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I. Introduction

The well known NKG function is a very useful tool to describe

the lateral extension of the electromagnetic component in EAS ;

however_ in spite of non negligible qualities (simplicity_ normali-

zation by beta-function), it doesn't correspond exactly to the

natural shape of the lateral electron distribution. Several bias may

occur in size estimation if NKG is used without correetion_ for

instance, contradiction between lateral and longitudinal development

the lateral parameter s_ being quite lower than the longitudinal one

(I)(2). We emphasize here how the longitudinal age parameter s_ can

be correlated with the information obtained from the lateral e_ec-

tron densities according to the conditions of use of ±he NKG
function.

2. Local ave parameter phenomenologz

The theoretical age parameter s t illustrates the declinin s stage
of a shower and is determined as the saddle point in the inverse

Mellin transformation. We have postulated that the NKG function,

derived from diffusion equations fails to describe EAS data_ mainly

because a uniqueness of parameter s was assumed_ and we have admit-

ted local agreement with NKG function in small bands of distance by

introducing the local age parameter

1 ((x+l) _Ln f- + (6.5 x + 2)) (f _ NKG)
s(r) 2x+l _Ln x

the(X=late_alr/r)_ ro Moli_re radius. From two neighbouring points x i_ xj
age parameter sij in [ri)rj] is given by

s = Ln (X..Y..)
mJ 13 13 13 13 13

where

Fij = f(ri)/f(rj ) ' Xij" = ri/rj ' Y" "=Ij (xi+1)/(xj+l).

If r.l * r.j , s..Ij * s(r) when r = (ri+rj)/2._

Different behaviour of lateral structure function were proposed

from different analytical treatment of diffusion equations (3) or

Monte-Carlo simulation of e.m. cascades (_). A convenient formula

was advanced consisting to use NKG formula with a Moli_re radius

reduced by a factor m = O.78-0.21 s t (for individual e.m. cascade).
We observed for single e.m. cascade that s(r)had_ versus (3) or

(4) a behaviour similar to fig. I ; incorporating those results in

EAS-3D simulation_ we ascertained that this typical behaviour of

s(r) survived in EAS lateral distribution for all sizes and levels.
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Recently we developed a very detailed Monte-Carlo 3D-simulation,

including all possible causes of deviation (for instance_ the dou-

ble body decay of each _o is completely described to produce

energy and director cosines of each outgoing _, < pt>, is correla-
ted with central rapidity density...); the model used for nuclear

interaction is the multicluster phenomenological one described in

HE 4.1-9,10. A surprising agreement is obtained with Akeno data (5)

in favour of the parametrization (fig. 1)

= + _ + T , where _ = Ln (r/r) o

For a uniform density of detectors, the answer of an experimen-

tal array will be averaged on all the shower disk seen by the arra_
The radius R of this shower disk depends on the detector area (or

density threshold) and it comes :

1 I R 1
= _ 0 s(r) dr = _ (_FI(X) + _GI(X)) + _ with X = R/r °

\ 2

where FI(X ) = XLn X - 2X(Ln x -1) , G_(X) = XLn X - X.
According to the shape of fig. 1, any a_tempt to estimate s in

tO - 50 m] and [50 - 150 mJ will give the same value of the inte-
gral (6).

3. Comparison with experiment
The variation of s versus size has been calculated for MPM

(nucleon primaries, @ = 22°5) at Akeno level_(fig 2) Four values
- z 0.5 e-/m 2. Theof R have been taken corresponding to _ e /m , 2, I,

first value corresponding to 0.25 m 2 detector is in very good

agreement with the experimental data. At Tian-Shan level, we have

plotted the correlation between s6 -O and s , the first parameter
being estimated by NKG function fro_ numerical values simulated at

6 and 70 m (fig. 3) for different sizes between I0 _ - 106 particles.
12

A general correlation appears : s = I._34 s_ __ - 0.243.

The correspondance giving s at Akeno an_ _oscow altitudes has

been also obtained as s. = 1.2_ s_ + O.O_ and s. = 1.157§_+0.183.

We note that with the present assumption included for e.m. cascade,

, the correlation is not independent on level (fig. _).

4. Discussion

The behaviour versus r of s(r) is not smeared out by the hadro-

. nic cascade and survives in EAS (fig. 1). The agreement obtained

previously with high multiplicity model is now obtained with the
multicluster phenomenological model

(describing _-p data) up to 5.106 GeV (limit of our Monte-

Carlo simulation) as well at Akeno for s and s(r) as in Tian-S_an

for s 6 _. The age parameter data doesn't suggest between _.10- -
5.1o 6 G_ any increase of primary mass and supports better a

nucleon dominance in primary cosmic rays.

References

I. S.C. Tonwar, 1981, Proc.17th Conf.on Cosmic Rays, Paris, rap.

paper.

2. J.N. Capdevielle and J. Gawin, 1982, J.Phys. G8 (1982), 1317.

3. A.A. Lagutin, V.V. Uchaikin, 1979, Proc.16th Conf.on Cosmic Rays,

Kyoto, _, 18.

4. A.M. Hillas, 1981,Proc.17th Conf.on Cosmic Rays, Paris, _, 244.



142

HE _.3-13

5. M. Nagano et al., 1984, J.Phys.Soc.Jap., 53, 1667.

6. F. Ashton et al., 1983,Proc.18th Conf.on Cosmic Rays, Bangalore,

I_!, 184.
7. M.V.S. Rao, 1983, Proc.18th Conf.on Cosmic Rays, Bangalore, 12,

449.

M. Nagano_ 1983, Proc.18th Conf.on Cosmic Rays, Bangalore_ 12,
475.

I I , - .
f

Fi_.




