LATERAL DISTRIBUTION OF HIGH ENERGY MUONS IN EAS OF SIZES $N_{a} \approx 10^5$ and $N_{a} \simeq 10^6$.

Bazhutov Yu.N., Ermakov G.G., Fomin Yu.A., Isaev V.I., Jarochkina Z.V., Kalmykov N.N., Khrenov B.A., Khristiansen G.B.,Kulikov G.V.,Motova M.V.,Proshkina I.P.,Rukovichkin V.P.,Solovjeva V.I.,Sulakov V.P.,ShkurenkovA.V. Trubitsyn A.V. and Vashkevich V.V.

Institute of Nuclear Physics, Moscow State University, Moscow, 119899, USSR.

Muon energy spectra and muon lateral distribution in EAS are investigated with the help of the underground magnetic spectrometer working as a part of the Moscow State University EAS array[1,2,3]. Before going to new results on EAS muons a general concept of the measurement sholld be mentioned. For every registered muon the data on EAS are analysed and the following EAS parameters are obtained:size N_e , distance r from the shower axis to muon, age parameter s. So the number of muons with energy over some threshold E, associated to EAS of fixed parameters are measured: I To obtain traditional characteristics-muon flux densities as a function of the distance r and muon energy E,i.e. muon lateral distribution and energy spectra which are widely discussed in terms of hadron-nucleus interaction model and composition of primary cosmic rays one should use the equation: $\frac{\Delta I_{2g}}{\delta N_{e}\Delta z\Delta s} = t.2\pi\tau \int \int dcs \delta d\varphi J(0,\varphi) F(N_{e},s) W_{2g}^{EAS}(N_{e},z,s,0) W_{2g}(E_{v},N_{e},z,s,\delta(E_{r},\delta,\varphi)) (1)$

where $\mathcal{F}(N_{e,s})$ is known spectrum of EAS, $W_{2ey}^{EAS}(N_{e,2},s,\delta)$ is probabi-lity to register the EAS of specified parameters, W_{2ey} is probability to register muon of energy over E in magnetic spectrometer with effective area $\mathcal{O}(\delta, \psi, \mathcal{E}_{r})$, $\mathcal{I}(\delta, \psi)$ is angular distribution of EAS, $\Theta_{r}(\psi)$ is spectrometer geometry limit on zenith angle θ , tis operation time . In our case probability

is equal $W_{2ij} = \sqrt{1 - e^{p_{ij}}(E_{r_{ij}}, N_{e_{i}}; s, \vartheta)} \cdot \sigma(\vartheta, \vartheta, E_{r_{ij}}) \frac{1}{2} + \rho_{r_{ij}}(E_{r_{ij}}, N_{e_{i}}; s, \vartheta)} \cdot \sigma(\vartheta, \vartheta, E_{r_{ij}})$ (2)

where $\rho_{i}(E, M, i, s, t)$ is muon flux density. For final analysis only showers with $W_{hg} \ge 0.9$ ($0.9 \le s$ $s \ge 1,6$) are selected. In this case the densities ρ_{m} derived from experimental data are unbyased on age parameter. So equation (1) transforms to

 $\frac{\Delta I_{res}}{\Delta N_e \Delta r \Delta s} = t.2\pi \tau. \mathcal{J}(N_e, s) \cdot \mathcal{P}_{\mu}(E_{\mu}, N_e, \tau, s, \overline{\theta}) \cdot \sigma'(E_{\mu}); E_{\mu}, Ger = \overline{\theta} = 9^{\circ}$

Fig.1 a

The data for muon threshold energies $E_{\mu}=200$ and 500 Gev are corrected for MDM as in [1]. Muon lateral distribution on (LD) shows weak dependance on EAS size. The following formula approximates the obtained data

 $= K \cdot (\frac{Ne}{2})^{\alpha}$ -n.exp[-2/2.(N.)] M where parameter & is equal E₄Gev 50 100 200 500 a= 0,78 0,77 0,76 0,77 0,04 0,05 0,06 0,1 +

$k = 1,3.10^{4} / (E_{r} + 250)^{1,4}$	
$n = 0.55 \cdot \left(\frac{E_{\mu} + 2}{12}\right)^{9/2}$	5+1105
$\mathbf{r} = \left(\frac{\delta C \left(\frac{E_{\mu}+2}{12}\right)^{-q_{0}2} \left(\frac{N_{e}}{N_{0}}\right)^{2} 5}{\sqrt{2}}\right)$	0 ≼ E ≲ 200
0 (10 + 3 m)	É=500

In Fig.1a the average LD of muons with $E_{\mu} = 200$ and 500 Gev are presented for $\langle N \rangle = 2.10^5$.

The mean muon^eenergy as a function of distance r is presented in Fig.1b. Experimentally measured underground muon energy spectra were transformed to muon spectra in atmosphere. Solid line in Fig.1b presents mean muon energy in atmosphere at sea level. At the distance r=12O+12m mean muon energy is equal to mean over EAS energy of muons, <E>= 8±1 Gev,[3]. The ratio of positive and negative muon numbers was analysed for various distances r. Numbers of muons in differential ranges of energy are presented in Table2. It is seen that the ratio I_/I_does not deviate from 1 in statistical errors.

100	underground -
- 10	in \$ 9 atmosphere 9 <e, eas=""> 2-22</e,>
ـــــــــــــــــــــــــــــــــــــ	Fig.1 b

Table 1.	Numbers	of	registered	muons.
----------	---------	----	------------	--------

	r	=0-	8 m	r=	8-1	6 m	r=	16-	32 m	r=	32-	64m	r=	64-	128	r≯	128
E ₁ Gev	10	200	500	10	200	500	10	200	500	10	200	500	10	200	500	10	200
A11 W 0,9	359 359	94 94	35 35	556 484	. 92 81	30 28	980 625	87 46	21 10	952 508	29 12	5 2	301 112	3 2	1 0	55 10	0
N _ē 1	224	60	22	259	42	14	177	18	5	-	_	-	-	1	_	- ·	-
№ _ē 2	84	23	12	131	19	7	273	18	3	207	3	1	-	-	-	_	_
N _ē 3	41	8	1	77	17	5	139	7	2	205	5	1	33	1	.0	-	_
№ _ē 4	10	3	.0	17	3	2	36	3	0	96	4	0	79	- 1	0	10	0

152

HE 4.3-16

Table	2. N	Jumbers	of posi	itive I ₊	and nega	tive I_ muons	5.
E	Gev	10-50	50-100	100-200	200-500	500-1000	
r < 16 m	±	161	97	77	57	9	
1. 1 10 m	IT	164	91	82	56	9	
r = 16 - 32m	I_	174	75	51	18	4	
1 - 10 Jam	I'	159	68	43	15	0	
r≥ 32 m	I - +	224	69	16	6	0	
•	±	200	61	15	6	1	

Experimental results presented above were compared to results of Monte-Carlo calculations based on the quarkgluon string theory of hadron-nucleon interactions[5]. This theory explains accelerator data including recent SPS collider data. In[6] this theory was applied to hadron-nucleus interactions. Calculations of EAS were carried out for muon production throughpion and kaon decays for primary protons and various primary nuclei in assumption of "superposition" model of nucleus-nucleus interactions. The composition of primaries was suggested as follows

	~~~				
Α	1	4	14 、	21	56
%	40	15	15	15	15
Reaul	ts of	the cel	culations	are	nregented

the calculations are presented in Fig.1a curves 1. One can see that for the highest measured muon threshold energies  $E_{\mu}=200$  and 500 Gev the theory does not agree with the experiment. To make agreement better there were carried out calculations taking into account muon production through decays of charm particles. Cross-section of charm production was taken as in[7]. Curves 2 present the results of this calculations. Soft jet production[8] was also checked as a reason for additional spread of muons. ( curves 3 in Fig.1a ). Both processes do not change LD of muons of threshold energies  $E_{\mu} = 200-500$  Gev in the range of distances r close to median radius as is experimentally mea sured. Muon LD proved to be more sensitive to the model of nucleus-nucleus interaction. The "fragmentation" model in which nucleons not included in heavy fragments interact with target nucleus gives better agreement with the experimental data. In Fig1a curves 4 present results of the calculations taking into account this "fragmentation" model. Primary composition is as before.

## Refrences.

1. Khrenov B.A., et al ,ICRC-16, Kyoto, 8,351, 1979.

- 2. Grishina N.V., et al , ICRC-17, Paris, 6, 3, 1981.
- 3. Atrashkevich V.B., et al, ICRC-18, Bangalore, 11, 229, 1983.
- 4. Rao M.V.S., ICRC-18, Rapp. paper, 1983.
- 5. KaidalovA.B.& Ter-Martirosjan K.A., Jadernaja Phys., 39,1514, 1983 and 40,211,1984 .
- 6. Kalmykov N.N.& Khristiansen G.B., ICRC-18, Bangalore, 11, 330, 1983.
- 7. Slavnov D.A., Jadernaja Phys., 41, 213, 1985.
- 8. Gribov L.V., Levin E.M., Ryskin M.V., Phys.Lett., 121B;65, 1983.