AVERAGE FEATURES OF THE MUON COMPONENT OF EAS $\geq 10^{17} \text{eV}$

P. R. BLAKE, M. LUKSYS, W. F. NASH and A. J. SEPHTON University of Nottingham, England.

1. <u>Method</u> Three 10 m² liquid scintillators were situated at approximately 0 m, 150 m and 250 m from the centre of the Haverah Park array. The detectors were shielded by lead/barytes giving muon detection thresholds of 317 MeV, 431 MeV and 488 MeV respectively. During part of the operational period the 431 MeV threshold was lowered to 313 MeV for comparison purposes. For risetime measurement fast phototubes were used and the 10% to 70% amplitude time interval was parameterised by T_{70} .

2. The Muon Density Lateral Distribution A muon lateral density distribution of the form $\rho_{\mu}(R,\theta) = k[\rho(500)]^{0.94} 1/R(1 + R/490)^{-\eta}$ has been fitted to the data for 120 m < R < 600 m and 0.27 < $\rho(500)$ < 2.55. The shower 'size' parameter $\rho(500)$ is the water Cerenkov response at 500 m from the core of the EAS and is relatable to the primary energy (eg Hillas model A gives $E_p = 3.87 \times 10^{17} [\rho(500)^{1.018}]$). Table 1 shows the best fit values of k and n to the data for near vertical EAS. The results show general consistency.

SEC 0 RANGE	DETECTOR THRESHOLD MeV	NO. OF EAS	BEST FIT k	UNCERTAINTY IN k	BEST FIT ຖ	UNCERTAINTY IN ท
1.0-1.1	313	320	2060	± 150	2.77	± 0.15
	317	1056	2000	± 90	2.69	± 0.09
	431	925	1980	± 80	2.96	± 0.09
	488	803	1890	± 90	3.11	± 0.10

<u>Table 1</u> Best fit values of k and n in the muon density lateral distribution.

Table 2 compares the values of muon density derived at 100 m core distance intervals from the Nottingham detectors for $\rho(500) = 1.15$. Also labelled are the data from other arrays where the intercalibration has been carried out on the basis of flux rates [Blake et al (1975) and (1981)]. The Akeno data is taken from Nagano et al (1984).

CORE DIST (m)	NOTTM SCINT S-L 313MeV	NOTTM SCINT S-L 317MeV	NOTTM SCINT S-L 431MeV	NOTTM SCINT S-L 488MeV	SYDNEY SPARK CHAMB S-L 700MeV	GREISEN (1960) S-L 1GeV	YAKUTSK SCINT S-L 1 GeV	AKENO PROP 930gcm ⁻² 1GeV
100	14.00	13.80	13.00	12.10	-	6.60	6.90	8.50
200	4.55	4.54	4.10	3.72	2.86	2.29	2.20	2.82
300	2.09	2.10	1.83	1.63	1.35	1.09	0.96	1.28
400	1.12	1.14	0.96	0.84	0.72	0.60	0.52	0.70
500	0.67	0.69	0.56	0.48	0.42	0.37	0.30	0.42
600	0.43	0.44	0.35	0.30	0.26	0.24	0.20	0.27

Allowing for the different thresholds and altitudes the results show reasonably consistent agreement. Figure 1 plots the muon density data at 300 m as a function of threshold energy.

Figure 1 Muon density at 300 m as function of threshold energy.

The errors on individual points are estimated as -10% and arise mainly from the intercalibration procedure.

Most nuclear cascade models yield distributions in agreement with the experimentally derived lateral distributions as regards slope.

Clearly absolute muon density predictions depend on both the primary mass composition assumed as well as the details of the cascade model.

3. <u>Muon-water Cerenkov Ratio</u> Figure 2 displays the muon-water Cerenkov density ratio as a function of R and θ for $\rho(500) = 1.15$ and $E_{\mu} = 317$ MeV. Again, on the whole, models predict the observed shape of the observed lateral distribution with reasonable closeness. However whilst Hillas (1971) model A fits the absolute value of the ratio well with a 100% proton primary beam; the Gaisser et al (1978) predictions require A ~ 56 to be compatible.

Figure 2 Muon-water Cerenkov density ratio (ρ_{μ}/ρ_{C}) as a function of core distance and sec0.

4. The Average Time Spread $(\overline{T})_0$ Fast phototubes and electronics enable the time spread of the muons $(T_{70} = 10\% \text{ to } 70\% \text{ full ampli-tude})$ to be determined including an instrumental response $T_{70}=32$ ns.

Table 3 lists the derived values for T_{70} as a function of R for three of the threshold energies.

R(m)	313 MeV	431 MeV	488 MeV
200	57.9 ns	54.2 ns	53.4 ns
250	64.4 ns	59.2 ns	59.4 ns
300	70.9 ns	64.2 ns	65.4 ns
350	77.4 ns	69.2 ns	71.4 ns
400	83.9 ns	74.2 ns	77.4 ns
450	90.4 ns	79.2 ns	83.4 ns
500	96.9 ns	84.2 ns	89.4 ns

Table 3 Derived values of T_{70} for $\rho(500) = 1$ and sec0 = 1.

Figures 3 and 4 compare the experimentally derived data for T_{70} (at 431 MeV threshold) with the cascade calculations of McComb and Turver (1981). Clearly the experimental data are faster than the predictions even assuming a 100% iron primary flux.

Figure 3 & 4 Comparison of predictions and experimental
measurements of T_{70} as a function of R.
Experimental data best fits.McComb and Turver (1981) simulations with
scaling, $\sigma = \text{const}$ Landau, $E^{1/4}$, $\sigma = \text{const}$
•••••• Landau, $E^{1/3}$, $\sigma = \text{const}$ Scaling, $\sigma = \ln^2 s$
Landau, $E^{1/3}$, $\sigma = \ln^2 s$ Fig. 3 Proton Fig. 4 Iron primaries
5. Elongation Length Both of the two parameters (μ/c and T_{70}) car
be used to determine the 'elongation rate' of the EAS. The tech-
nique used has been described elsewhere (Blake et al, 1983).

Calculations based on the data presented in this paper lead to an

elongation rate = $66(\pm 10)$ g cm⁻² decade⁻¹ from (µ/c) and $73(\pm 23)$ g cm⁻² decade⁻¹ from T₇₀.These results are in substantial agreement with other experimental data in the same energy range.

6. <u>Conclusions</u> The average lateral distribution of both the density and time speed of muons in EAS have been measured. The density measurements fit in well with those from other arrays and thus serve successfully for cross-checking of array calibrations.

The fast average risetime of the muons indicates early EAS development and little contribution from photoproduced muons at these primary energies.

Both the muon density and muon time spread are sensitive to small changes in threshold detection energy (both ~6% per 100 MeV at ~400 MeV threshold). Both measurements yield 'elongation rates' (~70 g cm⁻² decade⁻¹) in close agreement with other work.

These results support the general conclusion that the primary beam contains a significant proportion of light elements at these energies.

REFERENCES

BLAKE, P. R., NASH, W. F., PRESCOTT, I. C. and STRUTT, R. B., 14th Int. Cosmic Ray Conf. Munich, 8, (1975).

BLAKE, P. R., NASH, W. F., O'CONNELL, B., and STRUTT, R. B., 17th Int. Cosmic Ray Conf. Paris, 6, 8, (1981).

GAISSER, T. K., PROTHEROE, R. J., TURVER, K. E. and McCOMB, T. J. L. Rev. Mod. Phys. 50 no.4 859 (1978).

HILLAS et al. Proc. Int. Cos. Ray Conf., Hobart, 3, 1007 (1971).

McCOMB, T. J. L. and TURVER, K. E., private communication (1981).

NAGANO, M. et al. J. Phys. G 10, 1295 (1984).