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I. Introduction

Detailed Monte Carlo simulations of extensive air showers to be

detected by the Homestake Surface-Underground Telescope (I) and other
similar detectors located at sea level and mountain altitudes have

been performed for 1014-1016 eV primary energies. The results of

these Monte Carlo calculations will provide an opportunity to compare

the experimental data with different models for the composition and

spectra of primaries and for the development of air showers (2).

In the present paper we report on the results obtained for exten-

sive air showers generated by 1014-1016 eV primary protons.

2. Monte Carlo Simulation of the Hadronic Cascade

The interaction model used assumed inelastic cross sections in-

creasing with energy as £nl'8s, which corresponds to a £n2s rise of the

inelastic p-p cross section. The x distribution obeys radial scaling

and is realized through the splitting technique suggested by A.M.

Hillas. The K/_ ratio is 0.09 and energy independent.

Transverse momentum distribution is of the form p_ exp (-Kpz)
and includes the "sea gull" effect. For x < 0.2, K=_ 2

x + 1/4' while

for x > 0.2 we used a constant exponent of -4.44 for pions.

The secondary particles are followed until they reach certain

threshold energy levels: 1.7 TeV for muons, 0.01 and 0.1 TeV for

- electrons, gammas, and O.i TeV for hadrons.

3. Simulation of the Electromagnetic Cascades

The electromagnetic cascades generated by gammas and electrons

are propagated to the height of detection by applying the parametrized

analytical formulas for the longitudinal development and lateral

distribution of the electron component obtained by Fenyves and Yunn in

previous Monte Carlo simulations of electromagnetic cascades (3). The

threshold energy levels for the electromagnetic cascade generating

gammas and electrons were: 0.O1 TeV for I014 and 1015 eV primary

protons, and_O.l TeV for 1016 eV protons. The average number of

gammas and electrons above the threshold per shower is given in Table
i. (Muons above 1.7 TeV are also included in the Table.)
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Table 1

Ep(eV) N_ N e N
From the extrapolation of

1014 361 + 8 3.9 + 0.3 0.30 +0.06 the gamma spectra below the
1015 2612 +61_ 31.9 _+ I.i 1.54 +O.17 threshold levels correction

1016 3015 +78 34.9 + 1.2 8.20 _+0.50 factors were calculated for

the missing low energy elec-

tromagnetic cascades. The correction factors for the total number of

electrons of the air shower are dependent on the depth and the primary

proton energy varying between 1.010 and 1.021.

The geomagnetic effect was included in the calculation by stret-

ching the east-wes_ axis of each vertical electromagnetic cascade by
[I + O.05(cos % /P)_] ½ where _ is the geomagnetic latitude and P the

pressure in atmospheres (4). The individual cascades were then folded

together to form the electron component of the extensive air shower.

4. Results

We have run a total of 220 extensive air showers generated by

1014 , 1015 and 1016 eV primary protons in a standard atmosphere. As

expected the longitudinal development of these showers could not be

approximated well with the standard formula used for the electron

component of electromagnetic cascades generated by single gammas (3)

Ne(Eo,E, t)= A(E,s)0.31#y exp [t(l-l.5 En s)] (I)

where t is the depth measured in radiation lengths (37.1 g/cm2), y =

_n Eo/e o ( Eo= 81 MeV),
3t

S =
t + 2y (2)

and A(E,s) is the fraction of electrons having energies larger than

the electron threshold energy, E. (E=SMeV and A(5MeV,s)=0.67 were used

in the present study (3).)

We could, however, fit NemaX and tma x calculated from Eq.(1)
simultaneously to the corresponding average values obtained for the

1014 , 1015 and 1016 eV showers by varying Eo, the energy of the
cascade generating gamma. The longitudinal development of the simu- °

lated air showers was, however, increasing faster before tmax, and

decreasing slower after tma x than the values calculated from Eq.(1).
This is expected because the electromagnetic component of the air

shower starts with a large number of gammas, and dies out slower after

the maximum due to new electromagnetic cascades generated by the

hadronic core.

According to this we modified Eqs.(1) and (2) simply by replacing

t in both equations by

t '= t + B(tma x -t)t ? (3)
where B and_y are constants depending on the primary proton energy,

and the second term increases or decreases the effective t' values as

compared to t before or after the maximum, respectively.

The optimum Eo, B and Y values obtained for this14 15 16
parametrization for EpffilO , IO and IO eV are given in Table 2.
Fig. 1 shows the good agreement between the Monte Carlo simulated

average values (dots with error bars) and the smooth curves calculated

by using Eqs.(1) and (2) modified by Eq.(3) with the parameter

values given in Table 2.
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Table 2

Ep(eV) Eo(eV) 8 y Eqs.(1), (2) and (3) can alsobe used to describe moderate-

1014 5.2 1013 0.0100 1.00 ly inclined showers (8 _<30 °).

1015 6.4 [ 1014 0.0173 0.75 Then t in E_.(3) is the slant
1016 6.9 . 1015 0.0300 0.50 depth measured from the top of

the atmosphere. The energy of

the single gamma, Eo, simulating the longitudinal development of the

air shower is increasing with Ep, the energy of the shower as expected
because of the increasing probability of charged pions and kaons to

produce nuclear interactions rather than decay. The 8 and ? values can

be easily interpolated for intermediate ED values when plotted on a

log-log or lin-log scale vs. Ep, respectively.
The lateral distribution of electrons of air showers generated by

1014 , 1015 and 1016 eV protons was compared with the modified NKG

formula

r ) = C(s) (r,)s - 2 r + l)S - 4.5
f(r'M M (r'M i (4)

where r' is about half of the Moli@re length length, rM, as

suggeste_ by A. M. Hillas (5), and s is calculated by Eq.(2) modified

by Eq.(3) with the parameters given in Table 2. A good agreement was
found for not too large distances from the core, from r=im to about

300m, as illustrated in Figs. 2, 3and4 for 850 g/cm 2, the height of

the Homestake Telescope where r'M=45m (3). Similarly good agreement
was found for other heights too. At larger distances from the core,

however, even the modified the NKG formula fails to,agree with the
Monte Carlo simulated data. Corrections for this effect will be

discussed in a forthcoming paper.

The geomagnetic effect is relatively small at sea level but

increasing with altitude. The east-west axis of vertical showers is

stretched by a factor of 1.O13 at sea level, and 1.019 at 850 g/cm 2.

The relative difference between the f(r/r_) values averaged in a cone
_+45° around the east-west axis and in a cone +45 ° around the north-

south axis is increasing with r from about -O.O15 at r=im, to about

-0.075 at r=lOOOm.
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