PAGE IS
OF POOR QUALITY
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FIGURE 9: AIR BEARING TABLE' ST SETUP TO TEST DOCKING DYNAMIC

INTERACYTgN WITH ONE LATCH ONLY (ALL DIMENSIONS IN ram)
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FIGURE i0: DYNAMIC INTERACTION FOR TWO DOCKING CASES WITH

CONSTANT AOCS FORCE
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DMS CONCEPTS 1

!
__[ ;

IMPACT DOCKING DOCKING

i.

I
CONTROLLED CONTROL& EO

CLOSURE CLOSURE

, _ , , z | 1..__

D,STANCE CLOSURE LATCHING CONNECTION DISTANCE LATCHING CONNECTJC, N
< = lm <=01m

1

-- Vet ,fv reed¢ - Reduce - F ,he IL._:trlcal -Vetlfy reedl. -F =re I" E le_ztrJca_

hess for kmtfftlC alignment connect_or,s ne_ for alKjnment / connections

gr_lpphng energy of rela latch,ng
tire mot on

- Move grapple -Ahgn -R_yd rnecha - hgutCl/ .Capture "R,gsd mec_l L_Iw_,'_
_echanll_n '_d_lCle nical connec'=lon Ga_ nicaf con":._t_o_ G_'-
into po%,tton of veh_le$ connections of wh,cle_ ¢( nn.c_ ,ons

CIo..e _ffappte -Draw
rne¢hani.,r.."n vehicles

I_ogelher

TABLE I: DOCKING CONCEPTS AND RELATED qOCKING OPERATIONS

Gene_l • The DMS shall not hazard to other equ,pment or perso_mel during ground ,est,n9.

• The DMS shalI have no credlblesinglepoint failurewhich re_its in an unsafe condlt_on for eltherveh,cie

• The DMS shall make ava,L'ble provismns for dock,r.g abort=on at any t,me a. d satelhte rlease w_thouI

damage to either 3atelhte.

• • The DMS shall be protected against fal._e commands.

i • The OMS shall be designed to fad-safe, fad-safe standard
a

• The first point of contact shall be grounded.

i During Docking • No damage shall occur to eether satelhte dur,ng docking, nor shall the,r ol;:eratmnal peffnrmancL be
' isolated.

• It shall be poss=ble to abort docking at any point =n rhe sequence.

• The dock=ng operat,on shall be man supervised.

• ; During Contingency • it shall be possible, following contingency upefatgons, to re-dock wrth the same two spac_c='att
J

"1 OperatiOns • The DMS shall prov=de fad_fe means for Contingency o_}erat=ons.

During Emergency • Emergency Operatfons shah not impa=r the docking capabdtty of the Target Satelhte.

I Operatmns • There ,s no necessrty for dock,ng w,th the same Chaser Satelhte following Emergency Cpe_atv)n_

TABLE 2: SAFETY REQUIREMENTS
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INITIAL SEPARATION CONDITIONS LATCHING CHARACTERISTIC8

Parameter AOCS ControLled Closure Parameter Final Conditione at End of Latching

displacement (mm) -55 _ dx,s, dys_; +55 dlsplaceme_t (mm) --1.0 • dxl,dye,dze • +1.0
between both

0 _ dzs _ +30 satelhtes

approach -2.0_ Vxs.vys • +2.0 misallgnment --0.2 • ee,0e._k e • 0.2
velocity (mm/sec) between both

5 _; Vzs_; 15 satelhtes (deg)

angular --0.5 _ (_xs.0ys,_zs_ +0.5 Stiffness Kx " Ky ', Kz ;) 2.2.106 N/m
misaliQnment {de9) axial, lateral forces

bending, torsional Cx " CV = Cz ;= 12 '103 Nm/deg
rotational speed -005 _ _xs,_ys,_zs _ +0.05
{deg/sec) The DMS shall maintain there characteristics while transmitting

the following loadsacrot= the docking interfece:

- axial, lateral forces Fx ', FV '. Fz • 220 N

- bending, torsional M x • My • Mz • 200 Nm
moments

"' TABLE 3: FUNCTIONAL PERFORMANCE REQUIREMENTS

'l
PARAMETER CHASER TARGET

Mass(k9) 200 _ m ,_ 4000 1200 _ mD _ 15000

Moment of inertia (kg-m 2) 100 _ JXA _ 11000 5000 • Jxp _ 260000

100 _ JYA _ 11000 9000 • Jyp _ 520000

100 < JZA < 8000 12000 • JZp • 600000

-1 Centre ofgravqty _m) 0.05 < XCGA < 0.25 0.2 '; XCG P < 10.0

i (relatweto DMS) 005 < YCGA • 025 0.2 _ YCPG • 4.8

0,75 < ZCGA • 2.00 0.2 • Zcp G I; 2.5
e

Eigenfrequencnes (Hz) fl _ 10 Hz 0.9 < fTp =; 2.0

f2 _ 35 Hz 1.20 q; fup • 2.0

1_ K; f99 ( 2.0

Flexible appendages TBS I'P_

, end moving parts

TABLE 4: PHYSICAL PROPERTI_S OF CHASE AND TARGET
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Operational Principles: man involvement shall be limited to:

- Supervision of DMS operation

- Interpretation of housekeeping data

- Specially assigned stop/go commands

- Contingency and Emergency control

Operational Modes :

- Permanent docking

- Episodical docking

Nominal Operations Task Structure;

- The DMS shall be checked for docking readiness prior to the initiation of docking

- Nominal operations shall be based on a predetermined operational sequence

- Prior to each sequence and after each sequence go-ahead checks shall
assess the status of the docking process and the DMS itself

- The DMS shall provide automatic correction and switch-over commands and/or "
control of those functions from the ground, according to the mission
req uirements.

Contin9ency Operations Task Structure;

- Contingency and Emergency operations shall be initiated when any system
of either spacecraft is endangercd and safety is b,o longer guaranteed

- Contingency and Emergency operation shall be initiated by the DMS and/or
from the ground, according to the mission requirements

TABLE 5: OPERATIONAL REQUIREMENTS

TRANSFER CAPA81LITIES

ELECTRIC LIQUID/GAS

• High PressureGas - 80 kg total at 100 3M3/H
• 2 kW at 50 V

• 1 kWat 28 V - 280 bar initial pres_,re

• Low Rate Signal: 100 lines • Low PressureGas: - 100 DM3 total at 100 D[d3/H
• High Rate Signal: 100 rob/mr

- 1 bar
• Only Parasitic Loads to DMS latches

• Plate Travel < 30ram • Liquid Connectors:

• Emergency Separation Capability - 100 kg of fre_m 21,45 bar, 350 K.

• Separation of Electrical from Liquid/Gas 360 kg/h, &p = 6 bar

- 500 kg bipropellant, 20 kg/h

TABLE6: REQUIRE_NTSFOR CONNECTINGMECHANISM(TYPICAL)
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