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Abstract

A small air shower array has been used to measure the size

spectrum of air showers at sea level in the size range 6.105
- 10. The result fitted with the power law gives an index

-2.79±0.11 for the differential spectrum. Lateral distribut-
ion of electrons fitted with the well known NKG function

results in an age parameter s = 1.35 for core distances less
than 30m and s = 0.8 for longer core distances. Lateral
distribution of muons follows the general shape of Greisen's

relation but is much higher in intensity. Muon and electron
densities at the same observation point are also compared.

i. Introduction. Cosmic rays of energy around 1014eV are of

particular interest with the present day availability of
accelerator data. It was with this in mind that the present

experiment was constructed.

The air shower array used has been described in a

previous experiment (Chan et al 1979) and the accuracy of
core location is typically ±6m. The present addition at the
centre of the array is a flash tube assembly shown in figure

i. The upper trays of flash tubes (each Im x 6.5mm diameter)
are for measuring the total particle density, while the
lower trays shielded by iron plates (threshold 0.3 GeV) are
for determining the muon density simultaneously. The maximum

observable density is 30m -2 .
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However, as the result below reveals, most air showers

observed at sea level may be just old showers with primary

energies greater than 1014eV, which are above the accelera-

tor energy range. Nevertheless, it is still worthwhile

to report on the measured results obtained.

2. The shower size spectra. The differential and integral

size spectra in figures 2 and 3 respectively were computed

from 6798 measured events taken in the period July -

December, 1981. Fitting each spectrum with a power law gave

agreeable slope indices, -2.79 ±0.11 for the differential

and -1.83 ± 0.1 for the integral. The latter is compared with

other workers' results in figure 3.
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3. Later_l distributions of electrons and muons. Results in

the figures 4 and 5 are based on particle tracks observed

from the flash tube assembly. Difference in track intensity

between the upper and lower flash tube trays provides the

electron density at a known location and known s_ze of a
shower. For showers in the size range 104 - 4.10 _, the

results can be fitted with the well known NKG function with

a singl@ age parameter s = 1.3. Those in the size range 4.104

-2.10 5 are more complicated, giving a fairly large age

parameter(s-- 1.35) at smaller core distances, but a very
small parameter (s- 0.8) at larger core distances. A

straight forward interpretation is that those falling'close

to our detection assembly were in fact old showers well
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passed their point of maximum development, and those further

away were developing young showers.

The data presented in figure 6 for the muon lateral

distribution are based on the track count in the lower flash

tube trays. Local bursts in the iron absorber were rejected

since they were mostly hadron events. The distribution

follows the general shape of the classical relation (Greisen

1960), but the intensity is about three times as large.
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4. Density ratios of muons to electrons. Figure 7 presents
the density relation between shower muons and electrons at
the same location from each core. The pioner results due to

Cocconi (Hayakawa 1969),and rough estimates based on
Greisen's relation and the NKG function with mean shower

size 2.23.104 are also shown for comparison. Again our

ratios are expected to be much higher.
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5. Discussions. If the observed shower events are either

old declining showers (s _ 1.3) of very young developing
showers (s _0.8), the smallness of the size is only

phenomenological and may not have been initiated by
primaries of small energies (_1014eV). High intensity of

muon component in the showers supports that they were
initiated by higher energy primaries.

Alternatively, if the richness in muon content is not
due to the phenomenological factor, then this result would
suggest that the primary cosmic rays at the energy range

concerned are dominated by heavier components (A _15) and
that p-p interaction at this energy range should possess

multiplicity which rises with energy at least as fast as

ns _ E_.
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