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Introduction

Forming a complement to our preceeding paper(1), we present some
results for the first three harmonics derived from the simulation of

diffusion-convection of galactic cosmic rays. We present also some de-

pendences of the results to the modulation parameters. The results are
discussed in comparison with observations and with the former studies of

higher order anisotropy.

In addition to this, we suggest the existence of the:IMF-sense-

dependent anisotropy of higher order which is discussed in detail in a

separate paper(Z).

Theory and Model

The cosmic ray anisotropy _(r, p) can be expressed as
3 ,

_}(r,P)'_l+_,_,{_'.C(r,p)cos(",_')+V'.'(r,p)sin(m_')}PX(cos®'), (i)n-I.:O

where 0' and @' express the incident direction of cosmic rays, defined

as( of. Fig.l )

0"= z{-O, @" = _+(I,,
and

nXc(r,p)= (-i)"FXc(r,p)/F_ c(r,p),

v_'(r,p)=(-l)"/;'_'(r,p)/F8°(r,p).

As shown in our preceeding paper(1),

F_ c and F_ s in Eq. (1) are given by

the cosmic ray dencity U. stream Si.

stress tensor Tij and heat flow
tensor Hij k which are governed by e2

@ !(AwQy "the following equations. Field)

V. (CUV-K(a).VU)= -_p(lpv. VU), (2) Fig.l IMF-COORDINATE SYSTEM
p ; Particle's momentum.

S=CUV-K (t).VU, (3) V ; Solar wind velocity.

(4) el; Unit vector in the direction
T_i=-_(2)_j/9(VS)l_, of B in the 'away' sector.

e3:elxv/lelxv[.
(5) e2= e3 x e I.

!1__k=- _c(3)_ikl_h(VT )Igt,.
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where
o

1 aS_L 0S_ -_(V-S)_/g(VS)lg=_I_xg-_-_xt+Sq(Z4g+z_l) ] _ , (V •S)=_+SqZ_.,,
and

Z _Oei
_,k-_-75•ek=-zki_ (6)

Note that, in the IMF-coordinate system, Zijk'S in Eq.(6) represent the
IMF-curvature and focusing. We first solve Eq.(2) in the model helio-

sphere and, starting from the solution for U, we can calculate succes-

sively Si, Tij and Hijk by Eqs.(3)-(5). In these calculations , the

following scattering m.f.p, is assumed.

( r-re
_=_o(I_/GV)exp"88au )(I+a_cosgll), (7)

where X0 and aX are the parameters, R is the rigidity and 0H is the polar
angle in the heliocentric polar coordinate system. The calculations were

carried out for various values of X0 and a X and, in this paper, the

results in the following two cases will be presented.

case I .... X0 = 0.016 a.u. and 0_a_3,

case II .... X0 = 0.032 a.u. and 0_a X_3.

It is noteworthy that, in Eqs.(3)-(5), Si, Tij, Hijk having sub-
script '3' odd times are IMF-sense-dependent and their associated anisot-ms
ropies symbolized by qn with mark's' change their signs according to

mc

the alteration of the 'away' and 'toward' sectors whereas nn with mark

'c' do not. In this paper, we restrict ourselves only to n_ c, and the
natures of _s mentioned above will be discussed in a separate paper(2).

Results and Discussions

mc , _

The anisotropies qn s in space can be expressed by the surface

harmonics in the equatorial coordinate system and can be observed as

solar daily variations at the Earth(5).

The resultant first space harmonic vectors for cases I and II are

shown in Fig.2, with black characters in the positive state and white

characters in the negative state. It can be clearly seen that the

harmonic vector in the positive state changes its phase toward earlier

hours from that of 18h in the negative state, in accordance with the

observed 22-year variation of the diurnal variation(4,5,6).

'_ Oh 3 ]

g5:(toll.m,c)_, I 0.I_

m=o 9h i 3R=35.1GV o

o%..,, o l
3 ao.O' _ .0 _ " 6h ::_,

- 3 o I
6h '_':_,

• ' _ I "'_"O',

" Fig.2 FIRST SPACE HARMONIC VECTORS ZS_(t012.m,c) ",",
m=0

3

Arabic numerals represent the R = 35.1GV '_3
value of aX in Eq.(7). The black

and white characters represent the

positive and negative polarity Fig.3 SECOND SPACE HARMONIC VECTORS

states, respectively.
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The resultant second space harmonic vectors are sho_ in Fig.3.

These vectors in both polarity states are mainly due to the _C-type
anisotropy which is independent of _ (cf. Eq.(1)). The magnitude

n_c of the anisotropy includes three terms expressing, respectively,
the spatial derivatives of Si, the IMF-curvature effect and the IMF-

focusing effect. On the basis of simulations, it is found that all these

terms have significant contribution to the anisotropy and the IMF-
focusing effect is not always most predominant. A similar _- independent
anisotropy was obtained also by Bieber and Pomerantz(7), on the basis of

the following diffusion equation with respect to the pitch angle cosine
( _=coso).

at Oxl Ov"" Ov + (l-v 2 (v, , t)=O, (8)alt

where DVV is the Fokker-Planck coefficient for pitch angle scattering and
L is the focusing length of IMF(8). They concluded that the anisotropy

is principally a result of the focusing effect of I_ represented by the
last term in Eq.(8). This anisotropy can be regarded as a special case

which is applicable only for one dimensional diffusion along the IMF with
infinite radius of curvature in the equatorial plane. In other words,
this special anisotropy lacks the term expressing the l_-curvature

effect which has a dominant influence on the anisotropy as pointed out
previously.

Turning to the third order anisotropy, we obtained two dominant

terms n_c and _c. The eigen phases of the tri-diurnal variation arising
from these two terms are almost orthogonal to each other, that is,

(lh,5h) from _c and (3h,7h) from n_F It is noteworthy that one of the
eigen phases(3h,7h) arising from n_O coincides with the observed phase
around 7h in local time(9,10). Since the n_C-type distribution is not
symmetrical with respect to the field, this implies that the angular

3_
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Fig.4 _IRD SPACE HA_ONIC VECTORS RIGIDITY(GV)

Fig.5 RIGIDI_ SPECT_ OF THE
FIRST _E HARMONICS
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distribution of the third order anisotropy can not expressed generally

in terms of only the pitch angle cosine _. In this respect, it is not

suitable to discuss the third order anisotropy on the basis of the

diffusion equation of Eq.(8). Fig.4 shows the resultant tri-diurnal

variations which are mainly composed of the above mentioned two types of

distribution, i.e., n_c and D_c. It is noted that the tri-diurnal

variations obtained show polarity dependence. This dependence, however,

is sensitive to the modulation parameters and, for instance, in case I

we can get almost a polarity independent variation with increasing a%.

Lastly, Fig.5 shows the rigidity Spectra of the first three harmon-

ics obtained in case I for a%= 0 . The spectrum of the higher harmonic

rises more steeply than that of the lower harmonic, and in the high

rigidity region, the spectra of the second and third harmonic are almost

proportional, respectively, to R and R2. This is due to % linearly

increasing with rigidity R( cf. Eq.(7) ). Such a rigidity dependence is

consistent with the observations(tO,t1).
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