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ABSTRACT

Formulae which have been proposed for representing the longi-

tudinal profiles of cosmic ray air showers are compared, and

the physical interpretation of the parameters they contain is

examined. Applications to the problem of energy calibration

are pointed out. Adoption of a certain especially simple for-

{nula is recommended, and its use is illustrated by means of

examples.

I. Introduction. At all primary energies above _ 103 GeV, incoming cos-

mic ray nuclei deposit more than half of their energy via the soft compo-

nent. At the highest observed energies the fraction EEM/E approaches

90-95%, where EEM is the energy deposited by the composite electron-pho-

ton cascade resulting primarily from To decay y-rays. The single most

important step, therefore, in determining the cosmic ray energy scale for

E > 106 GeV, where experiments above the earth's atmosphere currently

give way to experiments using air showers, is measurement of EEM.

The use of simple mathematical formulae to represent the lateral

structure of extensive air showers began at an early stage in the study

of shower phenomena (cf. Bethe quoted by Williams 1948), and such formu-

lae continue to be useful tools. Analogous formulae for the longitudinal

structure developed much later, possibly because accurate experimental

data have taken much longer to obtain, and possibly because analytical

methods have tended to be supplanted in recent years by Monte Carlo cal-

culations.

With the advent of techniques for directly measuring the longitudin-
al profiles of individual air showers (Hammond et al. 1978, Grigoriev et

q_

al. 1979, Cassiday 1981, Cady et al. 1983) it seems an appropriate time

to re-examine formulae that have been used to describe these profiles

(Greisen 1956, Linsley 1967, Longo and Sestili 1975, Gaisser 1976 and

1979, Gaisser and Hillas 1977, Sass and spiro 1978, Dyakonov et ai. 1981).

By analogy to formulae used for describing the lateral structure of vari-

ous air shower components I will call them 'trial functions'. In case of

lateral structure such functions have had an important role in comparing

results of different experiments. One expects longitudinal trial func-r

tions to be useful in the same way. In case of the lateral structure of

electrons, trial functions are also used in the conduce of experiments,

to derive from raw data on shower density a global measure, the shower

size N, as well as core location, age, and measures such as $600. The

corresponding step in dealing with profile data is to find Nm, long re-
cognized as being one of the most reliable estimators of primary energy

(Clark 1962), from data on N vs x. This step also yields Xm, the shower
elongation, and may also yield the profile width _x- In case of the

electronic lateral structure, trial functions are formulated in such a

manner as to reflect the physical processes that govern cascade develop-
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ment. Thus core distances are expressed in Moli_re units, and steepness

is controlled by a parameter relating plausibly to shower age. One

aspires to achieve similar success in case of the longitudinal structure.

2. Electromagnetic cascades. The longitudinal trial function proposed by

Greisen (1956) provides a good illustration:

½)exp[t(l 3
N = (0.31/_ O - _ ins)], where s = 3t/(t + 2_o) . (i)

Clearly its structure was influenced in several ways by theoretical re-

sults obtained with diffusion equations (see Rossi 1952):

i) Thickness is measured in units of the radiation length (t = X/Xo).

2) Primary energy is measured in units of the critical energy E c (80 =

in (E/Ec)) .

3) There is a built-in elongation-energy relation, Xm = Xo8 o, which is
approximately correct.

½
4) There is a built-in N m relation, N m = (0.31E/Ec)/[In(E/Ec)] , which is

also approximately correct.

5) The shower age s is incorporated in an approximately correct manner.

The price paid for (5) is mathematical inconvenience. Expressions for N,

Nt and Nt 2 cannot be integrated in closed form, so simple formulae for

the track length integral, the average depth <x> and the profile width

_x, provided by the exact theory, must be patched on ad hoc.

An alternative form is the gamma distribution, recommended in the

current Particle Properties Data Booklet for representing results from

EGS, a well known Monte Carlo program for simulating electronic cascades.

Gamma distributions have been chosen independently by several workers to

represent air shower profiles as well. Indeed, the choice has been unan-

" im_us, and this is the choice recommended here.

3. Mathematical properties of gamma distributions. I will write this
distribution in the form

N = No_qe-q_ , (2)

calling the numerical constant q the 'index'. The optimum values of _
Q

and N are given by _m = 1 , (3) Nm = No e-q ' (4)

while the mean value and variance are given by

<_> = q q+ 1 , (5) _2 = q _21 . (6)

The normalization is given by INd_ = F(q+l)/q q+l , (7)

which admits approximation using Stirling's theorem

/Nd_ _ N (2_/q) ½e -q = N (2_/q) ½ . (8)
0 m _;

I propose to determine the parameters of (2) by using

I) the elongation-energy relation, xm vs inE (note from (_) that _=X/Xm) ,

2) a relation due to Kraushaar (1957) between the typical profile of an

individual proton shower and the average profile of proton showers,

3) experimental data on _x, and on EEM/E, the fraction of primary energy

given to electrons.
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First, however, I will show that (2) provides an excellent fit to elec-

tromagnetic cascade profiles.

4" Eleptrgmagnetic cascades revisited. Results of cascade theory in ap-
proximation B are (Rossi 1952):

x = x (1.018 + A), <x> = x (I,018 + B), _2 = x 2(1.618 + C) , (9)
m o o x o

where 8 = in(E/Ec) and A,B,C are constants % 1 whose exact values depend

on whether the primary particle is an electron or photon. Using (3) and

substituting in (6) I solve for the index
q = 0.63 + D , (I0)

where D = -0.4, 0.2 for primary electrons and photons, respectively.

Substituting this result in (5), I find
<x> , x = 1.6x , (Ii)

m o

expressing the fact that the profile is unsymmetrical. To conserve ener-

i gy the track length integral must equal E. Thus

I(Ec/Xo)Ndx = E . (12)

Using (8) , which I solve for Nm, and again substituting for q and xm,
½

Nm = (0"31E/Ec)/[In(E/Ec) - F] , (13)

where F = 1.7, 1.0 for primary electrons and photons, respectively. Re-

sults (II) and (13) are almost exactly the same as given by the detailed

theory.

5. Application to air showers. One begins as in the preceding example,

by letting _ = X/Xm, where xm is given by the elongation-energy relation.
A reasonable choice for this is

xm = A + D101ogE (14)

with A = 159 g/cm 2 and DI0 (elongation rate per decade) = 65 g/cm 2
(Linsley and Watson 1981; E is in GeV). The index q can be found as in

the preceding example, using (6), but first I will show an alternative

method illustrating a deep connectio_ between gamma distributions and

cascade processes.

It was pointed out by Kraushaar (i957) that the average number of

electrons N at atmospheric depth x arising from a primary particle inci-

dent upon the top of the atmosphere is related as follows to the average

number N1 of electrons at thickness x' below a nuclear interaction of
such a particlez

d X

N(X) = I0 Nl(X')exp[-(x-x')/l]dx'/1 , (15)

Nl(X) = [i + l(8/_x)]N(x) , (16)

where I is the interaction mean free path of the particle, assuming that

there are no fluctuations other than those in the starting level. Apply-

ing these, it is readily shown that the condition for N and N1 to be self
similar; meaning in this case for one to be a gamma distribution if the

, other one is, is the following:
q = xm/1 • (17)

Substituting (17) in (6) one obtains a very interesting result,

a2 = 12 + _xm (18)X t

which can be combined with (14), giving

a2 = (12+ Al) + IDlolOgE . (19)x
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This says that if the energy dependence of I is neglected, the energy de-

2 has the s_ne form as that of Xm, just as it does in casependence of _x

of electromagnetic cascades. The energy dependence is described by a

rate, analogous to the elongation rate, which is in fact proportional to

the elongation rate. This new rate, which might be called the 'width

rate' or 'spreading rate', is equal to _DI0.

An experimental result on ax has recently been reported by the Fly's

Eye group. The value given, 220±33 g/cm 2 at 109 GeV (Baltrusaitis et al.

1985), agrees very well with a value derived from an average profile pub-

lished by Grigoriev et al. 1983 for a slightly lower energy. Substitut-

ing the average of these results, and values of A and DI0 , in (19), one
finds % = 58 g/cm 2.

This is appreciably greater than the mean free path for proton-air

inelas£ic collisions found by other methods (see conference paper HE1.1

-i). It is reasonable to assume that I is greater than Ipa,inel. for the
same reason that holds in similar cases: neglect of development fluctua-

tions. This needs further study. Pending results of such a study, a

2 for energies other than 109 GeV is obtained byreasonable estimate of Ox
assuming that I is constant with the value found above. Then

2 1.5.104+ 3.8-i031ogE (21)q = 3.36 + 1.121ogE , (20) and Ox =

The remaining parameter in (2), No, is found in the same manner as

for electromagnetic cascades, using (7) or (8), keeping in mind, of

course, that the track length integral equals EEM , not E. The relation

between EEM and E is discussed in conference paper OG5.1-5 (or see
Linsley 1983). A convenient formula representing results of that work is

EEM/E = 1 - 2.8E -0"17 (E in GeV) (22)
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